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Abstract: (1) Background: Hurricane events are expected to increase as a consequence of climate
change, increasing their intensity and severity. Destructive hurricane activities pose the greatest
threat to coastal communities along the U.S. Gulf of Mexico and Atlantic Coasts in the conterminous
United States. This study investigated the historical extent of hurricane-related damage, identifying
the most at-risk areas of hurricanes using geospatial big data. As a supplement to analysis, this study
further examined the overall population trend within the hurricane at-risk zones. (2) Methods: The
Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model and the HURRECON model were
used to estimate the geographical extent of the storm surge inundation and wind damage of historical
hurricanes from 1950 to 2018. The modeled results from every hurricane were then aggregated to a
single unified spatial surface to examine the generalized hurricane patterns across the affected coastal
counties. Based on this singular spatial boundary coupled with demographic datasets, zonal analysis
was applied to explore the historical population at risk. (3) Results: A total of 775 counties were found
to comprise the “hurricane-prone coastal counties” that have experienced at least one instance of
hurricane damage over the study period. The overall demographic trends within the hurricane-prone
coastal counties revealed that the coastal populations are growing at a faster pace than the national
average, and this growth puts more people at greater risk of hurricane hazards. (4) Conclusions: This
study is the first comprehensive investigation of hurricane vulnerability encompassing the Atlantic
and Gulf Coasts stretching from Texas to Maine over a long span of time. The findings from this
study can serve as a basis for understanding the exposure of at-risk populations to hurricane-related
damage within the coastal counties at a national scale.

Keywords: hurricane damage; storm surge; wind damage; geospatial big data; hurricane-prone
coastal counties; population vulnerability

1. Introduction

Hurricanes are extreme meteorological events that are likely to be affected by climate
change, of which global warming and sea level rise are two foreseeable changes that
could impact the consequences of hurricane disasters. The frequency and/or intensity of
hurricanes are projected to increase in the coming decades, producing high-speed winds
and heavy precipitation [1–5]. Hurricanes have historically proven to be some of the most
devastating and costliest natural disasters in the Gulf of Mexico and Atlantic coast regions
of the United States, having the highest average event cost (USD 21.5 billion per event),
and causing the highest number of fatalities (6593) and the largest economic losses (USD
945.9 billion total of all natural disasters between 1980 and 2020) [6–8]. The primary causes
of the massive damage and loss of life are storm surge flooding and high-speed winds.
In particular, drownings from storm surges are responsible for most hurricane-related
casualties and injuries [9–12].

U.S. coastal populations are already experiencing the risk of hazards such as hurri-
canes, storm surges, sea level rise, and coastal erosion. The fast-growing coastal population
and demographic shifts along the coastal regions are playing a major role in substantially
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aggravating the consequences of hurricanes [2,13–15]. Approximately 123.3 million people,
which amounts to 39% of the total U.S. population, resided in hurricane-prone coastal areas
in 2010, increasing to 127 million people in 2016. The population was expected to grow to
134 million (i.e., an 8% increase) from 2010 to 2020 in coastal zones. Coastal populations are
projected to increase up to 144 million people (i.e., 20% increase) by 2025 within 100 km of
the coastal areas in the United States, thereby continuously increasing coastal populations’
vulnerability to natural hazards [16,17].

Increasingly destructive hurricane activities pose a threat to these coastal communities
along the U.S. Gulf of Mexico and Atlantic coasts. Rapid coastal population growth puts
more people in harm’s way, and rising property values by accelerating urbanization and
intensive development have placed more environment-related stresses on coastal areas. The
burgeoning coastal settlement and coastal-dependent economic activities (e.g., shipping,
tourism, fisheries, and petroleum industry) are attracting more people to move to the
hurricane coasts [13,14]. Specifically, the Gulf of Mexico regions have seen an 8.5% increase
in population employed in construction industries and a 10.8% increase in employment in
maintenance occupations, which is higher than the national rate [18]. Overdevelopment
due to the high demand for second homes and coastal real estate has increased the risk
and exposure of people and infrastructure to hurricane-related damage more than ever
before [2,13,19–21].

Estimating exposure to hurricane risk is a fundamental step in comprehending the
geophysical vulnerability of coastal populations [22]. Most research investigating hurricane
hazards has been largely based on various hydrodynamic models such as the Sea, Lake,
and Overland Surges from Hurricanes (SLOSH), H*Wind (hurricane wind analysis system),
or Simulating WAves Nearshore (SWAN) coupled with ADvanced CIRCulation (ADCIRC)
models. Each of these models requires a unique set of parameters using different wind
model equations and have their strengths and weaknesses [11,23–26]. The majority of the
existing literature applies these models in the field of coastal engineering and atmospheric
research. Recently, an R package called “stormwindmodel” simplified the complicated
modeling procedure for Atlantic Basin tropical storms, allowing researchers to facilitate
rapid application for hurricane exposure assessment [27,28].

To date, numerous studies have assessed hurricane vulnerability on a case-by-case
basis, focusing on the most devastating hurricane events that have caused enormous
societal losses. Such case-specific studies do not necessarily show the long-term effects
of hurricane risks in coastal regions and provide a limited picture in assessing the com-
prehensive vulnerability to hurricane hazards over time. This brings into question the
spatial patterns of cumulative hurricane-related damage (particularly storm surge and
wind-induced damage) based on past and recent hurricane events and their consequential
effect on coastal population growth in hurricane-prone areas in the United States. The
definition of “hurricane-prone region” has been restricted to flooding hazards in the current
literature, which impedes the implementation of comprehensive hurricane vulnerability
assessment using demographic datasets. One longitudinal study by Logan and Xu (2015)
modeled hurricane-related hazards to capture spatial patterns of actual hurricane expo-
sures that occurred from 1950 to 2005 [29]. Despite the importance of long-term research in
hurricane vulnerability, there remains a paucity of longitudinal studies that systematically
examine long-term trends of populations at increased risk of hurricane damage.

The objective of this study is therefore to estimate the geographic distribution of
hurricane-related damage that has occurred in the United States throughout its history by
modeling storm surge and wind damage. Specifically, this research is designed to answer
the following research questions: (1) What are the spatial extent and intensity of storm surge
inundation and wind damage caused by hurricanes along the Gulf and Atlantic coasts in
the United States from 1950 onwards? (2) What regions have been particularly hard hit
by hurricanes in the U.S. coastal counties over the past decades since 1950? (3) How has
the overall population changed within the U.S. hurricane coastal counties over time? The
increased risk of hurricane hazards has the potential to impact populations and residential
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infrastructure within at-risk areas, making it essential to identify the areas with greater
hurricane exposure. Hurricanes can negatively affect individuals and local communities
through economic losses and infrastructure damage, among other ways. However, this
study limits the scope to estimate the potential biophysical vulnerability of hurricanes
through the estimation of historical hurricane damage at the national level. The social
and economic consequences of hurricane damage on society are broadly defined, and thus
consideration of these various sectors lies beyond the scope of this study.

The remainder of this paper has been divided into four sections. Section 2 provides
a brief overview of the study area, datasets, and methods adopted in the analysis. The
coastal areas impacted by storm surge inundation and wind damage are presented at
the national level in Section 3. In addition, this section also shows the total populations
that have been exposed to hurricane-related damage during the study period. Section 4
presents the conclusions, significance, and limitations of this research that can be further
investigated in the future.

2. Materials and Methods
2.1. Modeling Large-Scale and Long-Term Historical Hurricanes

Vulnerability science has been extensively applied to a wide variety of academic fields
such as ecology, public health, sustainable science, environmental justice, and disaster
risk management [30]. The question is what exposes people and places to greater harm
from environmental hazards? Within risk, hazard, and disaster scholarship, vulnerability
science has long encompassed three different but intersecting domains: physical/natural
systems (e.g., exposure, intensity, frequency of occurrence), human systems including
social systems and built environment (e.g., socio-demographic characteristics of at-risk
populations, the degree of urbanization), and local spatial characteristics of places (e.g.,
location-specific conditions such as proximity to hazardous areas) [31,32]

With the abundance and increasing accessibility of georeferenced big data, vulnerabil-
ity and environmental sciences are evolving to incorporate new methodologies to handle
increasingly complex datasets that describe the complexity of human–environment interac-
tions and the dynamic characteristics of natural hazards [33]. This era of big data has led to
advances in vulnerability research in estimating, predicting, and visualizing potential risk
or vulnerability to natural hazards using large volumes of data and a variety of data-driven
computing approaches [34–37]. Big data can be defined in a variety of ways depending
on the disciplines and subjects being studied. However, there are three components that
can be considered the fundamentals of big data termed the “three Vs”: (1) volume—the
quantity of data that are collected, stored, and processed; (2) velocity—how fast the data
are collected and processed; and (3) variety—the types/sources of data [38–40]. This study
aimed to highlight the usefulness of the longest track records of the Atlantic hurricane pub-
lic database in tandem with multiple geospatial data and hurricane modeling techniques
in order to identify the most vulnerable areas to hurricanes in a spatially explicit manner.

There has been limited analysis of longitudinal hurricane-related damage in geo-
graphic scholarship that applies a variety of geospatial datasets and hurricane modeling
techniques. Identifying the spatial extent of historical hurricane damage is crucial to
examine the evolving physical and social vulnerability within the at-risk zone. For the
purpose of comprehensive vulnerability assessment, this study provides a synoptic view of
hurricane vulnerability in the United States on a large geographic scale using storm surge
and wind damage modeling for a long period of time (1950–2018) at the national level. The
current study does not incorporate inland flooding due to heavy rainfall, since this study
relies on the accumulated hurricane events, not a single hurricane event.

Since historical geospatial data of hurricane impacts are seldom available, it is neces-
sary to reconstruct to what extent past and recent hurricanes have affected coastal regions.
Figure 1 shows the trajectories of all hurricanes and tropical storms that reached the U.S.
East Coast, Florida, and Gulf Coast area during the study period. The hurricane-affected
areas are nationwide, and states bordering the Gulf of Mexico and Atlantic Ocean have
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borne the brunt of the catastrophic hurricane damage [13]. To reflect the full areal extent of
the U.S. hurricane coasts, this study includes all hurricanes that made landfall along the
Gulf and Atlantic Coasts up until 2018, encompassing a total of 22 states and the District of
Columbia. This extensive hurricane modeling is in line with the three Vs of geospatial big
data analytics.
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Figure 1. Historical hurricane and tropical storm tracks along the U.S. Gulf and Atlantic Coasts from
1950 to 2018.

The major data source of this hurricane-related damage modeling is the public Hur-
ricane Database (known as the revised Atlantic hurricane database, HURDAT2). The
HURDAT2 is the second-generation hurricane database maintained and updated annu-
ally by the U.S. National Oceanic and Atmospheric Administration (NOAA) at the Na-
tional Hurricane Center (NHC). This dataset can be obtained from the NHC Data Archive
(https://www.nhc.noaa.gov/data/, accessed on 1 October 2021), and it contains the best-
estimated track records of all historical hurricanes, tropical storms, and subtropical storms
of the Atlantic Basin, including the Gulf of Mexico and Caribbean Sea, since 1851 [41,42].
The HURDAT database provides a sufficient temporal resolution with position estimates
for every synoptic time (0000, 0600, 1200, and 1800 UTC), and this allows researchers
to capture the progress of each storm. Figure 2 presents the synoptic points of all hur-
ricanes and tropical storms in the North Atlantic from 1851 to 2018. Each storm can be
identified by its name and identifier number with its six-hourly information on date, time,
position that geocodes the center of the storm (latitude and longitude), intensity (i.e., maxi-
mum sustained wind in knots), central pressure, and size [41–43]. These parameters are
used to compute the storm surge heights and wind damage resulting from hurricanes by
considering hurricane gust factors.

https://www.nhc.noaa.gov/data/
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Oceanographic and atmospheric conditions also come into play in modeling the water
surface caused by hurricanes and storms [44]. Topographic data or digital elevation models
(DEM) are crucial in determining storm surge inundation because the shape of the terrain is
highly related to how water flows and drains along and off a surface. The primary dataset
used in this study was the U.S. Geological Survey (USGS) National Elevation Dataset
(NED), which includes seamless elevation data covering the conterminous United States at
different spatial resolutions [45]. In this study, the 1/3 arc-second (approximately 10 m)
DEM dataset was selected for coastal inundation mapping and can be acquired from the
USGS National Map Viewer.

Astronomical tidal information is also required to generate a water surface as an
input value in storm surge modeling. The geographic location of tide level stations can
be found at the NOAA Tides and Currents website. The SLOSH display program was
then used to retrieve the initial water level (i.e., astronomical tide) for each hurricane at
the nearby tide gauge station referring to the hurricane path observed 18 h before nearest
approach (or landfall) in most storm situations. It is noteworthy to mention that the
SLOSH model adopts National Geodetic Vertical Datum of 1929 (NGVD 29) as its vertical
datum, meaning it is imperative to transform tidewater level to NGVD for consistent and
reliable modeling results [29,46,47]. The description of the main attributes and software
information employed in this study is summarized in Table 1.
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Table 1. Geospatial data and software used in this study for hurricane modeling.

Data Description Data Source

Atlantic Hurricane Database
(HURDAT2)

1851-2018

This dataset contains six-hourly information on the
location, maximum winds, central pressure, and

(starting in 2004) size of all known tropical cyclones
and subtropical cyclones.

National Oceanic and Atmospheric
Administration (NOAA) National

Hurricane Center (NHC)
https://www.nhc.noaa.gov/data/

(accessed on 1 October 2021)

SLOSH Basins
(*.shp files)

The SLOSH basins are hyperbolic, elliptical, or polar
mesh grids that are required to model storm surge
heights. The spatial coverage of this study is the

entirety of the U.S. Gulf and Atlantic Coasts.

SLOSH Display Program

SLOSH Display
Program (SDP)

This program was used to download SLOSH basins
and to visualize the results of the SLOSH model.

Please note that the SLOSH model and the SLOSH
Display Program (SDP) are two different tools. The
SDP Tide information was also used to retrieve the

astronomical tide data.

NOAA Slosh Display Package Webpage,
https://slosh.nws.noaa.gov/sdp/

(accessed on 1 October 2021)

SLOSH Model

This is a computer model used by the National
Hurricane Center to forecast and simulate storm

surge vulnerability caused by historical,
hypothetical, or predicted hurricanes.

Available to interested users upon
request to NOAA

Tide level station The SLOSH model requires the observed coastal sea
levels within a basin.

NOAA Tides and Currents,
https://tidesandcurrents.noaa.gov/

(accessed on 1 October 2021)

VDatum
This software is a conversion tool for converting

initial water heights between vertical datums—tidal,
orthometric, and ellipsoidal datums.

NOAA Vertical Datums Transformation,
https://vdatum.noaa.gov/ (accessed on

1 October 2021)

Corpscon 6.0
This software was used to transform the vertical

datums of SLOSH modeling outputs (NGVD 29) to
the reference vertical datum (NAVD 88).

US Army Corps of Engineers Geospatial
Center, https://www.agc.army.mil/

What-we-do/Corpscon/ (accessed on
1 October 2021)

National Elevation Dataset
(NED)

The 1/3 arc-second DEM dataset with full coverage
of coastal counties was used to create the inundation

extent and depth.

U.S. Geological Survey (USGS) National
Map Viewer,

https://apps.nationalmap.gov/viewer/
(accessed on 1 October 2021)

Land use/land cover (LULC)

The National Land Cover Database (NLCD) was
used to calculate the developed areas within the

hurricane-affected areas in estimating at-risk
populations in Section 3.2. Non-developed areas
were masked out from the NLCD datasets for the

hurricane-affected areas.

Multi-Resolution Land Characteristics
Consortium, https://www.mrlc.gov/

(accessed on 1 October 2021)

HURRECON

This software estimates wind speed, wind direction,
and wind damage on the Fujita scale for a single or

multiple hurricanes in a given region. The input
parameters (hurricane track and intensity

information) can be acquired from the HURDAT2
database. HURRECON is available in both R

and Python.

Environmental Data Initiative Data
Portal, https://doi.org/10.6073/pasta/

0878074e6c87ec8b43cb56601ff00472
(accessed on 1 October 2021)

or
GitHub https://github.com/hurrecon-

model/HurreconR (accessed on
1 October 2021)

2.2. Methods

The majority of damage and loss of life are associated with storm surges and high
winds in the wake of hurricanes, and impacts have been unevenly distributed across
the U.S. during the past several decades. This study intended to determine the geo-
graphic extent of storm surges and wind damage over an extended period of time from

https://www.nhc.noaa.gov/data/
https://slosh.nws.noaa.gov/sdp/
https://tidesandcurrents.noaa.gov/
https://vdatum.noaa.gov/
https://www.agc.army.mil/What-we-do/Corpscon/
https://www.agc.army.mil/What-we-do/Corpscon/
https://apps.nationalmap.gov/viewer/
https://www.mrlc.gov/
https://doi.org/10.6073/pasta/0878074e6c87ec8b43cb56601ff00472
https://doi.org/10.6073/pasta/0878074e6c87ec8b43cb56601ff00472
https://github.com/hurrecon-model/HurreconR
https://github.com/hurrecon-model/HurreconR
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1950 to 2018 to identify the comprehensive locational vulnerability to hurricane impacts.
Figure 3 represents the methodological procedures used to obtain an estimate of the overall
hurricane-related damage.
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2.2.1. Estimation of Storm Surge Inundation

In an attempt to overcome data scarcity in historical GIS hurricane data, this study
adopted a hydrodynamic model, called the Sea, Lake, and Overland Surges from Hurri-
canes (SLOSH) model, in obtaining the spatial extent and intensity of storm surges. The
SLOSH model was used to simulate the storm surges induced by each track over the study
period. The SLOSH model is currently being used by the NHC for real-time forecasting of
potential hurricane storm surges across the entire seaboard of the United States [10,11,46].
A major advantage of the SLOSH model is its ability to reproduce historical hurricane
storm surges based on the HURDAT2 dataset [23,46,48].

The SLOSH model is a two-dimensional numerical coastal model that computes the
maximum water heights considering the dynamic flow of water over land and water based
on pre-determined grid cells referred to as a basin. Currently, there are 32 basins covering
the entirety of the U.S. Atlantic and Gulf of Mexico Coasts, Hawaii, Puerto Rico, Virgin
Islands, and the Bahamas (Figure 4). All hurricanes and tropical storms that made landfall
along the coastal regions can be modeled with the operational SLOSH basins. If a hurricane
impacted a larger extent of the area, multiple basins were considered in the modeling
procedure. Depending on the region, the basins have different shapes (mostly polar or
hyperbolic/elliptical) composed of thousands of grid cells, and these are one of the primary
inputs of the meteorological parameters that must be entered in the modeling process [49].
The closer to the primary area of interest such as a bay or a region immediately adjacent to
the coastline, the finer the resolution of the grid cells. Meanwhile, the spatial resolution of
the grid cells is coarser in the deep open oceans due to a low significance in simulation.
The basins integrate geographical characteristics of the particular area along the coasts
that influence storm surges such as topography, shoreline structure, levees, bathymetry of
ocean areas, and continental shelves [23,50]. The accuracy of the estimated surge height is
known to be within ± 20% of the observed water heights. The model uncertainties can be
attributed to several components such as the basin’s spatial resolution, vertical accuracy of
terrain data/high water marks, and the meteorological/geophysical parameters resulting
from the complexity of hurricane and astronomical tides [10,44,51].

The left side of Figure 3 depicts the overall procedure of storm surge simulation. Mod-
eling storm surges requires the following meteorological parameters as input parameters
to generate the wind field that drives the storm surge inundation: storm track positions
(i.e., latitude and longitude at 6-h intervals), intensity (i.e., storm central pressure at 6-h
intervals), radius of maximum wind (RMW, i.e., size—the distance between the center of a
storm and the location where the strongest wind is generated, at 6-h intervals), forward
speed, and landfall time [46,52]. The stm.file consists of 13 time points of these input
parameters for model operation to describe an hourly progression of the hurricane before
and after landfall. Considering these input parameters coupled with a selected basin, the
SLOSH model can determine the flow of storm surges across the surface and then estimate
the maximum envelope of water in each basin grid during a storm’s life cycle.

The outputs of the SLOSH model consist of three files: (1) the *.rex file is a time-lapsed
animation file that contains the simulated water levels at every grid cell over the duration of
the storm; (2) the *trt.file is an expansion of the stm.file providing hourly values, resulting
in 100 h of input data; and (3) the *.env.file provides the envelope of high water levels.
The .rex file can be converted to a shapefile for additional geoprocessing. The SLOSH
model does not include the wave components (i.e., astronomical tides or wind-driven wave
heights) and antecedent precipitation on top of the surge, and thus the astronomical tides
can be added to the model results [10,29,53–55]. As a result, the SLOSH model generates
time-dependent storm surge water levels at every grid cell at a specific interval of time at
each basin. As an example, Figures 5 and 6 show a simulated storm surge height during
Hurricane Harvey (2017) based on the SLOSH simulation. The resulting individual storm
surge output was compared with the existing SLOSH model from NOAA. The interpolated
raster for each hurricane can be further analyzed to generate the final layer that represents
the extent of inundation and the flood depth by adding the astronomical tides.
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Spatial analysis can be conducted to derive the inundation extent and the depth of a
storm surge using the simulated water height from the SLOSH model and DEM data. The
maximum surge water height generated from the SLOSH model can be converted to a GIS
file format to create centroids of SLOSH basin outputs and then interpolate water level
heights using the natural neighbor method. It is important to note that each dataset refers
to a different vertical datum: the SLOSH model output references the National Geodetic
Vertical Datum of 1929 (NGVD29); the initial tidewater level refers to mean lower low
water (MLLW); the elevation data are based on the North American Vertical Datum of 1988
(NAVD88). All elevations are based on different vertical datums and cannot be directly used
to compute storm surge heights. Therefore, it is required to maintain a consistent vertical
datum between the estimated storm surge inundation height and the terrain elevation
data using a transformation to derive the depth of a storm surge accurately. In this study,
Corpscon, Version 6.0 was utilized to conduct vertical conversions between the NGVD 29
and the NAVD 88. To process large amounts of GIS datasets and vector- and raster-based
analysis, this study employed batch processing using ArcGIS and R in conjunction.
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2.2.2. Estimation of Wind Damage

Strong hurricane winds often cause severe structural damage to infrastructure, resi-
dential structures, and commercial structures [21]. This study adopted a meteorological
model, HURRECON (Hurricane Reconstruction), which is based on published empirical
studies of hurricanes in the New England, Puerto Rico, and Gulf Coasts [29,56,57], in order
to reconstruct the intensity of wind damage by each hurricane. The HURRECON model
was developed to estimate the basic structure of a storm’s surface wind conditions such
as sustained wind velocity, peak gust velocity, and wind direction of movement over a
specified surface cover type (water and land). It has been widely applied to study the
impact of hurricane wind disturbance on forestry landscapes [56–58] and hurricane wind
damage assessment [29,59].

As described on the right side of Figure 3, the HURRECON model also uses the mete-
orological parameters of a storm (i.e., storm track and wind speed) from the HURDAT2
database as input data. The individual hurricane position data (*.pos file, a tab-delimited
text file) should contain year, month, day, hour, minute, latitude/longitude, and maxi-
mum sustained wind in meters per second (m/s). The model also requires a rectangular
geographic file (i.e., 16-bit IDRISI raster file format) to distinguish the land cover type
(water or land) in estimating the surface wind speed and direction. The raster grid should
be equally divided per cell to produce a more accurate modeling result. The parametric
equations are well documented in the literature [29,56,57,60]. The HURRECON model can
be implemented in a series of separate programs. First, the HTRK program can be run to
create a track file of interpolated input parameters. Next, the HURRECN program can be
utilized to estimate wind velocity and direction for a given geographic location. The output
from the HURRECON program can then be operated to convert the outputs to Fujita scale
damage (Figure 7).
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F3)—originally proposed by Fujita [61] to characterize the wind intensity and damage
by tornadoes—by correlating the maximum quarter-mile wind speed with wind damage
intensity [56,57,60,61]. The original F-scale (Fujita scale) was devised to assess and catego-
rize actual wind damage by its intensity and area on a wind speed scale, ranging from F0
(light damage in gale-force wind) to F5 (incredible damage). It has been utilized by the U.S.
National Weather Service for tornadoes and hurricanes since the 1970s. The F-scale has
been recently updated with the improved scale, called the Enhanced Fujita (EF) scale, based
on a rating of tornadoes but not applicable to hurricane intensity [62,63]. In response to this,
Boose, Foster, and Fluet [60] developed a modified F-scale rating tailored to hurricane dam-
age levels. This modified F-scale was used in this study as opposed to the Saffir–Simpson
scale in order to adhere to the model specifications of the HURRECON model.

The modified F-scale was extended to reveal widespread exterior structural damage
by hurricane-force wind to buildings, (e.g., damaged roof shingles, broken windows or
chimneys, and destruction of buildings), vehicles/infrastructure (e.g., unrooted traffic
lights or utility poles, destroyed roads and rails), and the natural environment (e.g., blown
down trees). It is ranked on an ordinal scale (F0, F1, F2, and F3) based on sustained
wind speed and its corresponding post-hurricane damage level: F0 = 18–25 m/s (minor
damage to buildings/trees), F1 = 26–35 m/s (houses unroofed or damaged, and single
or isolated groups of trees blown down), F2 = 36–47 m/s(houses unroofed or destroyed
and extensive tree blowdowns), and F3 = 48–62 m/s (houses blown down or destroyed,
most trees down, and heavy automobiles lifted or overturned). The F-scale is beneficial for
broad applications and can be universally applied across regions, since it does not rely on
construction practices in a particular area in the United States, such as the International
Building Code (IBC) or International Residential Code (IRC) [64].

The HURRECON model can generate the prediction of wind damage for an individual
site as a table or for the entire area of interest as an IDRISI raster format (16-bit), which is
compatible with TerrSet Geospatial Monitoring and Modeling software (formerly IDRISI). It
is required to convert the raster outputs to 32-bit raster images using resampling techniques
to be displayed in ArcGIS software. The predicted wind damage by Hurricane Harvey
is shown in Figure 7 as an example. The original HURRECON model was written in
Pascal language coupled with IDRISI. The model has recently been updated in both the R
(HurreconR) and Python (HurreconPython) packages for operating system compatibility,
and these packages are available in public repositories of GitHub (https://github.com/
hurrecon-model/HurreconR, accessed on 1 October 2021).

The HURRECON model is subject to certain limitations. First, it does not consider non-
meteorological factors that could affect wind damage at the local level such as construction
materials of residential/commercial buildings, building code changes, and topographic
effects. Hence, the results from the model cannot be interpolated to the local level or small
geographical areas (e.g., census tracts or Census Block Groups) [29]. Second, the estimated
wind model does not take into account the antecedent precipitation, lacking the capacity
to model the impact of inland flooding. Given the unit of analysis being studied for wind
damage assessment, the model outputs still produce reasonable estimation in spite of
its limitations.

3. Results
3.1. Cumulative Hurricane Risk

The modeled results from every hurricane were aggregated to a single unified spatial
surface, reflecting the long-term hurricane impacts across the entire coastal areas for
decades. The resultant unified geographic extent of all hurricane-related damage is based
on 190 hurricanes and tropical storms during the study period from 1950 to 2018, serving
as a baseline to examine at-risk populations to hurricane-related damage along the coastal
counties in the following section.

Figure 8 represents the coastal regions that have been exposed to the impact of one
foot or higher of storm surge since 1950. The result is consistent with the NOAA/National

https://github.com/hurrecon-model/HurreconR
https://github.com/hurrecon-model/HurreconR
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Weather Service/National Hurricane Center Storm Surge Unit’s storm surge inundation
map [45]. Storm surge damage is highly localized along coastal areas. Overall, a stretch of
the Gulf Coast from South Texas to the Florida Panhandle has borne the brunt of storm
surge damage over time. Southeastern Louisiana (especially the Lower Mississippi River
Delta region), Alabama, Mississippi, and the northwestern Panhandle of Florida have been
hard hit by the most intensive storm surges more than twenty-one times, with the maximum
frequency of thirty-nine for the past several decades. Western Louisiana, Southwestern
Florida, and West Central Florida have also experienced frequent exposure to storm surge
impacts. In the southeastern coastal regions, the Charleston area in South Carolina, the
Outer Banks, and the coastal counties near Brunswick, New Hanover, Pender, and Onslow
Counties have been affected by storm surges at least eleven times. In contrast, the Mid-
Atlantic region has been relatively less affected by storm surge inundation. In particular,
the Chesapeake Bay area—especially the southeastern shore of Virginia (Hampton Roads
region) and the southern tip of the Delmarva Peninsula—has been flooded by storm surges
at least ten times. It is not unusual to observe fairly frequent storm surge inundation in the
Eastern Long Island regions (Nassau and Suffolk Counties) and southwestern Connecticut.
New England regions have also been subject to coastal inundation for decades. These
regions are increasingly becoming more susceptible to hurricane strikes due to climate
change and sea level rise [13,65,66].
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The HURRECON-modeled results were compiled to show a more complete picture of
wind damage for the entirety of the coastal regions on the Fujita scale since 1950 (Figure 9).
As hurricanes make landfall along the coast, wind speeds rapidly weaken due to the
higher frictional effects of land surfaces and a lack of moisture and latent heat energy
from the ocean [67]. Occasionally, hurricanes can travel hundreds of miles deep into the
interior counties after landfall, intensifying their power. Hence, the areas affected by
hurricane winds are not just limited to the immediate vicinity of coastal regions but also
areas further inland.
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Panel A in Figure 9 shows the spatial extent of hurricane risk in which a total of
764 counties have experienced F0 wind damage (the loss of leaves and branches) over time,
stretching from Southeast Texas to the far stretches of Maine. The counties within 100 miles
of the coastline have been exposed to F0 wind strengths more than five times. Panel B
reveals the areal extent of F1 damage (scattered blowdowns), and 455 counties have been
exposed to F1-strength wind forces. As can be seen from Panel C, the areas exposed to F2
or F3 (extensive blowdowns) wind strengths are concentrated along the coastal regions of
North Carolina, South Florida, and the Gulf of Mexico. As expected, F0- and F1-intensity
winds traveled further inland compared to F2- and F3-scale winds that are more localized
along the coastline (Panel D).

The areal extent of hurricane-driven storm surge is geographically concentrated along
the coastal shoreline counties, whereas hurricane winds tend to affect the inland areas
to a larger extent, penetrating deep into the inland areas of the United States. This is
more apparent in northeastern states. A previous study showed that hurricanes that move
north along the Atlantic Coast tend to have greater forward speed than hurricanes making
landfall along the southern states due to the interaction of northern air masses, leading to
greater inland penetration and, consequentially, higher damage impacts [68]. In comparison
with the wind speed map defined by the American Society of Civil Engineers (ASCE) and
the previous study by Logan and Xu [29] for the Gulf Coast region, this generalized
damage boundary from storm surge and hurricane-force wind damage demonstrates
similar findings, providing validation to the SLOSH and HURRECON modeling performed
in this study.

3.2. At-Risk Populations in the Hurrican-Prone Coastal Counties

Based on the modeling of hurricane-related damage, this study defines “hurricane-
prone coastal counties” as counties that are exposed to one form of hurricane damage,
as shown in Figure 10. The modeled outputs of all hurricanes were aggregated into a
singular geographic area to represent long-term historic cumulative damage over the
past six decades. Combining the spatial extent of hurricane-damaged areas of F0, F1, F2,
and F3 winds (Figure 10A) and storm surges (Figure 10B), the spatial coverage of this
study area consists of 775 counties over 22 states (Figure 10C). The list of coastal counties
defined in this study is set out in Appendix A. The areal extent defined in this study
through hurricane modeling is similar to the coastal counties defined by Ache et al. [69]
and Marsooli et al. [70], validating the result. However, the modeled output presents
a more detailed profile of the affected counties, encompassing inland counties exposed
to historical hurricane wind penetrations. This was used to describe the at-risk coastal
populations susceptible to hurricane hazards in the United States.

The aggregated geographic extent of all hurricane-related damage shows a generalized
and standardized pattern, with no seasonal or random variation across time and space [29].
The affected coastal counties in the Gulf Coast cover the majority of counties that are
affected by hurricanes, up to approximately 200 miles from coastal shorelines. Meanwhile,
the affected coastal counties of the Atlantic Coast are located up to 400 miles from the
coast, reaching further inland than the Gulf Coast. The hurricane-prone coastal counties
are geographically restricted to the Gulf of Mexico coastline and the eastern Atlantic Coast
of the United States (i.e., the North Atlantic Basin region), excluding the Pacific Coast and
the Great Lakes region, providing a baseline for describing the human settlement of the
hurricane-impacted coastal shorelines [16,69,71].
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To supplement this analysis, this study further examined how many people have
been living in residential areas in the U.S. hurricane coastal counties from 1970 to 2018
using the U.S. Decennial Census (1950, 1960) and the U.S. County Intercensal Datasets
(1970–2018) in conjunction with the national land use/land cover data. To determine
the number of people within each hurricane-affected zone, this study first calculated the
percentage of developed/residential areas in each county/census tract that have been
affected by wind damage and storm surges (i.e., damage fraction hereafter) by applying
zonal analysis operations. The product of the damage fraction of storm surge and wind
damage with the total population counts produced the number of at-risk populations
exposed to cumulative hurricane damage over the decades. This filtered areal weighting
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interpolation approach was adopted to disaggregate total populations to a target area—in
this case, hurricane-affected zones—on the basis of the areal extent of storm surge damage
and wind damage (measured by the Fujita scale—F0, F1, F2, and F3) [72–74].

The coastal counties are more overcrowded than the nation as a whole, and they are
expected to grow in the future [16]. The total number of people living in coastal areas
was 73 million in 1970, growing by a total of 100 million people between 1970 and 2000
(Figure 11). Although the population growth rate consistently declined after 2000, along
with the national trend, there was a 63% increase in the coastal population from 1970 to 2018,
exceeding 119 million in 2018. The population density of coastal counties is substantially
greater than that of inland counties [16,75]. Coastal populations are facing multiple threats
such as climate change and coastal hazards, exposing 36.5% of the U.S. total population to
increasingly vulnerable situations (Figure 12). Along with rapid population growth and
an economic construction boom, the coastal populations have been racially diversified,
thereby further exacerbating their social vulnerability to hurricane hazards in the coastal
counties over time [13,76].

Figure 13 presents how many people have been exposed to hurricane-related damage
in absolute terms. It is apparent that the total population has continuously increased within
each hurricane-affected area from 1950 to 2018. Wind damage is separated into different
categories based on intensity (i.e., F0, F1, F2, and F3). While some of this growth might be
due to the national trend, there is a higher exponential growth trend in F0 and F1 areas
than the national trend. Approximately 165 million people are affected by some degree of
wind damage during the study period.
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Generally, as hurricanes make landfall along the coast, wind speeds rapidly weaken
due to the higher frictional effects of land surfaces and a lack of moisture and latent heat
energy from the ocean [67]. However, tropical storms and hurricanes can travel hundreds
of miles deep into interior counties after landfall, and the remnants of hurricanes may
occasionally intensify or maintain their power for an extended period of time, possibly
due to various physical processes and storm dynamics [77]. For instance, as seen from
Hurricane Sandy, when a low-pressure storm system encounters the polar jet stream in the
mid-latitudes, strong temperature gradients occur, and this may re-intensify its strength
after making landfall. This process is known as “baroclinic enhancement”. In addition, land
surface characteristics (e.g., soil water content, vegetation types, land use, land cover) can
play a major role in maintaining a tropical cyclone’s intensity over land. Wet ground or soil
with abundant moisture after precipitation events can be a latent source, providing enough
heat energy to the storm (i.e., brown ocean effect) [78,79]. Therefore, the affected areas are
not just limited to the immediate vicinity of coastal regions but also extend hundreds of
miles from the immediate coastal shorelines (Figure 10).

In contrast, storm surge damage and F3 wind are highly localized along coastal areas,
as shown in Figure 10. From the data in Figure 13, we can see that 5 million people
resided in the residential areas that are affected by storm surge damage, and 3 million
people resided in high-intensity wind (F3 scale) areas, as of 2018. To summarize, the overall
demographic trends within hurricane-impacted areas reveal that the coastal populations are
faster growing than the national average, and this growth puts more people at greater risk
of hurricane hazards. This poses a challenge to policymakers as they need to understand a
more complex population in order to make more informed decisions in mitigating coastal
vulnerability to hurricane hazards.

4. Discussion

Hurricanes pose the greatest natural risk of damage to the United States’ hurricane
coasts and society [13]. Physical or locational vulnerability can be assessed based on the
impacts, magnitude, and frequency of natural hazards, and geographical proximity to
the source of natural hazards [22,29,80]. Hurricanes tend to occur at certain geographical
locations, and the general patterns of occurrence are less likely to change in the future.
Therefore, estimating and representing the cumulative hurricane patterns can offer a useful
means to assess current and future hurricane risk. Due to the scarcity of data regarding
historical hurricane-impacted areas, this study sought to determine the spatial extent
and intensity of hurricane wind and storm surge damage of all hurricanes that made
landfall along America’s hurricane coasts from 1950 to 2018 [13]. Both the spatial extent
and intensity of all hurricanes were estimated by utilizing geospatial big data datasets.
The extensive results of the hurricane modeling were aggregated into a single surface,
representing the longitudinal risk of hurricanes. As a result, 775 counties were found
to comprise the hurricane at-risk zones that have experienced at least one instance of
hurricane damage over the last six decades. Historical hurricanes that have affected the
Gulf and Atlantic coastal areas revealed that storm surge damage in these areas extends
up to approximately 41,000 km2, and the largest extent of wind damage (F0) extends to
approximately 1,300,000 km2, in the conterminous United States.

This project is the first comprehensive investigation of hurricane vulnerability en-
compassing the Atlantic and Gulf Coasts stretching from Texas to Maine. The current
study proposed the geographical extent of 775 hurricane-prone coastal counties that border
the Gulf of Mexico and the eastern Atlantic Coast of the United States, excluding the
Pacific Coast (Appendix A). By integrating the past and recent hurricane damage over long
periods of time, the results delineate the zones at a high risk of hurricanes more accurately
than arbitrarily defining the study areas. This delineation can be used as a tool in assessing
coastal population vulnerability by federal agencies and researchers. For instance, the
spatially explicit hurricane-prone regions can assist policymakers in developing targeted
interventions for the national flood insurance program and coastal wind pool insurance.
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The estimation of hurricane wind was based on the same parameters used in a previous
empirical study that modeled historical hurricanes along the Gulf Coast [29]. Different
parameters may result in more accurate estimations for storms that made landfall on the
Atlantic Coast.

The population density of coastal counties is denser than the nation as a whole, and
the populations in these counties are expected to grow in the future. Along with rapid
population growth and an economic construction boom, the coastal populations have been
racially diversified, thereby further exacerbating the potential social impact of hurricane
hazards in the coastal counties [13,16,76]. Thus, based on the geographic extent of hurricane
at-risk zones and land use data, this study performed zonal analysis to further examine
how many coastal populations are exposed to the hurricane damage categories—storm
surge damage and F0/F1/F2/F3 wind damage—within the residential areas. The findings
from this study provide a fundamental basis for understanding the exposure of at-risk
populations to hurricane-related damage within the coastal counties at a national scale. The
resulting output of the hurricane-prone coastal counties also opens the potential to further
examine the specific demographic characteristics of the at-risk populations, allowing for a
further assessment of social vulnerability in these areas.

To provide a complete picture of place-based and population vulnerability within the
hurricane at-risk areas, future studies should take into account more detailed demographic
variables such as race/ethnicity, age groups, and income level. Exploring the demographic
changes within the hurricane at-risk areas was purely descriptive; it was not possible to
determine a causal relationship between long-term hurricane damage and population
change. This study did not evaluate the hurricane-forced internal or intra-regional res-
idential displacement, either temporarily or permanently, associated with post-disaster
recovery processes and community resilience to these hurricane hazards. The spatial pat-
terns of hurricane-induced residential mobility and its mechanism remain to be elucidated
for further investigation. Future studies need to examine the links between the impacts
of hurricane-related damage on local population change based on empirical statistical
analysis and mixed method approaches more closely.
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Appendix A. Hurricane-Prone Coastal Counties (n = 775) along the U.S. Atlantic and
Gulf Coasts Defined in this Study

FIPS Geography FIPS Geography

01001 Autauga County, Alabama 01123 Tallapoosa County, Alabama
01003 Baldwin County, Alabama 01125 Tuscaloosa County, Alabama
01005 Barbour County, Alabama 01127 Walker County, Alabama
01007 Bibb County, Alabama 01129 Washington County, Alabama
01011 Bullock County, Alabama 01131 Wilcox County, Alabama
01013 Butler County, Alabama 09001 Fairfield County, Connecticut
01015 Calhoun County, Alabama 09003 Hartford County, Connecticut
01017 Chambers County, Alabama 09005 Litchfield County, Connecticut
01019 Cherokee County, Alabama 09007 Middlesex County, Connecticut
01021 Chilton County, Alabama 09009 New Haven County, Connecticut
01023 Choctaw County, Alabama 09011 New London County, Connecticut
01025 Clarke County, Alabama 09013 Tolland County, Connecticut
01027 Clay County, Alabama 09015 Windham County, Connecticut
01029 Cleburne County, Alabama 10001 Kent County, Delaware
01031 Coffee County, Alabama 10003 New Castle County, Delaware
01035 Conecuh County, Alabama 10005 Sussex County, Delaware
01037 Coosa County, Alabama 11001 District of Columbia, District of Columbia
01039 Covington County, Alabama 12001 Alachua County, Florida
01041 Crenshaw County, Alabama 12003 Baker County, Florida
01045 Dale County, Alabama 12005 Bay County, Florida
01047 Dallas County, Alabama 12007 Bradford County, Florida
01051 Elmore County, Alabama 12009 Brevard County, Florida
01053 Escambia County, Alabama 12011 Broward County, Florida
01055 Etowah County, Alabama 12013 Calhoun County, Florida
01057 Fayette County, Alabama 12015 Charlotte County, Florida
01061 Geneva County, Alabama 12017 Citrus County, Florida
01063 Greene County, Alabama 12019 Clay County, Florida
01065 Hale County, Alabama 12021 Collier County, Florida
01067 Henry County, Alabama 12023 Columbia County, Florida
01069 Houston County, Alabama 12027 DeSoto County, Florida
01075 Lamar County, Alabama 12029 Dixie County, Florida
01081 Lee County, Alabama 12031 Duval County, Florida
01085 Lowndes County, Alabama 12033 Escambia County, Florida
01087 Macon County, Alabama 12035 Flagler County, Florida
01091 Marengo County, Alabama 12037 Franklin County, Florida
01093 Marion County, Alabama 12039 Gadsden County, Florida
01097 Mobile County, Alabama 12041 Gilchrist County, Florida
01099 Monroe County, Alabama 12043 Glades County, Florida
01101 Montgomery County, Alabama 12045 Gulf County, Florida
01105 Perry County, Alabama 12047 Hamilton County, Florida
01107 Pickens County, Alabama 12049 Hardee County, Florida
01109 Pike County, Alabama 12051 Hendry County, Florida
01111 Randolph County, Alabama 12053 Hernando County, Florida
01113 Russell County, Alabama 12055 Highlands County, Florida
01119 Sumter County, Alabama 12057 Hillsborough County, Florida
01121 Talladega County, Alabama 12059 Holmes County, Florida
12061 Indian River County, Florida 13031 Bulloch County, Georgia
12063 Jackson County, Florida 13033 Burke County, Georgia
12065 Jefferson County, Florida 13037 Calhoun County, Georgia
12067 Lafayette County, Florida 13039 Camden County, Georgia
12069 Lake County, Florida 13043 Candler County, Georgia
12071 Lee County, Florida 13045 Carroll County, Georgia
12073 Leon County, Florida 13049 Charlton County, Georgia
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12075 Levy County, Florida 13051 Chatham County, Georgia
12077 Liberty County, Florida 13053 Chattahoochee County, Georgia
12079 Madison County, Florida 13061 Clay County, Georgia
12081 Manatee County, Florida 13065 Clinch County, Georgia
12083 Marion County, Florida 13069 Coffee County, Georgia
12085 Martin County, Florida 13071 Colquitt County, Georgia
12086 Miami-Dade County, Florida 13073 Columbia County, Georgia
12087 Monroe County, Florida 13075 Cook County, Georgia
12089 Nassau County, Florida 13077 Coweta County, Georgia
12091 Okaloosa County, Florida 13079 Crawford County, Georgia
12093 Okeechobee County, Florida 13081 Crisp County, Georgia
12095 Orange County, Florida 13087 Decatur County, Georgia
12097 Osceola County, Florida 13091 Dodge County, Georgia
12099 Palm Beach County, Florida 13093 Dooly County, Georgia
12101 Pasco County, Florida 13095 Dougherty County, Georgia
12103 Pinellas County, Florida 13097 Douglas County, Georgia
12105 Polk County, Florida 13099 Early County, Georgia
12107 Putnam County, Florida 13101 Echols County, Georgia
12109 St. Johns County, Florida 13103 Effingham County, Georgia
12111 St. Lucie County, Florida 13107 Emanuel County, Georgia
12115 Sarasota County, Florida 13109 Evans County, Georgia
12117 Seminole County, Florida 13125 Glascock County, Georgia
12119 Sumter County, Florida 13127 Glynn County, Georgia
12121 Suwannee County, Florida 13131 Grady County, Georgia
12123 Taylor County, Florida 13143 Haralson County, Georgia
12125 Union County, Florida 13145 Harris County, Georgia
12127 Volusia County, Florida 13149 Heard County, Georgia
12129 Wakulla County, Florida 13153 Houston County, Georgia
12131 Walton County, Florida 13155 Irwin County, Georgia
12133 Washington County, Florida 13161 Jeff Davis County, Georgia
13001 Appling County, Georgia 13163 Jefferson County, Georgia
13003 Atkinson County, Georgia 13165 Jenkins County, Georgia
13005 Bacon County, Georgia 13167 Johnson County, Georgia
13007 Baker County, Georgia 13173 Lanier County, Georgia
13017 Ben Hill County, Georgia 13175 Laurens County, Georgia
13019 Berrien County, Georgia 13177 Lee County, Georgia
13021 Bibb County, Georgia 13179 Liberty County, Georgia
13023 Bleckley County, Georgia 13183 Long County, Georgia
13025 Brantley County, Georgia 13185 Lowndes County, Georgia
13027 Brooks County, Georgia 13189 McDuffie County, Georgia
13029 Bryan County, Georgia 13191 McIntosh County, Georgia
13193 Macon County, Georgia 22023 Cameron Parish, Louisiana
13197 Marion County, Georgia 22025 Catahoula Parish, Louisiana
13201 Miller County, Georgia 22029 Concordia Parish, Louisiana
13205 Mitchell County, Georgia 22031 De Soto Parish, Louisiana
13209 Montgomery County, Georgia 22033 East Baton Rouge Parish, Louisiana
13215 Muscogee County, Georgia 22035 East Carroll Parish, Louisiana
13223 Paulding County, Georgia 22037 East Feliciana Parish, Louisiana
13225 Peach County, Georgia 22039 Evangeline Parish, Louisiana
13229 Pierce County, Georgia 22041 Franklin Parish, Louisiana
13233 Polk County, Georgia 22043 Grant Parish, Louisiana
13235 Pulaski County, Georgia 22045 Iberia Parish, Louisiana
13239 Quitman County, Georgia 22047 Iberville Parish, Louisiana
13243 Randolph County, Georgia 22049 Jackson Parish, Louisiana
13245 Richmond County, Georgia 22051 Jefferson Parish, Louisiana
13249 Schley County, Georgia 22053 Jefferson Davis Parish, Louisiana
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13251 Screven County, Georgia 22055 Lafayette Parish, Louisiana
13253 Seminole County, Georgia 22057 Lafourche Parish, Louisiana
13259 Stewart County, Georgia 22059 La Salle Parish, Louisiana
13261 Sumter County, Georgia 22063 Livingston Parish, Louisiana
13267 Tattnall County, Georgia 22065 Madison Parish, Louisiana
13269 Taylor County, Georgia 22067 Morehouse Parish, Louisiana
13271 Telfair County, Georgia 22069 Natchitoches Parish, Louisiana
13273 Terrell County, Georgia 22071 Orleans Parish, Louisiana
13275 Thomas County, Georgia 22073 Ouachita Parish, Louisiana
13277 Tift County, Georgia 22075 Plaquemines Parish, Louisiana
13279 Toombs County, Georgia 22077 Pointe Coupee Parish, Louisiana
13283 Treutlen County, Georgia 22079 Rapides Parish, Louisiana
13285 Troup County, Georgia 22081 Red River Parish, Louisiana
13287 Turner County, Georgia 22083 Richland Parish, Louisiana
13289 Twiggs County, Georgia 22085 Sabine Parish, Louisiana
13299 Ware County, Georgia 22087 St. Bernard Parish, Louisiana
13301 Warren County, Georgia 22089 St. Charles Parish, Louisiana
13303 Washington County, Georgia 22091 St. Helena Parish, Louisiana
13305 Wayne County, Georgia 22093 St. James Parish, Louisiana
13307 Webster County, Georgia 22095 St. John the Baptist Parish, Louisiana
13309 Wheeler County, Georgia 22097 St. Landry Parish, Louisiana
13315 Wilcox County, Georgia 22099 St. Martin Parish, Louisiana
13319 Wilkinson County, Georgia 22101 St. Mary Parish, Louisiana
13321 Worth County, Georgia 22103 St. Tammany Parish, Louisiana
22001 Acadia Parish, Louisiana 22105 Tangipahoa Parish, Louisiana
22003 Allen Parish, Louisiana 22107 Tensas Parish, Louisiana
22005 Ascension Parish, Louisiana 22109 Terrebonne Parish, Louisiana
22007 Assumption Parish, Louisiana 22111 Union Parish, Louisiana
22009 Avoyelles Parish, Louisiana 22113 Vermilion Parish, Louisiana
22011 Beauregard Parish, Louisiana 22115 Vernon Parish, Louisiana
22013 Bienville Parish, Louisiana 22117 Washington Parish, Louisiana
22019 Calcasieu Parish, Louisiana 22121 West Baton Rouge Parish, Louisiana
22021 Caldwell Parish, Louisiana 22123 West Carroll Parish, Louisiana
22125 West Feliciana Parish, Louisiana 25017 Middlesex County, Massachusetts
22127 Winn Parish, Louisiana 25019 Nantucket County, Massachusetts
23001 Androscoggin County, Maine 25021 Norfolk County, Massachusetts
23003 Aroostook County, Maine 25023 Plymouth County, Massachusetts
23005 Cumberland County, Maine 25025 Suffolk County, Massachusetts
23007 Franklin County, Maine 25027 Worcester County, Massachusetts
23009 Hancock County, Maine 28001 Adams County, Mississippi
23011 Kennebec County, Maine 28005 Amite County, Mississippi
23013 Knox County, Maine 28007 Attala County, Mississippi
23015 Lincoln County, Maine 28015 Carroll County, Mississippi
23017 Oxford County, Maine 28019 Choctaw County, Mississippi
23019 Penobscot County, Maine 28021 Claiborne County, Mississippi
23021 Piscataquis County, Maine 28023 Clarke County, Mississippi
23023 Sagadahoc County, Maine 28025 Clay County, Mississippi
23025 Somerset County, Maine 28029 Copiah County, Mississippi
23027 Waldo County, Maine 28031 Covington County, Mississippi
23029 Washington County, Maine 28035 Forrest County, Mississippi
23031 York County, Maine 28037 Franklin County, Mississippi
24001 Allegany County, Maryland 28039 George County, Mississippi
24003 Anne Arundel County, Maryland 28041 Greene County, Mississippi
24005 Baltimore County, Maryland 28043 Grenada County, Mississippi
24009 Calvert County, Maryland 28045 Hancock County, Mississippi
24011 Caroline County, Maryland 28047 Harrison County, Mississippi
24013 Carroll County, Maryland 28049 Hinds County, Mississippi
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24015 Cecil County, Maryland 28051 Holmes County, Mississippi
24017 Charles County, Maryland 28053 Humphreys County, Mississippi
24019 Dorchester County, Maryland 28059 Jackson County, Mississippi
24021 Frederick County, Maryland 28061 Jasper County, Mississippi
24023 Garrett County, Maryland 28063 Jefferson County, Mississippi
24025 Harford County, Maryland 28065 Jefferson Davis County, Mississippi
24027 Howard County, Maryland 28067 Jones County, Mississippi
24029 Kent County, Maryland 28069 Kemper County, Mississippi
24031 Montgomery County, Maryland 28073 Lamar County, Mississippi
24033 Prince George’s County, Maryland 28075 Lauderdale County, Mississippi
24035 Queen Anne’s County, Maryland 28077 Lawrence County, Mississippi
24037 St. Mary’s County, Maryland 28079 Leake County, Mississippi
24039 Somerset County, Maryland 28083 Leflore County, Mississippi
24041 Talbot County, Maryland 28085 Lincoln County, Mississippi
24045 Wicomico County, Maryland 28087 Lowndes County, Mississippi
24047 Worcester County, Maryland 28089 Madison County, Mississippi
25001 Barnstable County, Massachusetts 28091 Marion County, Mississippi
25003 Berkshire County, Massachusetts 28097 Montgomery County, Mississippi
25005 Bristol County, Massachusetts 28099 Neshoba County, Mississippi
25007 Dukes County, Massachusetts 28101 Newton County, Mississippi
25009 Essex County, Massachusetts 28103 Noxubee County, Mississippi
25011 Franklin County, Massachusetts 28105 Oktibbeha County, Mississippi
25013 Hampden County, Massachusetts 28109 Pearl River County, Mississippi
25015 Hampshire County, Massachusetts 28111 Perry County, Mississippi
28113 Pike County, Mississippi 36039 Greene County, New York
28121 Rankin County, Mississippi 36047 Kings County, New York
28123 Scott County, Mississippi 36051 Livingston County, New York
28127 Simpson County, Mississippi 36055 Monroe County, New York
28129 Smith County, Mississippi 36059 Nassau County, New York
28131 Stone County, Mississippi 36061 New York County, New York
28147 Walthall County, Mississippi 36071 Orange County, New York
28149 Warren County, Mississippi 36073 Orleans County, New York
28153 Wayne County, Mississippi 36079 Putnam County, New York
28157 Wilkinson County, Mississippi 36081 Queens County, New York
28159 Winston County, Mississippi 36085 Richmond County, New York
28161 Yalobusha County, Mississippi 36087 Rockland County, New York
28163 Yazoo County, Mississippi 36101 Steuben County, New York
33001 Belknap County, New Hampshire 36103 Suffolk County, New York
33003 Carroll County, New Hampshire 36111 Ulster County, New York
33005 Cheshire County, New Hampshire 36119 Westchester County, New York
33007 Coos County, New Hampshire 37003 Alexander County, North Carolina
33009 Grafton County, New Hampshire 37005 Alleghany County, North Carolina
33011 Hillsborough County, New Hampshire 37007 Anson County, North Carolina
33013 Merrimack County, New Hampshire 37009 Ashe County, North Carolina
33015 Rockingham County, New Hampshire 37013 Beaufort County, North Carolina
33017 Strafford County, New Hampshire 37015 Bertie County, North Carolina
33019 Sullivan County, New Hampshire 37017 Bladen County, North Carolina
34001 Atlantic County, New Jersey 37019 Brunswick County, North Carolina
34003 Bergen County, New Jersey 37023 Burke County, North Carolina
34005 Burlington County, New Jersey 37025 Cabarrus County, North Carolina
34007 Camden County, New Jersey 37027 Caldwell County, North Carolina
34009 Cape May County, New Jersey 37029 Camden County, North Carolina
34011 Cumberland County, New Jersey 37031 Carteret County, North Carolina
34013 Essex County, New Jersey 37035 Catawba County, North Carolina
34015 Gloucester County, New Jersey 37037 Chatham County, North Carolina
34017 Hudson County, New Jersey 37041 Chowan County, North Carolina
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34019 Hunterdon County, New Jersey 37045 Cleveland County, North Carolina
34021 Mercer County, New Jersey 37047 Columbus County, North Carolina
34023 Middlesex County, New Jersey 37049 Craven County, North Carolina
34025 Monmouth County, New Jersey 37051 Cumberland County, North Carolina
34029 Ocean County, New Jersey 37053 Currituck County, North Carolina
34031 Passaic County, New Jersey 37055 Dare County, North Carolina
34033 Salem County, New Jersey 37061 Duplin County, North Carolina
34035 Somerset County, New Jersey 37063 Durham County, North Carolina
34039 Union County, New Jersey 37065 Edgecombe County, North Carolina
36003 Allegany County, New York 37069 Franklin County, North Carolina
36005 Bronx County, New York 37071 Gaston County, North Carolina
36009 Cattaraugus County, New York 37073 Gates County, North Carolina
36013 Chautauqua County, New York 37077 Granville County, North Carolina
36021 Columbia County, New York 37079 Greene County, North Carolina
36027 Dutchess County, New York 37083 Halifax County, North Carolina
36037 Genesee County, New York 37085 Harnett County, North Carolina
37091 Hertford County, North Carolina 42035 Clinton County, Pennsylvania
37093 Hoke County, North Carolina 42041 Cumberland County, Pennsylvania
37095 Hyde County, North Carolina 42043 Dauphin County, Pennsylvania
37097 Iredell County, North Carolina 42045 Delaware County, Pennsylvania
37101 Johnston County, North Carolina 42047 Elk County, Pennsylvania
37103 Jones County, North Carolina 42051 Fayette County, Pennsylvania
37105 Lee County, North Carolina 42055 Franklin County, Pennsylvania
37107 Lenoir County, North Carolina 42057 Fulton County, Pennsylvania
37109 Lincoln County, North Carolina 42061 Huntingdon County, Pennsylvania
37117 Martin County, North Carolina 42067 Juniata County, Pennsylvania
37119 Mecklenburg County, North Carolina 42071 Lancaster County, Pennsylvania
37125 Moore County, North Carolina 42075 Lebanon County, Pennsylvania
37127 Nash County, North Carolina 42081 Lycoming County, Pennsylvania
37129 New Hanover County, North Carolina 42083 McKean County, Pennsylvania
37131 Northampton County, North Carolina 42087 Mifflin County, Pennsylvania
37133 Onslow County, North Carolina 42091 Montgomery County, Pennsylvania
37135 Orange County, North Carolina 42097 Northumberland County, Pennsylvania
37137 Pamlico County, North Carolina 42099 Perry County, Pennsylvania
37139 Pasquotank County, North Carolina 42101 Philadelphia County, Pennsylvania
37141 Pender County, North Carolina 42109 Snyder County, Pennsylvania
37143 Perquimans County, North Carolina 42111 Somerset County, Pennsylvania
37145 Person County, North Carolina 42117 Tioga County, Pennsylvania
37147 Pitt County, North Carolina 42119 Union County, Pennsylvania
37153 Richmond County, North Carolina 42123 Warren County, Pennsylvania
37155 Robeson County, North Carolina 42133 York County, Pennsylvania
37159 Rowan County, North Carolina 44001 Bristol County, Rhode Island
37163 Sampson County, North Carolina 44003 Kent County, Rhode Island
37165 Scotland County, North Carolina 44005 Newport County, Rhode Island
37167 Stanly County, North Carolina 44007 Providence County, Rhode Island
37177 Tyrrell County, North Carolina 44009 Washington County, Rhode Island
37179 Union County, North Carolina 45003 Aiken County, South Carolina
37181 Vance County, North Carolina 45005 Allendale County, South Carolina
37183 Wake County, North Carolina 45009 Bamberg County, South Carolina
37185 Warren County, North Carolina 45011 Barnwell County, South Carolina
37187 Washington County, North Carolina 45013 Beaufort County, South Carolina
37189 Watauga County, North Carolina 45015 Berkeley County, South Carolina
37191 Wayne County, North Carolina 45017 Calhoun County, South Carolina
37193 Wilkes County, North Carolina 45019 Charleston County, South Carolina
37195 Wilson County, North Carolina 45021 Cherokee County, South Carolina
42001 Adams County, Pennsylvania 45023 Chester County, South Carolina



ISPRS Int. J. Geo-Inf. 2021, 10, 781 26 of 30

FIPS Geography FIPS Geography

42009 Bedford County, Pennsylvania 45025 Chesterfield County, South Carolina
42011 Berks County, Pennsylvania 45027 Clarendon County, South Carolina
42013 Blair County, Pennsylvania 45029 Colleton County, South Carolina
42017 Bucks County, Pennsylvania 45031 Darlington County, South Carolina
42021 Cambria County, Pennsylvania 45033 Dillon County, South Carolina
42023 Cameron County, Pennsylvania 45035 Dorchester County, South Carolina
42027 Centre County, Pennsylvania 45037 Edgefield County, South Carolina
42029 Chester County, Pennsylvania 45039 Fairfield County, South Carolina
45041 Florence County, South Carolina 48163 Frio County, Texas
45043 Georgetown County, South Carolina 48167 Galveston County, Texas
45049 Hampton County, South Carolina 48175 Goliad County, Texas
45051 Horry County, South Carolina 48177 Gonzales County, Texas
45053 Jasper County, South Carolina 48183 Gregg County, Texas
45055 Kershaw County, South Carolina 48185 Grimes County, Texas
45057 Lancaster County, South Carolina 48187 Guadalupe County, Texas
45061 Lee County, South Carolina 48199 Hardin County, Texas
45063 Lexington County, South Carolina 48201 Harris County, Texas
45067 Marion County, South Carolina 48209 Hays County, Texas
45069 Marlboro County, South Carolina 48215 Hidalgo County, Texas
45071 Newberry County, South Carolina 48217 Hill County, Texas
45075 Orangeburg County, South Carolina 48225 Houston County, Texas
45079 Richland County, South Carolina 48239 Jackson County, Texas
45081 Saluda County, South Carolina 48241 Jasper County, Texas
45085 Sumter County, South Carolina 48245 Jefferson County, Texas
45089 Williamsburg County, South Carolina 48247 Jim Hogg County, Texas
45091 York County, South Carolina 48249 Jim Wells County, Texas
47091 Johnson County, Tennessee 48255 Karnes County, Texas
48001 Anderson County, Texas 48261 Kenedy County, Texas
48005 Angelina County, Texas 48271 Kinney County, Texas
48007 Aransas County, Texas 48273 Kleberg County, Texas
48013 Atascosa County, Texas 48283 La Salle County, Texas
48015 Austin County, Texas 48285 Lavaca County, Texas
48021 Bastrop County, Texas 48287 Lee County, Texas
48025 Bee County, Texas 48289 Leon County, Texas
48027 Bell County, Texas 48291 Liberty County, Texas
48029 Bexar County, Texas 48297 Live Oak County, Texas
48035 Bosque County, Texas 48309 McLennan County, Texas
48039 Brazoria County, Texas 48311 McMullen County, Texas
48041 Brazos County, Texas 48313 Madison County, Texas
48047 Brooks County, Texas 48321 Matagorda County, Texas
48051 Burleson County, Texas 48323 Maverick County, Texas
48055 Caldwell County, Texas 48325 Medina County, Texas
48057 Calhoun County, Texas 48331 Milam County, Texas
48061 Cameron County, Texas 48339 Montgomery County, Texas
48071 Chambers County, Texas 48347 Nacogdoches County, Texas
48073 Cherokee County, Texas 48351 Newton County, Texas
48089 Colorado County, Texas 48355 Nueces County, Texas
48091 Comal County, Texas 48361 Orange County, Texas
48099 Coryell County, Texas 48373 Polk County, Texas
48123 DeWitt County, Texas 48391 Refugio County, Texas
48127 Dimmit County, Texas 48395 Robertson County, Texas
48131 Duval County, Texas 48401 Rusk County, Texas
48139 Ellis County, Texas 48403 Sabine County, Texas
48145 Falls County, Texas 48405 San Augustine County, Texas
48149 Fayette County, Texas 48407 San Jacinto County, Texas
48157 Fort Bend County, Texas 48409 San Patricio County, Texas
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48419 Shelby County, Texas 51093 Isle of Wight County, Virginia
48423 Smith County, Texas 51095 James City County, Virginia
48427 Starr County, Texas 51097 King and Queen County, Virginia
48453 Travis County, Texas 51099 King George County, Virginia
48455 Trinity County, Texas 51101 King William County, Virginia
48457 Tyler County, Texas 51103 Lancaster County, Virginia
48459 Upshur County, Texas 51107 Loudoun County, Virginia
48463 Uvalde County, Texas 51109 Louisa County, Virginia
48465 Val Verde County, Texas 51111 Lunenburg County, Virginia
48469 Victoria County, Texas 51113 Madison County, Virginia
48471 Walker County, Texas 51115 Mathews County, Virginia
48473 Waller County, Texas 51117 Mecklenburg County, Virginia
48477 Washington County, Texas 51119 Middlesex County, Virginia
48479 Webb County, Texas 51125 Nelson County, Virginia
48481 Wharton County, Texas 51127 New Kent County, Virginia
48489 Willacy County, Texas 51131 Northampton County, Virginia
48491 Williamson County, Texas 51133 Northumberland County, Virginia
48493 Wilson County, Texas 51135 Nottoway County, Virginia
48505 Zapata County, Texas 51137 Orange County, Virginia
48507 Zavala County, Texas 51139 Page County, Virginia
50025 Windham County, Vermont 51145 Powhatan County, Virginia
50027 Windsor County, Vermont 51147 Prince Edward County, Virginia
51001 Accomack County, Virginia 51149 Prince George County, Virginia
51003 Albemarle County, Virginia 51153 Manassas city, Virginia
51007 Amelia County, Virginia 51153 Manassas Park city, Virginia
51011 Appomattox County, Virginia 51153 Prince William County, Virginia
51013 Arlington County, Virginia 51157 Rappahannock County, Virginia
51021 Bland County, Virginia 51159 Richmond County, Virginia
51025 Brunswick County, Virginia 51165 Rockingham County, Virginia
51029 Buckingham County, Virginia 51171 Shenandoah County, Virginia
51033 Caroline County, Virginia 51173 Smyth County, Virginia
51036 Charles City County, Virginia 51175 Southampton County, Virginia
51037 Charlotte County, Virginia 51177 Spotsylvania County, Virginia
51041 Chesterfield County, Virginia 51179 Stafford County, Virginia
51047 Culpeper County, Virginia 51181 Surry County, Virginia
51049 Cumberland County, Virginia 51183 Sussex County, Virginia
51053 Dinwiddie County, Virginia 51185 Tazewell County, Virginia
51057 Essex County, Virginia 51191 Washington County, Virginia
51059 Fairfax County, Virginia 51193 Westmoreland County, Virginia
51065 Fluvanna County, Virginia 51197 Wythe County, Virginia
51073 Gloucester County, Virginia 51199 York County, Virginia
51075 Goochland County, Virginia 51550 Chesapeake city, Virginia
51077 Grayson County, Virginia 51650 Hampton city, Virginia
51079 Greene County, Virginia 51683 Manassas city, Virginia
51081 Greensville County, Virginia 51685 Manassas Park city, Virginia
51083 Halifax County, Virginia 51700 Newport News city, Virginia
51085 Hanover County, Virginia 51730 Petersburg city, Virginia
51087 Henrico County, Virginia 51760 Richmond city, Virginia
51800 Suffolk city, Virginia 54039 Kanawha County, West Virginia
51810 Virginia Beach city, Virginia 54047 McDowell County, West Virginia
54005 Boone County, West Virginia 54055 Mercer County, West Virginia
54023 Grant County, West Virginia 54057 Mineral County, West Virginia
54027 Hampshire County, West Virginia 54081 Raleigh County, West Virginia
54031 Hardy County, West Virginia 54109 Wyoming County, West Virginia
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