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Abstract: Microsimulation-based models, increasingly used in the transportation domain, require
richer datasets than traditional models. Precisely enumerated population data being usually unavail-
able, transportation researchers generate their statistical equivalent through population synthesis.
While various synthesizers are proposed to optimize the accuracy of synthetic populations, no insight
is given regarding the impact of the geographic resolution on population synthesis quality. In this
paper, we synthesize populations for the Census Metropolitan Areas of Montreal, Toronto, and
Vancouver at various geographic resolutions using the enhanced iterative proportional updating
algorithm. We define accuracy (representativeness of the sociodemographic characteristics of the
entire population) and precision (representativeness of the real population’s spatial heterogeneity)
as metrics of synthetic populations’ quality and measure the impact of the reference resolution on
them. Moreover, we assess census targets’ harmonization and double geographic resolution control
as means of quality improvement. We find that with a less aggregate reference resolution, the gain in
precision is higher than the loss in accuracy. The most disaggregate resolution is thus found to be the
best choice. Harmonization proves to further optimize synthetic populations while double control
harms their quality. Hence, synthesizing at the Dissemination Area resolution using harmonized
census targets is found to yield optimal synthetic populations.

Keywords: population synthesis; travel demand modelling; iterative proportional fitting; iterative
proportional updating; enhanced iterative proportional updating; geographic resolution

1. Introduction

Microsimulation-based models performed by transportation planners and engineers in
the context of travel demand forecasting require complete disaggregate datasets describing
a population of agents (households and/or individuals) as input. Collecting this type of
data is costly, time-consuming, and complex [1]; thus, synthesis of the required datasets
is the typical solution. Population synthesis is a process using aggregate and partially
disaggregate data to list a fully enumerated population of agents (individuals and/or
households) with sociodemographic characteristics. The goal is to generate a synthetic
population that is statistically consistent with the real population as described by aggregate
data (usually from the censuses).

The population synthesis process starts with the selection of sociodemographic charac-
teristics according to which the synthetic population will be generated. When the synthetic
population is intended to feed microsimulations of mobility behaviors, the characteristics
having the most important behavioral effects in terms of transportation habits are used
as control variables. Then, aggregate data (AD) at a chosen geographic resolution are
extracted from census summary tables (e.g., Summary Files (SF) in the U.S.) which consist
of one-, two-, or multiway tables containing the total marginals of the joint distribution of
people and households’ most important characteristics. Disaggregate datasets (DD) are
drawn from a representative microdata sample of households and people with full sociode-
mographic characteristics detailed for each anonymized agent (e.g., Public Use Microdata

ISPRS Int. J. Geo-Inf. 2021, 10, 790. https://doi.org/10.3390/ijgi10110790 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-0459-5836
https://doi.org/10.3390/ijgi10110790
https://doi.org/10.3390/ijgi10110790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10110790
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10110790?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2021, 10, 790 2 of 27

Sample (PUMS) in the U.S. and Public Use Microdata Files (PUMF) in Canada). Entire mul-
tiway cross tabulations of control variables are drawn from the 5%—or less—disaggregate
sample to be used in the population synthesis process. The correlation structure existing
among sociodemographic variables in the microdata sample should be preserved in the
synthetic population while fitting the totals of different combinations of sociodemographic
characteristics to those observed in the census.

Fitting-based approaches, specifically synthetic reconstruction techniques, are the
oldest and the most frequently used population synthesizing methods. In their paper,
Beckman et al. [2] were the first to apply the iterative proportional fitting (IPF) technique [3]
to synthesize a population of households using census and PUMS data. Since then, many
papers addressing weaknesses of this technique have been published suggesting alter-
natives to the basic algorithm implemented by Beckman et al. [2] in the Transportation
Analysis and Simulation System (TRANSIMS).

The IPF basic method is unable to concurrently account for individual and household
control variables. Hence, synthetic populations obtained using this technique can match
either individual-level or household-level constraints, but not both. Ye et al. [4] made a
major advancement in the field [5] proposing an algorithm known as iterative proportional
updating (IPU) that allows the synthetic population to match individual and household
joint distributions. Hence, different weights are assigned to households that are identical
with respect to household attributes but have different compositions of individuals. More
details about IPF and IPU algorithms are provided in Section 2. Considering that control
variables may sometimes be available at different geographic levels, Konduri et al. [6]
introduced an enhanced version of the IPU algorithm generating a synthetic population at
two geographic resolutions simultaneously.

1.1. Problem Statement

To ease the understanding of the paper, it is helpful at this point to clarify the ter-
minology used. In this paper, a reference geographic resolution (RGR) refers to the type
of census standard geographic areas at which the population synthesis is performed, i.e.,
for which the target AD are extracted. Each geographic resolution is made of geographic
units. For instance, if we are synthesizing a population for all the census tracts of a city, the
geographic division of the whole city into census tracts is the RGR, and each census tract is
a reference geographic unit (RGU).

The choice of the RGR has an important impact on the synthetic population and the
microsimulation it feeds. The more aggregate the RGR, the more likely spatialization
errors will occur. This is because when an RGR is used for population synthesis, the
population segments of less aggregate geographic resolutions are implicitly assumed
to be homogeneous, i.e., uniformly distributed across each RGU. In other words, the
population is assumed to be uniformly distributed on the less aggregate geographic units
comprised in each RGU. A simple example would help to clarify this point. In Figure 1, a
county δ comprised of two municipalities (orange and blue) is depicted. If a population
is synthesized for δ considering the county as the reference geographic resolution, the
synthetic population is assumed to be uniformly distributed on δ—as per Figure 1a—which
means that the two municipalities’ populations are assumed to be homogeneous. However,
in reality, the orange municipality would account for more young men and the old women
would be more prevalent in the blue municipality as per Figure 1b. The mobility behaviors
in such two municipalities would be drastically different due to the sociodemographic
differences of their populations even though they are included in the same RGU δ. Hence,
synthesizing a population at an aggregate level would lead to spatialization errors, thus
altering the simulations of mobility behaviors fed by such a synthetic population.
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Except for a truly homogeneous population, the more aggregate the RGR used, the
stronger is the homogeneity (spatial uniformity) assumption, and the more altered the
simulated mobility behaviors will be. Thus, choosing a less aggregate RGR allows for more
heterogeneity, in terms of sociodemographic characteristics and mobility behaviors, to be
considered. It follows that the quality of spatialization of the synthetic population can
better be assessed at the most disaggregate geographic resolution available. Furthermore,
when the synthetic population is intended to be spatialized at the building scale (fully
disaggregate from a spatial point of view), performing population synthesis at the least
aggregate geographic resolution available in the census can ease the further spatialization
by reducing the plausible locations for each synthetic household.

However, one assumption is that using census totals at the least aggregate geographic
resolution may severely harm the performance of a fitting-based synthesizer. This is
because lacking combinations of attributes and rounded zero marginals for privacy issues
are more likely to occur at a less aggregate resolution. In fact, the more aggregate a
geographic resolution is, the more its census marginals are expected to reflect reality. This
is mainly due to a lower necessity to pre-process the data (namely, round small values up
or down) to preserve privacy. It follows that the quality of fit of the synthetic population
can better be assessed at the most aggregate geographic resolution. Another drawback
of using a less aggregate RGR is an increase in the synthesis complexity. In fact, a less
aggregate RGR implies more RGUs, and thus more targets for the synthesizer to fit. For
example, if a population is synthesized at the county resolution for δ, the synthesizer tries
only to fit to the targets at the county level, e.g., the number of men in δ. However, for
population synthesis at the municipality level, census targets for both the blue and orange
municipalities need to be well fitted, e.g., the number of men in the blue municipality and
the number of men in the orange municipality, etc. The synthesis targets and thus the
potential fitting errors are doubled when shifting from the county to the municipality as an
RGR. Hence, fitting errors become more numerous when using a less aggregate RGR, which
means that the sociodemographic characteristics of the synthetic population will deviate
more from those of the real population, and thus the simulation of mobility behaviors it
feeds will become less accurate. The supposed impacts of different RGR aggregations on
synthetic populations are summarized in Table 1.
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Table 1. Supposed impacts of RGR aggregation on population synthesis.

Reference Resolution
Aggregation Benefits Drawbacks Impact on Synthetic

Population

More aggregate

• Fewer combinations of
attributes missing

• Fewer rounded zero
marginals

• Fewer targets to fit

• Stronger homogeneity
(uniform spatial
distribution) assumption

• Fewer potential fitting
errors

• More potential
spatialization errors

Less aggregate

• Weaker homogeneity
(uniform spatial
distribution) assumption

• More combinations of
attributes missing

• More rounded zero
marginals

• More targets to fit

• More potential fitting
errors

• Less potential
spatialization errors

As increasing and decreasing the RGR can both have benefits and drawbacks, syn-
thesizing a population at two resolutions simultaneously would help take the best of both
worlds. Multi-resolution population synthesis would allow the synthesizer to account for
the heterogeneity of the population at the less aggregate geographic resolution while fitting
to the more reliable marginal totals at the more aggregate geographic resolution. An ideal
synthetic population is thus a population which perfectly fits the households and individ-
uals’ constraints at both the least and the most aggregate geographic resolutions among
the census standard geographic areas. However, the perfect fit of households and people
distributions at two geographic resolutions is unlikely to occur. As for the IPU algorithm,
the enhanced IPU solution for a simultaneous perfect fit of household and people distribu-
tions at two resolutions would probably involve negative weights due to the multiplicity
of constraints [4]. In this case, a corner solution [4], i.e., a solution prioritizing the perfect fit
of one constraint over the others or averaging the fit of multiple constraints, is considered.
Moreover, the data processing applied to census totals introduces inconsistencies of totals
between different geographic resolutions, making the perfect fit of all the constraints even
less likely. Hence, accounting for two resolutions may further damage the quality of the
generated synthetic population. The choice of the RGR and whether to apply multiple
geographic resolution controls or not, should thus be done cautiously to reach the best
compromise between the spatial precision of the synthetic population (representativeness
of the real population’s spatial heterogeneity) and its accuracy (representativeness of the
sociodemographic characteristics of the entire population). Accuracy and precision are
thoroughly defined in Section 3.6.

1.2. Contributions

To improve the quality of the synthetic population, its accuracy and precision should
be optimized. Optimizing the accuracy amounts to minimizing fitting errors and opti-
mizing precision to minimizing spatialization errors. Since a more aggregate RGR would
potentially lead to more spatialization errors and a less aggregate RGR to more fitting
errors, the magnitudes of both types of errors at various geographic resolutions should be
assessed to determine the geographic resolution yielding the best trade-off.

The main objective of this paper is to assess the impact of the RGR on the quality of the
synthetic population, thus suggesting means of minimizing fitting and spatialization errors.
Specifically, fitting and spatialization errors are measured for various RGRs with a focus
on the impact on the errors from (1) the aggregation of the RGR, (2) data inconsistencies
between census geographic resolutions, and (3) multiple geographic resolution controls.

The enhanced IPU algorithm is used in this paper to generate various synthetic popu-
lations for the Census Metropolitan Areas (CMAs) of Montreal, Toronto, and Vancouver.
To the best of our knowledge, the two most recent population synthesizers handling
multiple geographic resolutions are the one introduced by Moreno and Moeckel [7] and
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the enhanced IPU [6]. Moreno and Moeckel’s algorithm [7] can handle three resolutions
simultaneously. However, as our need is limited to retrieving the best fit at two geographic
resolutions (i.e., the most and the least aggregate geographic resolutions), an enhanced
IPU-based algorithm is used.

The remainder of this paper is organized as follows. In Section 2, we discuss properties
and variants of IPF and IPU-based population synthesis techniques as well as their advan-
tages and limitations as exposed in the literature. Other multilevel and multiresolution
population synthesis approaches are also briefly mentioned in this section. Section 3 is
devoted to describing the methodology we have developed to assess the impact of various
RGRs on enhanced IPU-based synthetic populations [6]. The comparison of results is then
performed and discussed in Section 4. Section 5 concludes the paper and proposes some
research perspectives.

2. Literature Review

In this section, IPF, multilevel, and multiresolution synthesizers are briefly described
based on the literature. A special focus is given to the evolution of population synthesis
approaches from IPF to IPU (and enhanced IPU) as the latter is the main algorithm used in
this paper. Their inputs, outputs, advantages, and limitations are also detailed.

2.1. Iterative Proportional Fitting (IPF)

Iterative proportional fitting [3] is an algorithm that generally adjusts the cells of a table
to pre-determined marginal totals. Cells’ values are initialized and modified iteratively to
fit with margins. The fitting process continues until convergence (tolerance must be set
beforehand) or until a maximum number of iterations is reached (which also must be set
beforehand). The algorithm converges for any convergence threshold chosen generally
without exactly summing up to all the predetermined marginal totals [8].

IPF-Based Population Synthesis

IPF—also referred to as the conventional approach [9]—has already been used in
transportation modeling to synthesize populations of households [2,10]. For population
synthesis purposes, a multiway table is seeded using the frequencies in the disaggregate
sample of different types of agents with respect to chosen control variables, and the target
marginals are extracted from the census summary files. Each dimension corresponds to
a variable; thus, each cell of the table represents a unique type of agent, i.e., a unique
combination of the control variables’ categories. For instance, if a household’s size and
income are controlled, a cell would refer to the frequency of one-person households earning
between 50 k$ and 60 k$. The standard IPF-based procedure [2] takes place in two steps:
fitting and allocation [11]. The fitting step’s objective is to make the frequencies in the
table cells fit with the marginal targets. The sample frequencies are iteratively expanded
and at the convergence, the frequency of each type of agent in the entire population is
obtained. Then, the allocation process begins. Households are drawn from the microdata
sample to match the expanded frequencies using Monte Carlo simulations and a synthetic
population of households is thereby obtained. People belonging to selected households
make up the synthetic population of individuals, but fitting is done at the household level
only. A detailed example of this procedure is developed in the paper of Beckman et al. [2].

IPF is a simple approach of population synthesis that has been proven to provide
constrained maximum entropy estimates of the true population [2]. It also maintains the
correlation structure of sociodemographic variables in the sample while fitting frequencies
to census totals [11,12]. The IPF also converges quickly: a sufficient convergence is generally
reached in about 10 to 20 iterations [2].

Despite its attractive features, many modifications to the basic IPF algorithm have
been proposed since the procedure also shows significant weaknesses. First, two types
of zero cells are likely to be found in the initial matrix. Some zero cells are structural [5]
and consist of combinations of characteristics that do not exist in the sample or in the real
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population. The rest of the zeros are incorrect zero cells which consist of combinations
of characteristics which do not exist in the sample but do exist in the real population.
These incorrect zero frequencies prevent the IPF convergence. This issue was addressed
using different techniques such as tweaking [2], limiting the number of iterations [9], or
aggregating the most infrequent categories [10].

Integerization consists of converting the proportions of types of households obtained
at the estimation step to integers representing the number of households of this type in the
synthetic population [9]. This is another limitation of the IPF, as rounding inevitably alters
the correlation structure of the multiway table and leads to unbalance of the total marginals
against which the seed matrix has been fitted. Williamson et al. used a computationally
expensive alternative method known as combinatorial optimization where integerization
is avoided by drawing zone-by-zone agents from the DD into the zone list and iteratively
assessing the contribution of the drawn agent to the goodness of fit of the distribution
contained in the list [13].

The most important problem encountered when using IPF is that the basic procedure
allows either household-level variables or person-level variables to be considered, but not
both. Controlling only household-level variables leads the IPF to assign equal weights
to households of the same type without considering their compositions in terms of the
types of individuals. In this way, the joint distribution of person-level variables in the
synthetic population could significantly diverge from marginals that appear in the census
since it has not been fitted to them. Many modified IPF algorithms that overcome this
issue were proposed. Guo and Bhat proposed checking for “household desirability” before
drawing a household from the microdata sample to feed the synthetic population [9].
Arentze et al. used relation matrices to convert marginal constraints at the person level to
additional household-level constraints before using the IPF basic procedure to estimate
household joint distributions [14]. However, these methods do not fit households and
people distributions simultaneously, and thus do not warrant their consistency [15].

2.2. Multilevel Synthesizers

As the mobility behaviors are determined both by people and households’ characteris-
tics [16–18], multilevel synthesizers are proposed. The multilevel synthesizers try to fit both
households and people distributions by reweighting households according to their compo-
sitions of individuals [15]. The multilevel synthesizers can be divided into three categories:
synthetic reconstruction, combinatorial optimization, and statistical learning [15,19].

2.2.1. Synthetic Reconstruction

The multilevel synthesizers that fall under the synthetic reconstruction category are an
extension of the IPF fitting both households and people distributions mainly by reweighting
households according to their composition of individuals. Müller and Axhausen suggest
the hierarchical IPF as a multilevel synthesizer [20]. At each iteration, the algorithm first fits
the households’ distribution, and each individual inherits its corresponding household’s
weight. Then, people’s distribution is fitted, and each household’s weight is calculated as
the average of its people weights and so on. Bar-Gera et al. [21] used entropy optimization
to fit households and people distributions simultaneously while minimally altering initial
households’ weights [22]. Generalized raking [23] can also be used for multilevel fit
by distance functions minimization [15]. Fournier et al. tried to achieve multilevel fit
using optimization-based reweighting approaches, such as non-negative least squares,
non-negative least deviation, and cyclical coordinate descent [5].

Iterative proportional updating (IPU) [4] is a multilevel synthesizer used in this paper.
The algorithm calculates a single weight for each household in the disaggregate sample
that allows households and people distributions to be fitted simultaneously. Households
of the same type with regard to the households’ attributes but comprising individuals of
different types thus get different weights. The weighting process starts with assigning
a unit weight to each household in the disaggregate sample [4]. The weights are then



ISPRS Int. J. Geo-Inf. 2021, 10, 790 7 of 27

progressively updated so that the weighted sum of each household type meets its cor-
responding constraint. When the weighting according to the households’ attributes is
done, the weighting according to people’s attributes begins. For each person type, the
weights of the households that contain at least one individual of that type are updated
so that the weighted sum of each person type meets its corresponding constraint [4]. A
complete set of adjustments to all households and people attributes constitutes a single
iteration. At the end of each iteration, the gap between the constraints and the updated
weighted sums (∆) is calculated [4]. The process is repeated iteratively until the ∆ reduc-
tion is less than a pre-set tolerance. If a solution where household and person-level total
values are simultaneously perfectly matched is impossible to find, the algorithm yields
a corner solution [4], which usually consists of a perfect match of household-level totals,
thus compromising the quality of fit at the person level. Even with a corner solution, the
algorithm is found to considerably improve the fitting of person-level marginals compared
to IPF. A detailed example illustrating how the IPU algorithm operates is developed in the
paper of Ye et al. [4].

In addition to allowing the fit at person and household levels simultaneously, IPU has
many other important features. First, unlike many population synthesis algorithms, IPU
is adaptable to different situations, i.e., different control variables and categories. Second,
IPU tackles the incorrect zero-cell problem and proposes a new solution that consists of
borrowing the value from the microdata sample of the entire region when the considered
type of households and/or people is missing from the sample of a smaller zone. To avoid
side effects of this method, such as over-representing a character more frequently in the
entire region than in the zone, a threshold value is pre-specified so that frequencies are
borrowed only if they are below this value, which is otherwise used to fill a zero-cell.
Once all zero cells have been modified, all non-zero cells are decreased by the sum of
borrowed values divided by the number of non-zero cells, thus keeping the marginal
sums unchanged [4]. Finally, when generating a synthetic population for a small area, the
zero marginals problem could occur, preventing the algorithm from converging. Ye et al.
proposed assigning 0.01 values to zero-marginal cells, claiming that the effect of such a
measure on the results is negligible [4].

At the selection step, the probability of a household being drawn from the microdata
sample is calculated by dividing its weight by the total weight of households of the same
type [4]. The value obtained when this probability is multiplied by the total number
of households in the considered area represents the number of households of the same
type and with the same composition to be drawn and used in the synthetic population.
Hence, an integerization problem occurs and the total number of households synthesized is
generally inferior to the real number of households. Ye et al. proposed a new way of dealing
with the integerization problem [4]: a household is added to the cells of the household-level
attributes’ joint distribution where frequencies diverge the most from those estimated
by IPF when household-level attributes are controlled for. Since the selection is based
on Monte Carlo simulations, several synthetic populations should be drawn—at least 13,
according to Ye et al. [4]—before choosing the best one among them. When a population is
generated while controlling household-level attributes, IPU outperforms IPF in terms of fit
of person-level attributes [4]. An improvement of the IPU algorithm allowing more social
organization types to be synthesized and ensuring convergence to an optimal solution
is proposed [24]. Balakrishna et al. suggest a simpler and faster population synthesis
approach feeding the selection step with a household fitted distribution and IPU-adjusted
household initial weights [25]

2.2.2. Combinatorial Optimization

Williamson et al. developed a combinatorial optimization-based method using a
conditional Monte Carlo drawing procedure that simultaneously maintains the match to
household distribution and improves the quality of the fit at the person level [13]. A set
of households is initially arbitrarily drawn to reach the total number of households in the
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study area. Then, addition, removal, or replacement trials using the sample’s households
are carried out. For each trial, a goodness-of-fit indicator is calculated [26]. If the fit is
improved, the new household is kept; otherwise, it is disregarded [15].

Ma and Srinivasan used a combinatorial-optimization-based approach where the
contribution of a sample household to satisfying constraints at all levels simultaneously
is measured by an indicator called the “fitness value” [27]. Households are selected in a
decreasing order of assigned fitness values. The drawing process stops if the target total
number of households is reached, or only households with negative fitness values remain.
Abraham et al. used a hill-climbing-based solution to achieve the multilevel fit [28]. Other
algorithms have been used to resolve the combinatory optimization problem, such as
simulated annealing [29], genetic algorithm [30], and greedy heuristic [31].

2.2.3. Statistical Learning

Population synthesis algorithms falling in the statistical learning category are gen-
erally comprised of two steps: (1) estimating the joint distribution of control variables
in the population and (2) sampling from the joint distribution estimated [12,32]. Within
this framework, the hierarchical Markov chain Monte Carlo (hMCMC) method [33] first
defines a typology of people living within a household. It relies on conditional probabilities
comprising variables relating to certain types of agents to estimate the multilevel joint
distribution. The Bayesian network [34,35] use graphical means to capture the joint distri-
bution of households and people characteristics. Recently, deep generative modeling was
applied to generate synthetic populations according to the learned joint distribution [36,37].

2.3. Multiresolution Synthesizers

As control variables can be available at different spatial resolutions, multiresolution
synthesizers are proposed to allow a simultaneous control of variables at two [6] or three [7]
geographic scales. Konduri et al. developed an enhanced IPU algorithm that can consider
person and household-level constraints at two geographic resolutions simultaneously [6].
The weighting process is based on the same principle as the basic version of IPU. Sample
households’ weights, initially equal to 1, undergo multiple iterations of four fitting steps
where they are sequentially modified to fit household attributes at the REGION level, then
person attributes at the REGION level, then household attributes at the GEO level, then
person attributes at the GEO level. Here, the REGION refers to the more aggregate and the
GEO to the less aggregate geographic resolution. During the fitting sequence, a household’s
weight is updated only if, at the geographic resolution considered, (1) it belongs to the
household type being fitted or (2) it comprises the type of people being fitted. The authors
demonstrate that doing so improves the fit of the generated synthetic population at the
more aggregate geographic resolution, i.e., at the REGION level, especially when various
control variables are available at different geographic resolutions.

Moreno and Moeckel developed a population synthesis algorithm that can handle
three geographic resolutions simultaneously [7]. However, as stated in the Introduction,
we aim to minimize errors at two geographic resolutions: the most aggregate (fitting
errors) and the most disaggregate (spatialization errors) ones. Hence, controlling more
than two geographic resolutions simultaneously does not help answer this paper’s research
questions, especially as the control variables we use are available at all the geographic
resolutions considered. This algorithm is thus not used in this paper.

3. Materials and Methods
3.1. Study Area

In this paper, an enhanced-IPU based algorithm was used to generate synthetic
populations for the CMAs of Montreal, Toronto, and Vancouver, Canada. These three
CMAs were chosen since they are the three largest Canadian CMAs in terms of population.
The geographic locations of the three CMAs are shown in Figure 2.
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3.2. Control Variables

A preliminary step to launching the algorithm is making the choice of variables that
will be controlled along the population synthesis process. Some people and households’
attributes that are typically included in travel studies were selected. For instance, age,
sex, and marital status were controlled for people, and size, type, and net income were
controlled for households. The total number of people and the total number of households
were also controlled for. The categories of control variables were chosen to minimize
incorrect zero values as well as because of their relevance for travel studies. Table 2
summarizes the control variables and associated categories.

Table 2. Control variables.

Variable Definition Categories Categories’ Description

ppcount People count 1 1 person

ppage People age
1 [0, 15]
2 [15, 65]
3 65+

ppsex People sex 1 Men
2 Women

ppmarst People marital status
1 Never legally married (and not living in common law)
2 Legally married (and not separated)
3 Living common law
4 Separated, divorced, or widowed (and not living in common law)

hhcount Household count 1 1 household

hhsize Household size

1 1 person
2 2 people
3 3 people
4 4 people
5 5+ people

hhtype Household type
1 Non census family 1

2 1 census family without children
3 1 census family with children
4 Multiple census families

hhnetinc Household net income

1 Less than 30 k$
2 [30 k$, 60 k$]
3 [60 k$, 100 k$]
4 More than 100 k$

1 “Census family is defined as a married couple and the children, if any, of either and/or both spouses; a couple living common law and
the children, if any, of either and/or both partners; or a lone parent of any marital status with at least one child living in the same dwelling
and that child or those children.” [38].
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3.3. Zoning System

The RGRs used were selected among five standard geographic areas defined by
Statistics Canada [38]. The standard geographic areas for the three CMAs are shown in
Figures 3–7 with the corresponding number of geographic units. They are defined—in
decreasing order of aggregation—as follows:

• Census Metropolitan Area (CMA): Area with a total population of 100,000 where at
least 50,000 are concentrated in a population centre [38];

• Census Subdivision (CSD): Generally equivalent to a municipality [38];
• Aggregate Dissemination Area (ADA): Area gathering 5000 to 15,000 people according

to the previous census counts [38];
• Census Tract (CT): Area gathering between 2500 to 8000 people [38];
• Dissemination Area (DA): A subdivision of the CT with a population of 400 to 700 peo-

ple [38].
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It is important to mention that the variations of population and area between geo-
graphic resolutions are proportional. For example, each CT which is a more aggregate
geographic unit than the DA in our definition, has at the same time a larger population and
a larger area than each DA it contains. It is also worth mentioning that the zoning system
defined is consistent, i.e., each geographic unit is included in only one geographic unit of
the more aggregate geographic resolutions. For example, a DA belongs to only one CT, one
ADA, one CSD, and one CMA.

3.4. Datasets

Although some sample-free population synthesizers were conceived [39,40], the ma-
jority of population synthesizers still require both aggregate (AD) and disaggregate (DD)
data to be used as inputs. To perform our tests, we used datasets at different geographic
resolutions from the 2016 Canadian census summary tables and PUMF. The AD used
come from the 2016 Canadian census summary tables [38] while the DD were extracted
from the hierarchical PUMF 2016 [38] for each CMA. The hierarchical PUMF includes a
full set of demographic and socioeconomic characteristics for each people and household.
Hence, an initial frequency matrix, to be expanded by enhanced IPU later [6], can easily be
derived from the sample. All the data were filtered to the selected CMAs. Census summary
tables were extracted for CMA, CSD, ADA, CT, and DA resolutions. However, PUMF
are only available at the CMA resolution. Hence, the disaggregate sample at the CMA
resolution was used to synthesize populations at less aggregate geographic resolutions. An
underlying assumption of such a practice is that the correlation structure among control
variables is constant across the considered geographic units [2]. However, a larger sample,
i.e., having a richer pool of agents, especially when synthesizing at the finest geographic
scales, helps avoid poor variance among synthesized agents.

The Montreal CMA has around 4.1 million people grouped into roughly 1.7 million
households. The Toronto CMA comprises around 5.9 million people in nearly 2.1 million
households. The Vancouver CMA is the smallest of the three considered areas with around
2.5 million people in a little less than 1 million households. For the three CMAs, the PUMF
size is about 1% of the population. A brief portrait of these areas is drawn in Figures 8–12. The
distributions of ages per sex in Figures 8–10 were extracted from the 2016 Census PUMF and
summary files. The three CMAs have similar distributions, showing peaks for people who
are less than 10 years old and those who are between 55 and 65 years old. The distributions of
men and women per age group are fairly similar. The PUMF sampling generally respects the
distribution in the population. People between 10 and 30 years old were found to be slightly
undersampled in the PUMF while people between 30 and 45 were slightly oversampled for
the three CMAs.
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The distributions of households according to their size in the PUMF and the popula-
tion of the three CMAs are shown in Figure 11. The distributions of households according
to their size in the PUMF fairly followed the distributions reported in their respective pop-
ulations, except for households of 5 people or more, who are noticeably underrepresented.
Figure 12 exhibits the distributions of households according to their net income in the
PUMF and the population of the three CMAs. No explicit divergence was detected. The
distributions of the other control variables are not exhibited in this paper for the sake of
brevity. However, the PUMFs were found to reflect well the distributions of the control
variables in their corresponding populations.

3.5. Data Inconsistencies

It is important to note that some inconsistencies exist among the aggregate data.
The census data present intra- and inter-resolution inconsistencies. The intra-resolution
inconsistencies are the differences between the variables totals, e.g., the sum of men and
women for the CMA being different than the sum of people belonging to all the age groups
at the CMA resolution. The inter-resolution inconsistencies are the differences between the
frequency of a variable category for a geographic unit and the sum of the frequencies of
the same variable category for the less aggregate geographic units within it. An example of
intra- and inter-resolution data inconsistencies in Montreal CMA is shown in Table 3.

Table 3. Example of data inconsistencies (Montreal CMA).

Variable Category CMA ∑DA Inter-Resolution Inconsistencies
|CMA—∑DA|

ppcount - 4,098,927 4,096,356 2571

ppsex Men 2,000,935 1,999,445 1490
Women 2,097,990 2,096,820 1170

Intra-resolution inconsistencies
|ppcount—∑ppsex (total)| - 2 91

Harmonization Process

To isolate the effect of these inconsistencies on the enhanced IPU-based synthesizer,
harmonized census totals, i.e., census totals without intra- and inter-resolution inconsisten-
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cies, were calculated. Before describing the harmonization process, a cluster of geographic
units, intra-resolution adjustments, and inter-resolution adjustments should be defined. A
cluster of geographic units is comprised of all geographic units belonging to the same more
aggregate geographic unit. For example, a cluster of DAs is all the DAs belonging to the
same CT. An intra-resolution adjustment refers to the adjustment of categories’ frequencies
of a control variable in a geographic unit so that their sum meets the total number of
corresponding agents in the same geographic unit. For example, the frequencies of men
and women in a CSD are proportionally adjusted so that their sum meets the total number
of people in the same CSD. An inter-resolution adjustment refers to the adjustment of
the frequencies of a control variable’s category in all the geographic units of a cluster, so
that their sum meets the frequency of the same variable’s category at the more aggregate
geographic unit they belong to. For example, the frequencies of households of three people
in all the DAs of a DA’s cluster are proportionally adjusted so that their sum meets the
frequency of households of three people at the corresponding CT.

The harmonization process is comprised of three steps:

1. Intra-resolution adjustment of all control variables at the CMA resolution;
2. Inter-resolution adjustment of hhcount and ppcount for all geographic units’ clusters

at CSD, ADA, CT and DA resolutions;
3. Iterative application of intra-resolution adjustment for all control variables, and inter-

resolution adjustment for all geographic units’ clusters at CSD, ADA, CT, and DA
resolutions, respectively. When convergence is reached at the CSD resolution, the
iterative adjustment is launched at the ADA resolution and so on until the algorithm
converges at the DA resolution. A convergence threshold of 10−5 is considered.

Step 3 is indeed an IPF applied to the frequencies of each variable’s categories in
all the geographic units of each cluster. The goal is to fit them first, to the total of their
corresponding agent within each geographic unit, then to their corresponding frequencies
at the more aggregate geographic unit they belong to. For example, men frequencies
at the DA resolutions are adjusted as follows (Figure 13): first, the frequencies of men
and women in each DA are proportionally adjusted so that their sum meets the total
number of people in the same DA. Then, the men’s frequency in each DA undergoes a
proportional adjustment so that the sum of men’s frequencies in each cluster of DAs meets
the men’s frequency at the corresponding CT. The process is then iteratively repeated until
the frequencies of all variable categories at the DA resolution meet both constraints within
a convergence threshold. Harmonized datasets, i.e., datasets without intra- and inter-
resolution inconsistencies, are thus obtained for the five geographic resolutions considered.
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3.6. Scenarios

As mentioned previously, the enhanced IPU algorithm [6] can simultaneously take
into consideration two geographic resolutions for households and people attributes. In
this paper, the REGION was always set to the CMA when a double control was applied.
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This is because the fitting errors are better assessed at the CMA resolution, as explained in
the Introduction; thus, adding controls at the CMA resolution would be the best way to
reduce fitting errors. Using the enhanced IPU algorithm implemented in PopGen2.0 [41], 18
synthetic populations were generated for each CMA according to the scenarios enumerated
in Table 4. Scenarios with harmonized data were tested to assess the effect of intra- and
inter-resolution inconsistencies. Scenarios with two controlled resolutions were compared
to scenarios with a single controlled resolution to show the impact of the additional control
at the CMA resolution.

Table 4. Scenarios.

Scenario Data Type Controlled Levels REGION GEO

1 Raw 1 - CMA
2 Raw 1 - CSD
3 Raw 2 CMA CSD
4 Raw 1 - ADA
5 Raw 2 CMA ADA
6 Raw 1 - CT
7 Raw 2 CMA CT
8 Raw 1 - DA
9 Raw 2 CMA DA

10 Harmonized 1 - CMA
11 Harmonized 1 - CSD
12 Harmonized 2 CMA CSD
13 Harmonized 1 - ADA
14 Harmonized 2 CMA ADA
15 Harmonized 1 - CT
16 Harmonized 2 CMA CT
17 Harmonized 1 - DA
18 Harmonized 2 CMA DA

Accuracy and Precision

For each synthetic population generated, the accuracy and the precision were assessed.
The accuracy reflects the representativeness of the sociodemographic characteristics of
the entire population and is measured by the fit of the total synthetic population to the
targets at the CMA resolution. Hence, the sum of estimated frequencies of each variable’s
category across the RGUs was calculated and compared to the observed frequency of the
same variable’s category at the CMA resolution. For example, the sum of synthetic men
across DAs was calculated and compared to the frequency of men at the CMA level.

The precision reflects the representativeness of the real population’s spatial hetero-
geneity. Precision assessment requires prior data processing. The frequencies of variables’
categories were first interpolated from each RGU to the DAs within it. The interpolation
was done proportionally to the distribution of the RGU’s households on the DAs within it.
This is because the household is the main synthesis agent for the enhanced IPU algorithm.
The calculations were performed according to the following formula:

imi,DAj = mi,RGU ×
hhcountDAj

hhcountRGU
(1)

where

• i denotes the ith variable category;
• j denotes the jth DA within the RGU;
• RGU refers to a reference geographic unit;
• mi,RGU refers to the frequency of the ith variable category in an RGU, as estimated by

the enhanced IPU;
• imi,DAj refers to the interpolated frequency of the ith variable category in the jth DA;
• hhcountDAj refers to the households’ count in the jth DA;
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• hhcountRGU refers to the households’ count in the RGU.

Then, a synthetic population was drawn for each DA using the interpolated frequen-
cies. This can be done using the “synthesize” function in the ipfr R package [42]. The
frequencies of variables’ categories were compared to the census targets for each DA, and
the more similar they were, the more precise was the synthetic population. The mathemati-
cal formulas for fitting and spatialization errors calculations are detailed in Section 3.7. The
higher the fitting errors, the less accurate the synthetic population was, and the higher the
spatialization errors, the less precise was the synthetic population.

As stated previously, the main objective was to assess the impact of the RGR’s choice
on the enhanced IPU algorithm performance to provide insights into the best compromise
between precision and accuracy. The variables were controlled in the same order for all
scenarios with the people counts being the last variable to be fitted. The 18 scenarios were
run for the CMAs of Montreal, Toronto, and Vancouver.

3.7. Assessment Criteria

Three indicators were calculated to assess the various scenarios: census inter-resolution
inconsistencies, fitting errors, and spatialization errors. These criteria are described below.
As we were interested in a good fit of households and people, errors on both types of agents
were integrated in the formulas. Moreover, the indicators were calculated per 1000 agents.
They were made relative to the number of agents in order to keep the results of the three
CMAs comparable, as they have drastically different sizes of populations. Finally, as the
selection step was not deterministic [4], i.e., the synthetic population differed for each
simulation, the indicators were calculated on synthetic populations that were averaged
across 50 simulations to allow for general conclusions.

3.7.1. Census Inter-Resolution Inconsistencies (α)

As described previously, the census inter-resolution inconsistencies indicator was
calculated as the sum of the absolute values of the differences between the observed
frequency of each variable’s category in a geographic unit and the sum of the observed
frequencies of the same variable’s category in the less aggregate geographic units within it.
As the census targets at the CMA resolution were the most reliable, the inter-resolution
inconsistencies were calculated relative to the CMA resolution as per the following formula:

α(‰) =
∑m

i=1

∣∣∣∑n
j=1 Mi,RGUj −Mi,CMA

∣∣∣
hhcountCMA + ppcountCMA

× 1000 (2)

where

• i denotes the ith variable category ∀i = 1 . . . m;
• j denotes the jth RGU ∀j = 1 . . . n;
• Mi,RGUj refers to the observed frequency of the ith variable category in the jth RGU;
• Mi,CMA refers to the observed frequency of the ith variable category in the CMA;
• hhcountCMA refers to the households’ count in the CMA;
• ppcountCMA refers to the people’s count in the CMA.

3.7.2. Fitting Errors (β)

The fitting errors formula is similar to the census inter-resolution inconsistencies
one, except for the differences being calculated between the observed frequencies of each
variable’s category in a geographic unit, and the sum of the simulated frequencies of the
same variable’s category in the less aggregate geographic units within it. The fitting errors
were calculated as follows:

β(‰) =
∑m

i=1

∣∣∣∑n
j=1 mi,RGUj −Mi,CMA

∣∣∣
hhcountCMA + ppcountCMA

× 1000 (3)
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where

• i denotes the ith variable category ∀i = 1 . . . m;
• j denotes the jth RGU ∀j = 1 . . . n;
• mi,RGUj refers to the simulated frequency of the ith variable category in the jth RGU;
• Mi,CMA refers to the observed frequency of the ith variable category in the CMA;
• hhcountCMA refers to the households’ count in the CMA;
• ppcountCMA refers to the people’s count in the CMA.

3.7.3. Spatialization Errors (γ)

To measure the spatialization errors, the absolute differences between the simulated
frequencies of the variable categories interpolated at the DA resolution (imi,DAj) and the
observed frequencies of the variable categories at the DA resolution were calculated, then
summed over all the variable categories and the DAs as follows:

γ(‰) =
∑m

i=1 ∑n
j=1

∣∣∣imi,DAj −Mi,DAj

∣∣∣
hhcountCMA + ppcountCMA

× 1000 (4)

where

• i denotes the ith variable category ∀i = 1 . . . m;
• j denotes the jth RGU ∀j = 1 . . . n;
• imi,DAj refers to the interpolated simulated frequency of the ith variable category in

the jth DA;
• Mi,DAj refers to the observed frequency of the ith variable category in the jth DA;
• hhcountCMA refers to the households’ count in the CMA;
• ppcountCMA refers to the people’s count in the CMA.

4. Results

In this section, different groups of the 18 generated synthetic populations were com-
pared. This provides insights into how the accuracy and the precision of the synthetic
population were impacted by (1) the RGR’s aggregation, (2) the data inconsistencies be-
tween census geographic resolutions, and (3) the multiple geographic resolutions control.
Means to improve both accuracy and precision of synthetic populations are then suggested.

4.1. How Do α, β, and γ Vary According to the RGR Used?

The variations of α, β, and γ according to the RGR are depicted in Figures 14–16.
The indicators generally show the expected trends, with the three CMAs showing similar
results for each indicator.
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α increased when the RGR became less aggregate, i.e., when the number of RGUs
increased. In fact, the less aggregate the geographic unit is, the more rounded frequencies
for privacy issues are likely to occur in the census data, thus yielding higher inter-resolution
inconsistencies. α was, however, found to be of relatively low magnitude ranging from 0 at
the CMA resolution to less than 3.5 at the DA resolution.

β also increased when the RGR became less aggregate for the three CMAs. This is
also expected since both the inter-resolution inconsistencies (α) and the synthesis exercise
complexity increased when the RGR became less aggregate, thus impacting the accuracy
of the synthetic population. When synthesizing at the CMA resolution, only one set
of census targets has to be met, compared to 6469 sets of targets at the DA level for
Montreal, more than 7525 for Toronto, and more than 3450 for Vancouver. This makes the
synthesis exercise more complex at this level and thus potential fitting errors multiply. It
is important to mention that the problem of incorrect zero cells, more important at less
aggregate resolutions, does not explain the variation of fitting errors in our case since the
PUMF was always taken at the CMA level. However, the zero marginals problem, mainly
due to rounding for privacy issues, is in itself a challenge for fitting-based synthesizers
convergence, apart from increasing α, and thus is damaging the synthetic population’s
accuracy. β was found to range from a minimum of around 60 (Toronto) at the CMA level
to around 120 at the DA level. A lower β was observed for Toronto at the CMA and CSD
levels when compared to Montreal and Vancouver. The fluctuation of the corner solution
found by the algorithm is a plausible explanation. However, quantifying the impact of
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the CMA’s structure in terms of types of households and people on the corner solution is
beyond the scope of this paper. However, the β maximum values at the DA resolution,
being fairly similar for the three CMAs, provide insight on the cost in terms of fitting errors
of synthesizing at the least aggregate geographic resolution.

γ was found to decrease with a less aggregate RGR. This is expected since higher
aggregation results in a stronger spatial homogeneity assumption and thus a less precise
synthetic population. The spatial homogeneity assumption became stronger with more
aggregate RGRs because a large population over a wide area is more likely to be spatially
heterogeneous than a small population over a compact area. The three CMAs showed
similar trends and values with the maximum γ being around 1000 at the CMA resolution
and the minimum around 300 at the DA resolution. Two observations are worth mentioning:
first, the spatialization errors’ magnitude was higher than the fitting errors’ magnitude for
the same synthesis area (the CMA). Second, the ratio of the highest error to the lowest error
was higher than 3 for spatialization errors, while it remained lower than 2 for fitting errors
(1.2 if calculated for Montreal and Vancouver). This shows that a synthetic population is
generally susceptible to more spatialization errors than fitting errors. Hence, for the same
synthesis area, perfect precision is more difficult to achieve than perfect accuracy. Moreover,
it shows that the gain in terms of precision when synthesizing at the least aggregate RGR is
more important than the loss in terms of accuracy and vice-versa.

As we were interested in optimizing both accuracy and precision, i.e., minimizing
both fitting and spatialization errors, the variation of the total error (β + γ) according to the
RGR used was calculated as depicted in Figure 17.
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Figure 17. Variation of β + γ according to the RGR.

The synthetic populations at the DA resolution showed around 400 total errors per
1000 agents, while at the CMA resolution around 1100 errors per 1000 agents were observed.
The total error was reduced by nearly 64% at the DA resolution. Hence, using the DA as
the RGR was shown to be the best compromise between fitting and spatialization errors. In
other words, using the DA as the RGR allows the quality, i.e., the combination of accuracy
and precision, of the synthetic population to be optimized.

4.2. How Does γ Vary according to β? In Other Words, How Is the Precision Improved When
Decreasing Accuracy, i.e., When Using a Less Aggregate RGR, and Vice-Versa?

β was found to increase and γ to decrease when the RGR became less aggregate. The
variation of γ according to β was then further investigated in the three CMAs (Figure 18).
The relation between γ and β could be fitted well by a decreasing linear trend as evidenced
by the high R2 calculated. For Montreal and Vancouver, when the RGR decreased, each
additional fitting error per 1000 agents gave in return around 30 less spatialization errors
per 1000 agents. For Toronto, each additional fitting error per 1000 agents was found to give
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in return around 13 spatialization errors per 1000 agents. However, Toronto’s divergence
from Montreal and Vancouver was mainly due to its low β errors at the CMA and CSD
resolutions as shown in Figure 15. If the errors at CMA and CSD resolutions for Toronto
are neglected, the slope of the trendline fitting the variation of γ according to β (black
trendline) becomes similar to that of Montreal and Vancouver.
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Figure 18. Variation of γ according to β.

The key takeaway of this analysis is the decreasing linear variation of γ according
to β with a single fitting error being equivalent to at least 13 spatialization errors per
1000 agents. The minimal total error was thus found at the DA resolution because the
decrease of spatialization errors when the RGR became less aggregate was much higher
than the increase of fitting errors. In other words, γ errors are more sensitive to the RGR
aggregation than β errors.

4.3. What Is the Impact of Census Targets’ Harmonization and Additional Control at the CMA
Resolution on the Total Error?

In the quest for an optimal synthetic population, i.e., a synthetic population with
minimum β + γ error, the following four configurations were tested:

• 1R: Raw data with single control;
• 2R: Raw data with double control;
• 1H: Harmonized data with single control;
• 2H: Harmonized data with double control.

The variation of the total error according to each configuration was assessed. As the
DA resolution was found to minimize the total error, the different configurations’ results
at the DA resolution are shown in Figure 19. The goal was to detect which configuration
would help to further reduce the total error, i.e., further optimize the synthetic population.

The total errors were lower for the 1H and 2H scenarios compared to those of 1R
and 2R. This shows that harmonizing census targets helps in improving the quality of the
synthetic population. This is mainly due to the intra- and inter-resolution inconsistencies
between all geographic resolutions being reduced to zero. However, 2R and 2H showed
higher total errors than 1R and 1H, respectively. In fact, the double control improved
the synthetic population’s fit at the REGION resolution, thus damaging its fit at the GEO
resolution. As shown in Figure 18, when β varies, γ undergoes an opposite, more important,
variation. Hence, as the double control applied improves the fit at the CMA resolution, i.e.,
reduces β errors, γ errors undergo an increase the magnitude of which is more important
than β errors reduction, and the total error thus increases. In summary, harmonizing census
targets helps improve the synthetic population’s quality. The total error reduction obtained
ranged from ~4 to ~9 errors per 1000 agents in the study area’s CMAs.
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Figure 19. Variation of β + γ at the DA resolution according to the configuration used.

4.4. How Does the Variation of γ According to β Change When Census Targets Are Harmonized?

Figures 20–22 show the variation of γ according to β for the 1R and 1H configurations
in Montreal, Toronto, and Vancouver CMAs, respectively. The goal was to assess how this
variation is altered when harmonized census targets are used. For the three CMAs, the
absolute value of the slope of the 1H trendline was higher than the absolute value of the slope
of the 1R trendline. This means that when census targets are harmonized, for an additional
fitting error we get a higher reduction of spatialization errors. Hence, synthesizing at a less
aggregate RGR becomes more beneficial with harmonized census targets as the γ error, and
thus the total error, are further reduced for the same β error increase.
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Figure 20. Variation of γ according to β with raw and harmonized data in Montreal.
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Figure 21. Variation of γ according to β with raw and harmonized data in Toronto.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 23 of 27 
 

 

variation is altered when harmonized census targets are used. For the three CMAs, the 
absolute value of the slope of the 1H trendline was higher than the absolute value of the 
slope of the 1R trendline. This means that when census targets are harmonized, for an 
additional fitting error we get a higher reduction of spatialization errors. Hence, synthe-
sizing at a less aggregate RGR becomes more beneficial with harmonized census targets 
as the γ error, and thus the total error, are further reduced for the same β error increase. 

 
Figure 20. Variation of γ according to β with raw and harmonized data in Montreal. 

 
Figure 21. Variation of γ according to β with raw and harmonized data in Toronto. 

 
Figure 22. Variation of γ according to β with raw and harmonized data in Vancouver. 

y = −33.699x + 4302.3
R² = 0.8896

y = −34.612x + 4393.8
R² = 0.8873

0

200

400

600

800

1000

1200

100 105 110 115 120 125

γ

β

1R

1H

y = −13.379x + 1869.3
R² = 0.9572

y = −13.495x + 1875.4
R² = 0.9515

0

200

400

600

800

1000

1200

40 50 60 70 80 90 100 110 120

γ

β

1R

1H

y = −30.763x + 4101.2
R² = 0.9976

y = −32.772x + 4310.4
R² = 0.9966

0

200

400

600

800

1000

1200

95 100 105 110 115 120 125

γ

β

1R

1H

Figure 22. Variation of γ according to β with raw and harmonized data in Vancouver.

For each CMA, the difference between the 1R trendline slope and the 1H trendline
slope (∆Slope) was calculated, and its variation according to the inter-resolution inconsis-
tencies at the DA resolution (αDA) is depicted in Figure 23. The variation was found to
be linear, with the ∆Slope increasing when the αDA increases. This means that the more
inter-resolution inconsistencies a CMA shows, the more harmonizing its census targets
allows to save spatialization errors for each additional fitting error, i.e., when decreasing
the RGR. In other words, the more inter-resolution inconsistencies a CMA shows, the more
harmonization helps to increase its synthetic population’s accuracy for the same cost in
terms of precision.
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5. Discussion

A synthetic population’s quality is usually assessed by its fit to the census targets at
the RGR [2,4,6,7,9,10]. This paper introduced the concepts of sociodemographic accuracy
and spatial precision as components of the quality measure. The accuracy of the synthetic
population (representativeness of the sociodemographic characteristics of the entire popu-
lation) was measured by its fit to the census targets at the CMA resolution. This is because
the census targets at the CMA resolution are considered as the ground truth due to the
rare or non-existent need to adjust census targets to preserve privacy at this level. To
measure the precision (representativeness of the real population’s spatial heterogeneity),
the synthetic population was first interpolated from its RGR to the DA resolution. The
precision was measured by the fit of the interpolated population to the census targets at
the DA resolution. Fitting errors (β) and spatialization errors (γ) were thus calculated to
assess accuracy and precision, respectively. An optimal synthetic population is a synthetic
population showing minimal total (β + γ) error.

While population synthesizers are continually conceived to improve the quality of
population synthesis, the choice of the RGR and its impact on the quality of synthetic pop-
ulations have not been studied to the best of our knowledge. Hence, another contribution
of this paper was its assessment of the impact of the RGR characteristics on the quality of
population synthesis. The main characteristics of the RGR considered are its aggregation
and the inter-resolution inconsistencies (α) it shows. β was found to increase and γ to
decrease with less aggregate geographic resolutions, with γ magnitude being generally
more important than β. γ was also found to be more sensitive to the RGR’s aggregation
than β, thus yielding a minimal total error at the least aggregate RGR.

An additional contribution of this paper was its testing of the impact of double con-
trol and census targets’ harmonization on the quality of the synthetic population. While
double control is originally introduced to control variables that are not available at the
same geographic resolution [6], we tested it as a plausible means of reducing the total error
since it makes it possible to control the least and the most aggregate geographic resolutions
simultaneously, i.e., the resolutions where γ and β are respectively measured. In their
paper, Konduri et al. showed that double control improves the quality of the synthetic
population [6]. The quality indicator they used comprises only the fit at the more aggregate
level [6], which corresponds to accuracy in this paper. However, we found that the double
control damages the quality of the synthetic population when both accuracy and spatial
precision are considered as components of the quality indicator. In fact, when correcting the
fit to the most aggregate geographic resolution (reducing β), the fit to the least aggregate
resolution was compromised (γ increased). As γ variation is more important than β varia-
tion, the total error increased, hence damaging the synthetic population’s quality. On the
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contrary, census targets’ harmonization, i.e., applying proportional adjustments to census
targets to reduce intra- and inter-resolution inconsistencies to zero, was found to improve
the quality of the synthetic population. Moreover, for the same β, a lower γ was obtained
when population synthesis was performed using harmonized census targets. It is worth
mentioning that despite the importance of intra- [25] and inter-resolution [6] consistency
for population synthesizers being mentioned in the literature, quantifying the impact of
such inconsistencies, both in terms of accuracy and precision, and suggesting a complete
framework to harmonize census data within and between resolutions simultaneously were,
to the best of our knowledge, done for the first time in this paper.

6. Conclusions

In this paper, the enhanced IPU algorithm [6] was used to synthesize populations
at five RGRs (CMA, CSD, ADA, CT, and DA) for the CMAs of Montreal, Toronto, and
Vancouver. Eighteen scenarios involving different RGRs, data types (raw or harmonized),
and control types (single or double) were compared to assess the impact of the RGR
characteristics on the quality of population synthesis. Specifically, the impact of the
following factors on the synthetic populations’ accuracy and precision was assessed: (1) the
aggregation of the RGR, (2) data inconsistencies between census geographic resolutions,
and (3) multiple geographic resolutions control.

Three indicators were calculated to compare the synthetic populations generated:
census inter-resolution inconsistencies (α), fitting errors (β), and spatialization errors (γ).
The impact on the three indicators of the RGR was first investigated. α and β were found to
increase, and γ to decrease when the RGR became less aggregate. The total error was found
to decrease when the RGR became less aggregate yielding, an optimal synthetic population
at the DA resolution. Then, the variation of γ according to β was investigated. A decreasing
linear trend was observed with an important slope, meaning that spatialization errors are
more sensitive to the RGR than fitting errors. Finally, the impacts of harmonization and
double control were assessed. The double control was found to damage the quality of the
synthetic population while the harmonization was found to reduce the total error. The
harmonization was also found to be more effective when the census inconsistencies were
higher. In summary, synthesizing a population at the DA resolution using harmonized
census targets was found to be the best practice.

The main limitation of the conclusions of this paper lies in the number of CMAs
investigated. Although finding similar trends for three large and different CMAs allows
for conclusions to be made, they would be better founded if based on a larger number of
CMAs. Next steps involve comparing the impacts of the RGR choice on various population
synthesizers, considering the spatial precision as a component of the synthetic population’s
quality measure. Various spatialization approaches to allocate the synthetic households to
individual dwellings should then be tested on a synthetic population with the best accuracy
and precision possible.
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