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Abstract: With the popularity of ground and airborne three-dimensional laser scanning hardware
and the development of advanced technologies for computer vision in geometrical measurement, in-
telligent processing of point clouds has become a hot issue in artificial intelligence. The intervisibility
analysis in 3D space can use viewpoint, view distance, and elevation values and consider terrain
occlusion to derive the intervisibility between two points. In this study, we first use the 3D point
cloud of reflected signals from the intelligent autonomous driving vehicle’s 3D scanner to estimate the
field-of-view of multi-dimensional data alignment. Then, the forced metrics of mechanical Riemann
geometry are used to construct the Manifold Auxiliary Surface (MAS). With the help of the spectral
analysis of the finite element topology structure constructed by the MAS, an innovative dynamic
intervisibility calculation is finally realized under the geometric calculation conditions of the Mix-
Planes Calculation Structure (MPCS). Different from advanced methods of global and interpolation
pathway-based point clouds computing, we have removed the 99.54% high-noise background and
reduced the computational complexity by 98.65%. Our computation time can reach an average
processing time of 0.1044 s for one frame with a 25 fps acquisition rate of the original vision sensor.
The remarkable experimental results and significant evaluations from multiple runs demonstrate
that the proposed dynamic intervisibility analysis has high accuracy, strong robustness, and high
efficiency. This technology can assist in terrain analysis, military guidance, and dynamic driving
path planning, Simultaneous Localization And Mapping (SLAM), communication base station siting,
etc., is of great significance in both theoretical technology and market applications.

Keywords: intervisibility analysis; autonomous driving; 3D point clouds; manifold auxiliary surface;
finite element; spectral analysis

1. Introduction

Autonomous driving has attracted increased attention in the field of automotive
engineering research due to its safe, comfortable, convenient, efficient, and environmentally-
friendly mode of transportation [1]. The framework of an autonomous driving vehicle
is a complex artificial intelligence system based on multi-sensor data-driven calculations,
including four modules: perception, planning, decision-making, and control [2]. The road
environment perception of the driving scene is the basis of autonomous driving. Spatial
analysis of buildings, roads, and infrastructure in the urban environment based on visibility
analysis is an important part of environment perception for autonomous driving.

Visibility analysis belongs to the technology of Geographic Information Systems
(GIS), including three types of calculations: the calculation of the intervisibility between
two points, the calculation of the visual field, and the calculation of the visibility of the
viewpoint. Most of the existing traditional solutions are based on three-dimensional
models, such as grid digital terrain models and digital elevation models [3–5]. They can
be obtained by remote sensing photogrammetry or contour modeling. The calculating
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visibility for these models generally adopts non-automated offline operations and uses
the existing analysis software platforms for secondary development, such as ArcGIS and
MapGIS, Cesium. Their visibility calculation principles are basically the same. They all pick
up the viewpoint and the target point, and construct a Line-of-Sight (LoS) between them
for interpolation calculation to determine whether the intersecting grid cells and points
between the LoS are visible. Alternatively, a reference surface can be constructed in the
space between the viewpoint and the target point to judge interpolation. The accuracy and
automation levels of traditional 3D modeling construction and analysis are potentially error-
prone and inadequate [6,7], thus making it challenging to meet the visibility analysis of
autonomous driving environments. With the application development of vehicle-mounted
laser scanning and Light Detection And Ranging (LiDAR) technology, which can obtain
high-precision and high-density three-dimensional coordinates and attribute information,
three-dimensional laser point clouds provide unique technical means for visibility analysis
of large-scale traffic scenes with rich geometric and shape information [8]. In addition,
point clouds can also be generated from two-dimensional data based on photogrammetry
and computer vision [9–12].

The point cloud-based visibility analysis of the urban traffic environment mainly
includes surface element-based, voxel-based and hidden point removal-based methods,
while the 3D point cloud’s feature extraction methods are mainly based on supervised
and unsupervised approaches. However, the dynamic calculation and understanding
of data characteristics by the core unit of the autonomous driving system computer are
complicated due to the massive, unstructured, disordered, spatial divergence, and uneven
distribution of point clouds [13].

Surface element-based methods: For example, Pan et al. [14] proposed the visibility-
based surface reconstruction method to design a three-level index structure to map points,
cameras, and intervisible line-of-sight intersecting tetrahedrons to CUDA (i.e., Com-
putational Unified Device Architecture model (CUDA) created by Nvidia) threads. In
Loarie et al. [15] and Vukomanovic et al. [16], based on the terrain’s continuous and opaque
surface treatment dominated by the visual occlusion and the interpolation calculation of the
triangular mesh, the visual field was calculated by the slicing mesh algorithm. Although
these methods are computationally accurate, the technical route of constructing a grid
directly on the point cloud surface and traversing the grids for visibility analysis like this is
time-consuming and inefficient. Such methods cannot meet the environmental applications
of autonomous driving.

Voxel-based methods: For example, Zhong et al. [17] used voxel-based terrestrial laser
scanning point clouds to estimate the fine-scale visibility. They investigated the potential
impact of voxel size and provided a quick and quantitative understanding of the visibility
of the structure. In Fisher et al. [18], the method of subdividing the point cloud into voxels
realized the spatial intersection between the building and the grid of three-dimensional
voxels while applying a sophisticated computation sequence that processes voxels at once.
Choi et al. [19] used a voxel-visibility heuristic to construct efficient kd-trees for static scenes.
This voxel-visibility heuristic method takes several minutes to construct the incident ray
density due to the enhanced ray-tracing performance, and is only applicable to static scenes.
Voxel-based methods provide insight for the operation of local voxelized point clouds,
which can be used to effectively reduce the computational cost of global points visibility
analysis paths. However, voxelized local points technology paths for visibility analysis
methods such as these are difficult to apply in dynamic scenes of autonomous driving
because the calculation volume in voxel construction is enormous, and the server memory
requirement is quite high.

Hidden point removal-based methods: For example, Krishnan et al. [20] introduced a
notion of visibility curves to decompose surfaces into non-overlapping visible and hidden
surfaces by projections of silhouette and boundary curves to solve hidden surface removal
in computer graphics. Further, Katz et al. [21] proposed a simple and fast hidden point
removal operator that did not require the reconstruction of surfaces or estimation of normal
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surfaces. This method mapped the original point cloud to the inverse space according
to the inverse relationship of the viewpoint’s distance and calculated the visible points
on the convex hull of the point cloud [22]. Silva et al. [23] combined several image space
technologies and used angular grids to generate approximate convex hulls using spatial
decomposition of point clouds to realize hidden point removal-based visibility analysis.
Similarly, such hidden point removal-based technical paths do not require the construction
of global or local points surface meshes. However, processes of solving convex hulls have
many problems, such as complex three-dimensional topological relationship construction
and three-dimensional data structure storage. Therefore, these types of visibility analysis
methods are rarely used in practical applications.

For point cloud geometric feature extraction and topological structure construction:

(1) On the one hand, such as unsupervised methods: point cloud-constructed De-
launay triangle meshes can derive inactive triangulation [24], features extraction
of point cloud information from point cloud Voronoi diagrams with different ge-
ometrical shapes of plates, spheres, and rods [25]; these similar pathway-based
approaches [26,27] are time-consuming, susceptible to noise, and do not conform to
the true surface topology of the point cloud.

(2) On the other hand, such as supervised methods based on deep learning [28,29]:
convolutional neural network-based feature map calculation by the maximum, min-
imum, and average value of the points in grids generates with the neighborhoods
of points [30], features extraction and optimization of point cloud information from
the probability distribution and decision tree are obtained by multi-scale convolu-
tional neural network-based points cloud learning [31]; these similar pathway-based
approaches [32] only extract the characteristics of independent points, lose part of
the spatial information of the point cloud, and affect the generalization ability of the
network [33–35].

In summary of the related state-of-the-art research works described above, we focus
this paper on the intervisibility analysis of 3D point clouds, i.e., the viewshed analysis,
which results from two viewpoints being viewable along a certain route within the Field-
Of-View (FOV) [36]. Different from the above roundabout calculation methods, our goal is
to be able to operate online in real-time and directly analyze the original point cloud data.
Our focus is to create an effective topology for the point cloud and fully consider the spatial
information of the point cloud to perform robust and efficient intervisibility analysis.

Methods of directly obtaining spatial global interpolation points on multi-view lines in
3D space to discriminate elevation values or obtaining intersected interpolation points be-
tween multi-view lines and scene areas to discriminate intervisibility of point clouds [37,38]
have large amounts of computational redundancy. They are heavily dependent on the
scene’s complexity due to the large data volume, uneven distribution, high sample di-
mensionality, and strong spatial discretization of 3D point clouds. Therefore, we propose
a novel method based on the multi-dimensional vision to realize the 3D point cloud’s
dynamic intervisibility analysis for autonomous driving. We consider the advantages
of manifold learning under Riemannian geometry to improve calculation accuracy and
avoid a large number of point-level calculations by constructing a topological structure for
spectral analysis.

The main contributions of our method are summarized as follows.

(1) Multi-dimensional points coordinates of camera-based images and LiDAR-based
point clouds are aligned to estimate the spatial parameters and point clouds within
the FOV of the traffic environment for autonomous driving, including the viewpoint
location and FOV range. This contribution determines the effective FOV, reduces the
impact of redundant noise, reduces the computational complexity of visual analysis,
and is suitable for the dynamic needs of autonomous driving.

(2) Point clouds computation is transferred from Euclidean space to Riemannian space for
manifold learning to construct Manifold Auxiliary Surfaces (MAS) for through-view
analysis. This contribution makes fast multi-dimensional data processing possi-
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ble, effectively controls the problems of large amounts, spatial discreteness, and
uneven distribution of original point clouds, and makes the calculation of the dis-
tance relationship between points more accurate for the real application scenarios of
autonomous driving.

(3) The spectral graph analysis for the finite element-composed topological structure of
the manifold auxiliary surface is constructed to innovatively realize the intervisibility
analysis of points and point clouds in the Mix-Planes Calculation Structure (MPCS).
This contribution has resulted in fast, efficient, robust, and accurate results, which can
dynamically handle every motion movement in autonomous driving.

The proposed dynamic intervisibility analysis can be extended to compute with-
out limiting its data dimensionality. The method can process higher-dimensional data
containing contextual semantic understanding information. This kind of analysis also
has important application research values [39] in electronic engineering fields such as
terrain analysis, remote sensing, military guidance, communication base station siting,
autonomous path planning, etc.

The remainder of this paper is organized as follows. Section 2 provides a streamlined,
condensed, and key point-detailed introduction to the proposed method. Sections 3 and 4
are the presentation and performance discussion of our results. Finally, Section 5 presents
some concluding remarks. The roadmap of the method in this paper is shown in Figure 1.
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2. Method

In this section, we have implemented our intervisibility analysis method through the
progressive process of three subsections:

(1) FOV estimation and point cloud generation at the current motion time of the intelli-
gent vehicle;

(2) Metrics construction of point cloud’s manifold auxiliary surface;
(3) Spectral graph analysis of the finite element-composed topological structure on the

manifold auxiliary surface, and the intervisibility analysis under the criterion based
on the geometric calculation conditions of the mix-planes structure.

2.1. Estimation of Motion Field-of-View

The vehicle-mounted LiDAR acquires a 3D point cloud by reflecting the laser beams
of surrounding objects and performing signal processing. The original LiDAR point cloud
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data is omni-directional; in its direct intervisibility analysis, there are complex calculations
of redundant background points and noise points. For dynamic intervisibility analysis of
autonomous driving scenes, we need to estimate the FOV of the intelligent vehicles at the
current moment of motion.

Here we align the Lidar point cloud coordinate system, i.e., the Euclid-style 3D world
coordinate system, with the dynamic camera coordinate system of the current motion to
determine the FOV estimation of the current motion and obtain its corresponding point
cloud sampling data. Among them, the result of the sampling points can be convolutional
down-sampled with a spherical kernel of granularity τ. This is because we do not need
to calculate all points in subsequent operations. This convolutional down-sampling is the
same as the traditional two-dimensional convolutional down-sampling method and the
principle of the neural network (that is, the sample data are filtered with the convolution
kernel in a sliding window, and each filtering produces a new local data result). However,
the convolution kernel we used is an ordinary spherical kernel with a granularity τ, the
sample data is a 3D point cloud, and the sliding step length is the unit step length to the
center of the nearest neighboring kernel.

The camera’s image can be used as a range guide for the current motion field of view.
Therefore, we align the LiDAR point cloud coordinate system with the camera image
plane coordinate system. First, the point cloud coordinate system to the camera coordinate
system in the current state of motion is a rigid body motion matrix, i.e., it has undergone
the transformation of rotation and translation. Then, the camera coordinate system to
its image plane coordinate system is transformed by the mathematical model of camera
projection, i.e., the internal reference matrix of the camera, which is a pre-calibrated camera
parameter. Furthermore, there is a rotation transformation between the current state’s
camera coordinate system and the initial state’s camera coordinate system. Finally, we
obtain the motion FOV’s estimated point cloud result of the LiDAR’s omni-directional
point cloud through this series of transformations. Then, the theoretical FOV calculation
derived from the basic mathematical model of camera projection geometry and rigid body
motion theory is completed with the following (1):

Pi
C =

{
MiR0MC

L (R, t)
}

Pi
L (1)

where Pi
C is the point in the camera coordinate system of the angle of view at a time ith;

Pi
L is the point of 3D point cloud that is calibrated synchronously with the timestamp

at the current time; Mi is the projection matrix of the camera; R0 is the rotation matrix
of the camera coordinate systems in the initial state and current state;MC

L is the rigid
body transformation matrix containing rotation R and translation t for LiDAR and camera
coordinate systems. Mi is calculated by geometric projection relations, as follows:

Mi =

 Fi 0 xi −FiBi

0 Fi yi 0
0 0 1 0

 (2)

where (xi, yi), Fi, Bi are the optical center, focal length, and baseline of the camera, respec-
tively. In addition, to align the calculations of matrices in (1), the involved points use the
homogeneous coordinate in the projection geometry to replace the Cartesian coordinate in
the Euclidean geometry. Furthermore, the involved matrices are expanded by the Euclidean
transformation matrix.

2.2. Manifold Auxiliary Surface for Intervisibility Computing

The space of the FOV estimated result of the LiDAR point cloud in the previous
section is the Euclidean space. In a high-dimensional space such as the Euclidean space,
the sample data is globally linear. That is, the sample data are independent and unrelated
(e.g., the data storage structure of queues, stacks, and linked lists). However, the various
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attributes of the data are strongly correlated (e.g., the data storage structure of the tree).
For the point cloud as sample data in this paper, the global distribution of its data structure
in the high-dimensional space is not obviously curved, the curvature is small, and there
is a one-to-one linear relationship between the points. However, in terms of the local
point cloud and the x-y-z coordinate composition of the point itself, the distribution is
obviously curved, the curvature is large, and there are too many variables affecting the
point distribution. This is a kind of unstructured nonlinear data.

Furthermore, the direct intervisibility calculation for the point cloud is inaccurate
because the point cloud in Euclidean space is globally linear, while the local points-to-
points and the point itself are strongly nonlinear. Therefore, to reflect the global and local
correlations between point clouds, Riemannian geometric relations in differential geometry,
i.e., the geometry within the Riemannian space that degenerates to Euclidean space only at
an infinitely small scale, are used to embed its smooth manifold mapping with Riemannian
metric as an auxiliary surface for the intervisibility calculation.

The mathematical definition of the manifold is: Let M denote a topological space,
for any point p on it belongs to M, there exists a homeomorphism open neighborhood
Ω of p with the open subset in the d-dimensional Euclidean space. Then M is called a
d-dimensional topological manifold, also called a d-dimensional manifold. The points on
the manifold itself have no coordinates, thus to represent these data points, the manifold
can be placed into the ambient space, and the coordinates on the ambient space can be
used to represent the points on the manifold. For example, the spherical surface in the 3D
space is a 2D surface. That is, the spherical surface has only two degrees of freedom, but
we generally use the coordinates in the ambient space to represent this spherical surface.

For the natural coordinates of a point cloud with a three-dimensional observation
dimension in the ambient space, a set of corresponding intrinsic coordinates are used to
make the manifold on the low-dimensional plane as good as possible while maintaining the
geometric characteristics and their metrics of the points. In order to have the intervisibility
analysis of the point cloud that maintains the geometric characteristics, we use the Riemann
metric to construct a manifold auxiliary surface as the mapping of the embedded manifold.

The Riemann metric is the metric of Riemann space. Roughly speaking, the Riemann
metric is the radian between points in space. For example, considering the inertia matrix as
a Riemann metric, the Lagrangian equation in mechanics can be expressed as a Riemannian
manifold. The solution of the equation is the geodesic on the Riemannian manifold.
The geodesic is defined as the shortest curve on the surface. The Riemann metric is the
solution of the Lagrange equation in mechanics. This call is related to the geometrization
of mechanics, that is, the short-range line between the point not subject to external forces
and the real trajectory of the point in Riemannian space is the geodesic, as opposed to
Euclidean space, which is a straight line. This metric is an expression of the kinetic energy
introduced by the Lagrangian dynamical system. This paper uses cohesive forces and
external repulsive forces of points to express these point-to-point metrics. The cohesive
and repulsive forces are deduced based on the Artificial Potential Field theory of the forces
potential field between the target and the obstacle (i.e., attractive and repulsive forces).
We take the cohesive force between the dynamic viewpoint and the target point and the
repulsion force with the initial meta-viewpoint to embody the Riemann metric between the
points using the solution of the motion equations from fluid dynamics theory.

The cohesive force is the derivative of the cohesive field function with respect to the
distance, as follows:

Cohesion :
(

Pi
C

)
= −∇Fcoh

(
∑ P

(
Pi

C, Pi
C
∗
))

= α·D
(

Pi
C, Pi

C
∗
)

(3)

where Fcoh
(
∑ P

(
Pi

C, Pi
C
∗)) is the cohesive field function ∑ P

(
Pi

C, Pi
C
∗) = (α·D

(
Pi

C, Pi
C
∗)2
)

/2;

α is the cohesive scale factor; D
(

Pi
C, Pi

C
∗) indicates the cohesive forces of current data Pi

C
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and target data Pi
C
∗, and its specific performance is the Mahalanobis distance after the

original Euclidean distance between the viewpoints has been rotated and scaled, as follows:

D
(

Pi
C, Pi

C
∗
)
=

√(
Pi

C(X)− Pi
C
∗(Y)

)T
−1

∑
(

Pi
C(X)− Pi

C
∗(Y)

)
(4)

where ∑−1 is the covariance matrix cov(X, Y) = ∑n
i=1 (Xi − X)(Yi −Y)/(n− 1). In the

matrix calculation process in (4), there will be cases where the samples are independent
and identically distributed, i.e., the covariance matrix is a diagonal matrix that is not full of
rank, so it degenerates into a normalized Euclidean distance, as follows:

D
(

Pi
C, Pi

C
∗
)
=

√√√√ n

∑
i=1

(Xi −Yi)
2

σ2
i

(5)

where σ2
i is the standard deviation.

The external repulsive force is the gradient of the repulsive function, as follows:

Repulsion : (Pi
C) = −∇Frep

(
∑ P

(
Pi

C
0, Pi

C
))

=

 β

(
1

D′(Pi
C

0,Pi
C)
− 1

Radius(·)

)
= 1

D′(Pi
C

0,Pi
C)

2∇D′
(

Pi
C

0, Pi
C
)
, D′

(
Pi

C
0, Pi

C
)
≤ Radius(·)

0, D′
(

Pi
C

0, Pi
C
)
> Radius(·)

(6)

where Radius(·) is the influence radius of the point Pi
C on surrounding points (i.e., the

further the distance from the data point Pi
C

0, the more the repulsion is negligible to 0);
Frep

(
∑ P

(
Pi

C
0, Pi

C
))

is the repulsive field function:

∑ P
(

Pi
C, Pi

C
∗
)
=


1
2 β( 1

D′(Pi
C

0,Pi
C)
− 1

Radius(·) )
2

, D′
(

Pi
C

0, Pi
C
)
≤ Radius(·)

0 , D′
(

Pi
C

0, Pi
C
)
> Radius(·)

(7)

where β is the repulsive scale factor; D′
(

Pi
C

0, Pi
C
)

indicates the repulsive forces of current
data Pi

C and initial meta-viewpoint data Pi
C

0, and its specific performance is the shortest
path distance of the flow path that satisfies the derived Formula (8) of hydrodynamics of
gravitational breadth-first. Formula (8) shows continuity differential equations (underlying
the law of conservation of mass): Euler’s equations of motion (underlying Newton’s Second
Law of Motion-Force and Acceleration), and Bernoulli’s equations (underlying the stable
flow of ideal fluid). In this paper, we use the simple weighted sum of the shortest distance
for the points as the shortest path. In particular, this point-to-point distance calculation
is consistent with the involved distance in the above cohesive force, i.e., they both use
Mahalanobis distance to ensure the unit is scale-independent.

∂k/∂s +∇·k·→v = 0

d
→
v /ds−

→
f + grad

(
Pi

C
0)/k = 0

→
v ·d→v+d

(
Pi

C
0)/k + grad

(
Pi

C
0)·dz = 0

(8)

where k is the density of data points in the flow process, i.e., the number; s is the flow
time, i.e., the step length;

→
v is the flow velocity, i.e., the flow distance of components in

x, y, z directions; ∂ is the expansion operation according to Taylor series; grad(Pi
C

0) is the
gradient, i.e., ∂Pi

C
0/∂x + ∂Pi

C
0/∂y + ∂Pi

C
0/∂z; d

→
v /ds is the partial derivative of the flow

time of the velocity in each flow direction component of x, y, z;
→
f is the unit distance of the

flow in the directions of x, y, z.
In doing so, we make the manifold structure embedded in the point cloud in the FOV

scale-independent. This structure can be computed independently of the measurement
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scale and considers the sparsity property link between the intervisibility data (current point
Pi

C, meta-viewpoint Pi
C

0, surrounding passable intervisibility points Pi
C
∗). This contribution

is mainly because our metric is a metric in Riemannian geometry. The specific force
performance is to use Mahalanobis distance instead of Euclidean distance. The difference
between Mahalanobis distance and Euclidean distance is that it is independent of the
measurement scale and considers the relationship between various features. Because in the
process of calculating the distance, the components of the two points will be normalized first
(that is, rotating the coordinate axis, performing the corresponding linear transformation,
so that the variables remove the units), and then the distance is calculated. In this way, the
transformed components are linearly independent, and the difference between the two
points can be better reflected than the Euclidean distance. Therefore, the manifold structure
embedded in the point cloud in the FOV can be scale-independent.

2.3. Spectral Graph Analysis of Finite Element-Composed Topological Structure

We use points P(Pi
C
′, . . . Pi∗

C
′) on the above-mentioned auxiliary surface to construct

the finite element mesh of the Voronoi graph G(Nodes(Pi
C
′), Edges(

→
Pi

C
′, Pi

C
∗′))(i.e., G(P, E))

based on the principle of an empty circle that any four points cannot be co-circular and the
principle of maximizing the minimum angle according to the enlighten mode of point-by-
point insertion of the Bowyer–Watson algorithm. We further calculate the spectral graph
analysis of the graph G, i.e., the Laplacian operator containing nodes points, adjacent
edges, edges weights, and points degrees (degree matrix-composed and adjacency matrix-
composed Laplacian matrix of the grid points), as follows:

L := ∑
N×N

Pi
C
′
(r,c) = D− A =

N

∑
c=1

w(r,c)− ∑
c:{r,c}∈edges

(
Pi

C
′, Pi∗

C
′
)

(9)

where D is the degree matrix; A is the adjacency matrix; r, c are rows and columns of the
matrix; w(r,c) is the weighted degree of nodes Pi

C
′.

The above Laplacian matrix can be normalized to 1N ·L =
(
(1, 1, . . . , 1)T/

√
N
)
·L,

then, L is:
L := D−1/2·L·D−1/2 = D−1/2·(D− A)·D−1/2 = I −A (10)

where I is the unit matrix; A is the regularized adjacency matrix A = D−1/2·A·D−1/2.
We prove that all points P

(
Pi

C
′, . . . Pi∗

C
′) satisfy the following distance-based mea-

sure (10) through the above-mentioned Laplacian matrix of spectral analysis,

P
(

Pi
C
′, . . . Pi∗

C
′)T ·L·P

(
Pi

C
′, . . . Pi∗

C
′) = PT ·D·P− PT ·A·P

=
N
∑

c=1
∑N

c=1 w(r,c)·P2 −
N
∑

r,c=1
w(r,c)·Pr·Pc

= 1
2

(
N
∑

c=1
∑N

c=1 w(r,c)·Pc
2 − 2

N
∑

r,c=1
w(r,c)·Pr·Pc +

N
∑

r=1
∑N

r=1 w(r,c)·Pr
2

)

= 1
2

N
∑

r,c=1
w(r,c)(Pc − Pr)

2

(11)

The above (11) corresponds to the sum of distances of multiple data points when
w(r,c) = 1.

We perform a spectral decomposition SD
(

P
(

Pi
C
′, . . . Pi∗

C
′)) based on the above dis-

tance measure. The point determination is divided into intervisibility points and non-
intervisibility points.

SD
(

P
(

Pi
C
′, . . . Pi∗

C
′
))

:=
N

∑
c=1

A
(
∑ Pi

C
′, ∑ P̂i

C
′
)

/2 (12)
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where ∑ P̂i
C
′ is the set of intervisibility points, ∑ Pi

C
′ is the set of residual points, i.e., non-

intervisibility points; A
(

Pi
C
′, P̂i

C
′) can be calculated as ∑N

c:{r,c}∈edges w(r,c)
(

Pi
C
′, Pi∗

C
′), here,

Pi∗
C
′ is all the neighboring adjacent points of Pi

C
′.

We construct the Mix-Planes Calculation Structure (MPCS) shown in Figure 2 for the
current point Pi

C
′. The dihedral angle ∠θ2 of plane Pi and plane Pv is a straight dihedral

angle, i.e., θ2= 90deg. The angle ∠θ1 between intersection lines l1 and l3 of planes Pi and
Pa is calculated by the inner product dot(·) and module norm(·)2 of the intersection angle’s
arccosine acosd(·) for three-point vectors PC and PE , as follows: θ1 = acosd

{
dot
((

PC
)
,
(

PE
))

/
(
norm‖PC‖2 ∗ norm‖PE‖2

)}
PC =

→(
Pi0

C , Pi
C
′); PE =

→(
Pi∗

C
′(µ), Pi

C
′) (13)

where the range of θ1 is [0deg, 180deg].
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We use the Laplacian matrix of the spectral graph analysis to decompose the sat-
isfied objective function SD(·) to obtain the intervisibility points that meet the inter-
visibility criteria. The criteria are composed of geometric calculation conditions in the
above calculation structure MPCS, The Algorithm 1 of determination process is as follows:

Algorithm 1 The criteria determination process of reachable intervisibility points

1: for ∑N×N
{r,c}=1∈L Pi

C
′ of ∀G(P, E) and D(l1) < Dmin < D′(l3) do

2: if ∃D(l1) < D
(
lgc
)

for ∀G(P, E) then
3: update Pi

C
′ = Pi∗

C
′ for D

(
Pi

C
′, Pi∗

C
′
)
= Dmin;

4: end if
5: else if D(l1) > D

(
lgc
)

then
6: find P̂i∗

C
′ for (θ1− θ2) > 0 &&

(
Z
(

Pi∗
C
′
)
− Z

(
Pi

C
′
))

> 0;

7: update G(P, E) of P
(

P̂i
C
′, P̂i∗

C
′
)

and E
(

P̂i
C
′, P̂i∗

C
′
)

;

8: find P̂i∗
C
′ for (θ1− θ2) < 0 &&

(
Z
(

Pi∗
C
′
)
− Z

(
Pi

C
′
))

< 0;

9: update G(P, E) of P
(

P̂i
C
′, P̂i∗

C
′
)

and E
(

P̂i
C
′, P̂i∗

C
′
)

;

10: end if
11: end for
12: return Pi

C
′

where D(l1) = D
(

Pi
C
′, Pi∗

C
′)

µ
, µ = 1, 2 . . . n ∈ G(P, E); Dmin is the minimum degree of

the adjacency matrix of the subgraph, i.e., the shortest radius distance threshold of the
graph;D′(l3) = D′

(
Pi

C
0, Pi′

C

)
; D
(
lgc
)
= D

(
Pi

C
′, Gc

)
;Z(·) is the elevation values of points;



ISPRS Int. J. Geo-Inf. 2021, 10, 782 10 of 19

Gc is obtained by the three-point area formula of all finite element meshes composed of the
subgraph, and the calculation can be proved by the dovetail theorem, as follows:

Gc(xc, yc) =

{
xc = ∑n

k=1 xkSk/∑n
k=1 Sk

yc = ∑n
k=1 ykSk/∑n

k=1 Sk
(14)

where Sk, k = 1, 2, . . . n is the area of all finite element meshes in the subgraph, e.g., for one finite
element mesh ∆kth(x1,2,3, y1,2,3), Sk =

{(
xk

2 − xk
1

)
∗
(

yk
3 − yk

1

)
−
(

xk
3 − xk

1

)
∗
(

yk
2 − yk

1

)}
/2.

The physical meaning of the aforementioned criteria is actually to judge the upward
and downward concave–convex characteristics of the spectral subgraph, i.e., whether the
current point Pi

C
′ is inside the subgraph or outside the subgraph, and to judge whether

the elevation values of adjacent points Pi∗
C
′ are visible according to the geometry calcu-

lation. Under the premise of controlling the smoothness of the Laplacian matrix, step 1
controls whether the weighted value of the weighted Laplacian matrix corresponding to
the calculation point and adjacent points is too large compared to the visible area radius of
the line-of-sight. Once it is too large, this subgraph likely contains connected viewpoints
in the space of the background environment far away from each other. Steps 2 and 4
control the spatial position of the current operating point in this subgraph, i.e., remove
the spectral calculation composed of inhomogeneous finite elements so that it will not
operate at the concave boundary. The advantage of this is to preserve the cohesive targets
in the scene as much as possible. Steps 5 and 7 determine the intervisibility of the finite
element mesh by the concave–convex centripetal properties of the subgraph composed of
the current operating point (i.e., the dispersion) and the elevation values of neighboring
nodes. The centripetal heart here is the meta-viewpoint. The more discrete the current
operation point and the meta-viewpoint are, the more the concave–convex centrality of the
subgraph deviates, and the more the finite element mesh will bulge farther.

At this point, we have obtained the final tree-like linked structure of the finite element-
composed topological structure, including intervisibility points and reachable edges, i.e.,

G
(

Nodes
(

P̂i
C
′), Edges

→(
P̂i

C
′, P̂i

C
∗′)). All finite elements are defined as the intervisible region

that contains the finite element mesh when the finite element have intervisible three-points
and two more intervisible edges of adjacent points. This benefits from the fact that two
points can only determine the reachability of a line, while three points that are not collinear
can determine a surface is a theorem.

3. Results

We conducted experiments on dynamic intervisibility analysis of 3D point clouds in
benchmark KITTI, the most well-known and challenging dataset for autonomous driving
on urban traffic roads. Here, we show the results and experiments for two scenarios.
Scenario one is an inner-city road scene, and scenario two is an outer-city road scene.
In addition, the equipment, platform, and environment configuration involved in our
experimental environment are shown in Table 1.

Table 1. Experimental environments.

Experimental Environments

Equipment
Camera: 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3C-C)
LiDAR: Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams,
0.09-degree angular resolution, 2 cm distance accuracy

Platform Visual studio 2016, Matlab 2016a, OpenCV 3.0, PCL1.8.0

Environment Ubuntu 16.04/Windows 10, Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz,
NVIDIA GeForce GTX 1060/Intel(R) UHD Graphics 630

Figure 3 shows the image of the FOV and the corresponding top view of the LiDAR
3D point cloud acquired by the vehicle in a moment of motion. The color of the point
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cloud represented the echo intensity of the Lidar. Figure 4a presents the point cloud
sampling results for the FOV estimation of the current motion scene after we aligned the
multi-dimensional coordinate systems. We effectively removed the invisible point cloud
outside the field of view, especially the outlier background points. Figure 4b then shows
the power spectra of the resultant signals in different directions. Their frequency resolution
is high, but the spectral peaks are difficult to determine.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

point and the meta-viewpoint are, the more the concave–convex centrality of the subgraph 

deviates, and the more the finite element mesh will bulge farther. 

At this point, we have obtained the final tree-like linked structure of the finite ele-

ment-composed topological structure, including intervisibility points and reachable 

edges, i.e.,    ˆ ˆ ˆ, ,    
 
 

i i i

C C CG Nodes P Edges P P . All finite elements are defined as the intervisi-

ble region that contains the finite element mesh when the finite element have intervisible 

three-points and two more intervisible edges of adjacent points. This benefits from the fact 

that two points can only determine the reachability of a line, while three points that are 

not collinear can determine a surface is a theorem. 

3. Results 

We conducted experiments on dynamic intervisibility analysis of 3D point clouds in 

benchmark KITTI, the most well-known and challenging dataset for autonomous driving 

on urban traffic roads. Here, we show the results and experiments for two scenarios. Sce-

nario one is an inner-city road scene, and scenario two is an outer-city road scene. In ad-

dition, the equipment, platform, and environment configuration involved in our experi-

mental environment are shown in Table 1. 

Table 1. Experimental environments. 

Experimental Environments 

Equipment 

Camera: 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3C-C) 

LiDAR: Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams, 

0.09-degree angular resolution, 2 cm distance accuracy 

Platform Visual studio 2016, Matlab 2016a, OpenCV 3.0, PCL1.8.0 

Environment 
Ubuntu 16.04/Windows 10, Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 

NVIDIA GeForce GTX 1060/Intel(R) UHD Graphics 630 

Figure 3 shows the image of the FOV and the corresponding top view of the LiDAR 

3D point cloud acquired by the vehicle in a moment of motion. The color of the point 

cloud represented the echo intensity of the Lidar. Figure 4a presents the point cloud sam-

pling results for the FOV estimation of the current motion scene after we aligned the 

multi-dimensional coordinate systems. We effectively removed the invisible point cloud 

outside the field of view, especially the outlier background points. Figure 4b then shows 

the power spectra of the resultant signals in different directions. Their frequency resolu-

tion is high, but the spectral peaks are difficult to determine. 

 

Figure 3. Acquired data by a vehicle at a moment of motion. (a) The FOV images; (b) The lidar 3D
point cloud.

Figure 5a shows the point mapping of our Manifold Auxiliary Surface (MAS) for the
original point cloud data, while Figure 5b shows the signal power spectrum of the MAS.
The colorbar represents the different labels of the points, and the color texture labels of the
3D point cloud were used here. Although there were drastic abrupt changes caused by
discrete background points, the overall power spectrum density was smooth with better
noise suppression and fewer chaotic characteristics compared to the point cloud power
spectrum of the estimated FOV when a certain frequency resolution was ensured.

From the constructed finite element topology structure of the MAS and the linked
intervisibility points and edges of the spectral graph analysis results in Figure 6, we effec-
tively screened out the irrelevant invalid edges linked to the background and unconnected
invisible points in the graph. The irrelevant invalid edges linked to the background and
unconnected invisible points are removed directly. Visible viewpoints on this tree’s local
lines of depth and width traversal nodes were also linked as isolated edges. Although
it was also effective for intervisibility, these separate appearances were not very mean-
ingful for the dynamic intervisibility analysis of autonomous driving. Therefore, they
could be ignored to some extent. We visualized the intervisibility points on the original
FOV estimation result in Figure 7. The colors of the edges of all points corresponded to
their different elevation distance weights, and the red points were the locations of the
intervisibility points.

The final evaluation mapping of the 3D intervisibility terrain area of the vehicle
driving within the current FOV is shown in Figure 8. In order to further visually display
the three-dimensional visual effects of the result of the intervisibility point and the terrain
elevation value, the map was based on the FOV coordinate structure in Figure 7 for the
terrain mapping, and the elevation value mapping and the corresponding element grid
surface shading were added. We showed the area where the vehicle can be guided driving
and the mapping of the red intervisibility point, where the colorbar corresponded to the size
of the elevation value, and the red points were the mappings of the intervisibility points.
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4. Results Analysis and Discussion

In order to discuss the results of the intervisibility effectively and clearly, we used
the following metrics to evaluate the results of the experiments. N is the number of finite
element meshes of the composite topological structure of points on the manifold auxiliary
plane. SP is the number of adjacent decision points in the subgraph. The greater the
number, the greater the calculation levels and the greater the amount of calculation.

Average node Redundancy Removal rate (ARR):

ARR = ∑
(

Pi
L − Pi

C
′
)

/Pi
L × 100 (15)



ISPRS Int. J. Geo-Inf. 2021, 10, 782 15 of 19

The higher the ARR, the more redundant nodes are removed. The more effective the
method is.

Two-Point Intervisibility rate (TPI):

TPI =
1

3N ∑
→(

P̂i
C
′, P̂i

C
∗′
)
× 100 (16)

The closer the TPI is to the global point method, the closer the result is to the real
intervisibility. It reflects the intervisibility of 3D point clouds. TPI is the proportion of all
edges of the finite element that do not exclude repeatedly connected edges. It represents
the two-way interoperability in a directed graph of two points. The actual exclusion of
adjacent edges of neighboring finite elements has a higher TPI.

Decreasing Calculation Quantity rate (DCP):

DCP =

(
∑

→(
Pi

L, Pi
L
′
)
−∑

→(
Pi

C
′, Pi

C
∗′
))

/∑
→(

Pi
L, Pi

L
′
)
× 100 (17)

The higher the DCP, the shorter the calculation time and the higher the efficiency of
the method.

The metrics of results for samplings of different particle sizes are shown in Table 2.
The particle size is the granularity of the spherical kernel mentioned in Section 2.1. Table 3
shows the one run and 10 runs average running time of the proposed in this paper. S1 is
the calculation time of the MAS, S2 is the construction time of the finite element topological
structure, and S3 is the time for the spectral analysis to calculate the intervisibility point.
TIME is the calculation time of the intervisibility point of this paper. A-X (AS1, AS2, AS3,
ATIME) are the average measurements of the 10 runs of the samplings. VAR is the variance
of TIME, and STD is the standard deviation of TIME, reflecting the degree of dispersion
between the computational complexity of each run and the average computational com-
plexity. The smaller the VAR and STD values, the smaller the dispersion’s degree, reflecting
the higher stability and stronger robustness of our method. We can see from the two tables
that our calculation effectiveness and efficiency in this paper are both high.

Table 2. The intervisibility results for different 3D point clouds.

Samplings N SP ARR (%) TPI (%) DCP (%)

10 3982 5982 98.40 47.61 95.46
20 1984 2984 99.20 44.17 97.90
30 1320 1986 99.47 41.04 98.70
40 987 1487 99.60 38.57 99.09
50 786 1186 99.68 35.79 99.33
60 653 986 99.73 35.78 99.44
70 557 842 99.77 33.87 99.55
80 488 738 99.80 30.94 99.64
90 432 654 99.82 31.33 99.68

100 388 588 99.84 30.50 99.72

Table 4 shows the evaluation metrics of different intervisibility analysis methods.
Among them, the method of judging the global point elevation value does not take relevant
processing to reduce the amount of calculation, so there are no values of ARR and DCP,
which can be regarded as 0. Experiments were carried out in the same test environment
and based on the same original LiDAR data. Among them, the global point method and
the interpolation point method simply removed the background noise points. The final
number of nodes used to represent the terrain visibility calculation is the smallest in our
method. This removal will be required for the premise of ensuring a certain information
rate to avoid too few nodes in the future. Compared with the intervisibility analysis
methods of global points and interpolation points, our dynamic intervisibility analysis of
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3D point clouds maintain a significant and equivalent two-point intervisibility rate while
the removal rate of redundant nodes and the decrement calculation amount are as high as
99.54% and 98.65%, respectively. Furthermore, our computation time can reach an average
processing time of 0.1044 s for one frame with a 25 fps acquisition rate of the original vision
sensor, which meets the reliability of online dynamic intervisibility analysis. In addition,
the results of our intervisibility analysis between consecutive frames are stable and robust.

Table 3. The different run indicators of different 3D point cloud samplings.

Samplings S1 (s) S2 (s) S3 (s) TIME (s) AS1 (s) AS2 (s) AS3 (s) ATIME (s) VAR (%) STD (%)

10 0.0010 0.0053 0.3854 0.3917 0.00083 0.00515 0.36934 0.37532 0.9197 0.9695
20 0.0008 0.0026 0.1696 0.1730 0.00080 0.00281 0.16817 0.17178 0.5848 0.6165
30 0.0008 0.0018 0.1105 0.1131 0.00076 0.00183 0.11383 0.11642 0.2544 0.2682
40 0.0008 0.0015 0.0858 0.0881 0.00075 0.00150 0.08842 0.09067 0.1532 0.1615
50 0.0008 0.0013 0.0808 0.0829 0.00074 0.00157 0.08625 0.08856 0.2615 0.2757
60 0.0009 0.0011 0.0619 0.0639 0.00078 0.00116 0.06341 0.06535 0.1819 0.1918
70 0.0007 0.0011 0.0651 0.0669 0.00079 0.00107 0.06327 0.06513 0.4069 0.4289
80 0.0009 0.0010 0.0592 0.0611 0.00075 0.00091 0.05188 0.05354 0.1563 0.1648
90 0.0009 0.0009 0.0521 0.0539 0.00072 0.00093 0.05130 0.05295 0.1732 0.1825
100 0.0008 0.0008 0.0459 0.0475 0.00073 0.00088 0.04672 0.04833 0.2473 0.2607

Table 4. The metrics of different intervisibility analysis methods.

Methods Nodes ARR (%) TPI (%) DCP (%) TIME (s)

Global Points 125,148 - 50.72 - 1163.876
Interpolation Points 20,008 84.01 50.01 52.08 17.537

OURS 572 99.54 50.25 98.65 0.1044

Figure 9 is a comparison of our intervisibility calculations under different granularity
thresholds. Figure 10 is the calculation time of the MAS for different samplings with
different granularity sizes. We can see that as the granularity increases, several quantities
involved in the intervisibility calculation process for different samplings tend to move
downward and gradually become smoother. There is a clear downward trend between
1–10, and after 10, or even after 20, it is basically smooth. Furthermore, their running
time variance is 0.9061, the standard deviation is 0.9519, the degree of dispersion is low,
and the robustness is strong. Therefore, the granularity threshold can be dynamically and
automatically selected based on the current sampling.
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Compared with the global point cloud and the local interpolation point clouds
pathway-based method, our method does not directly process the original point cloud
data. Our method effectively filters out excessive redundant noise 3D points. However,
the deletion of too many points will undoubtedly affect the integrity of the information.
For example, it can lead to the lack of information about essential targets in the scene and
terrain. Among the different node numbers calculated by different methods based on the
same original data, we had fewer data points, but we guaranteed the same quality of the
two-point intervisibility rate to a certain extent.

Furthermore, to avoid the impact of information scarcity, it is indeed necessary to
set and explore the minimum suppression threshold of the nodes number for automatic
and dynamic collection requirements in future research. Moreover, the estimation of FOV
is consistent with the actual motion scene of autonomous driving. The FOV estimation
was necessary for dynamic analysis of autonomous driving scenarios because the original
lidar data was omni-directional, and the motion view of intelligent vehicles changed at any
time. In addition, our FOV results are equivalent to partial data based on the original data.
Therefore, the length of the sampled signal is less than the length of the omni-directional
data. Under the same sampling frequency, the frequency resolution of the FOV result is not
higher than the original data. However, although the frequency resolution of the original
data is sufficiently high, the accompanying data volume is substantial, the noise points are
massive, the calculation time is long, and the cost is high. Therefore, the high frequency
resolution of the original massive data is also a pity for dynamic intervisibility analysis.
Such a balance is difficult to guarantee, and we can only take measures to maintain online
in real-time. This is also an issue worthy of further research and innovation.

The construction of the MAS of the point cloud aligned with multi-dimensional data
on the basis of Riemannian geometric manifold learning cannot only be limited to the
transformation between three-dimensional and two-dimensional space. It can also expand
the transformation from multi-dimensional space to low-dimensional space containing
contextual semantic information. Finally, the proposed intervisibility analysis based on
the spectral graph theory provides a basis for the analysis of the current motion space
environment of autonomous driving. The analysis has risen from the low-level point-level
features of the points to the spatial and geometric characteristics, which is efficient and
robust. This paper has a certain guiding significance for subsequent automatic control, path
planning, and Simultaneous Localization And Mapping (SLAM). In the future, continuous
scene composition and point cloud splicing based on dynamic visibility analysis of current
motion scenes in this paper will be our research focus.

5. Conclusions

The dynamic intervisibility analysis of 3D point clouds proposed in our paper avoids
the errors of Euclidean calculation in space and the redundant calculations of traditional
global points and interpolation points in efficiency. Our calculations are not limited to
point-level operations. It effectively distinguishes the background and the target and makes
the points of intervisibility more cohesive. The subgraph spectral decomposition of the
mix-planes calculation structure under Riemann geometry for intervisibility analysis has
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obtained significant and influential visualized mapping results in field-of-view, and our
calculation time can meet the requirements of autonomous intelligent vehicles.
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