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Abstract: Blue carbon ecosystems are key for successful global climate change mitigation; however,
they are one of the most threatened ecosystems on Earth. Thus, this study mapped the climatic and
human pressures on the blue carbon ecosystems in Indonesia using multi-source spatial datasets.
Data on moderate resolution imaging spectroradiometer (MODIS) ocean color standard mapped
images, VIIRS (visible, infrared imaging radiometer suite) boat detection (VBD), global artificial
impervious area (GAIA), MODIS surface reflectance (MOD09GA), MODIS land surface temperature
(MOD11A2), and MODIS vegetation indices (MOD13A2) were combined using remote sensing and
spatial analysis techniques to identify potential stresses. La Niña and El Niño phenomena caused sea
surface temperature deviations to reach −0.5 to +1.2 ◦C. In contrast, chlorophyll-a deviations reached
22,121 to +0.5 mg m−3. Regarding fishing activities, most areas were under exploitation and relatively
sustained. Concerning land activities, mangrove deforestation occurred in 560.69 km2 of the area
during 2007–2016, as confirmed by a decrease of 84.9% in risk-screening environmental indicators.
Overall, the potential pressures on Indonesia’s blue carbon ecosystems are varied geographically.
The framework of this study can be efficiently adopted to support coastal and small islands zonation
planning, conservation prioritization, and marine fisheries enhancement.

Keywords: marine; seagrass; mangroves; coral reefs; SDGs; remote sensing; GIS; conservation;
blue carbon
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1. Introduction

Blue carbon ecosystems are coastal and marine ecosystems that can capture and store
large amounts of carbon [1–3]. Although these ecosystems cover <2% of the world’s marine
areas, they significantly mitigate carbon dioxide (CO2) emissions and adapt to global
climate change because oceans can store more than 50% of the carbon [4–6]. Numerous
previous studies have revealed that the dimension of blue carbon ecosystems includes
mangrove, seagrass, and salt marsh ecosystems [1,2]. However, some researchers suggested
that the adjacent ecosystem, for example, coral reef, also supports seagrass and mangrove
forests through sedimentation enhancement [6]. Recent studies also reported that seagrass
in the reef lagoon stores a higher carbon sink [7]. The loss of coral reef structure could reduce
its carbon-storing capacity [7,8]. Hence, mangrove, seagrass, and coral reef ecosystems
are considered interdependent ecosystems where their connective relation has global
implications for carbon sequestration in tropical coastal areas [8–10].

Southeast Asia, located in the tropics and exhibiting unique geological and marine
conditions, is the world’s largest blue carbon concentration region [11,12]. Thorhaug [11]
stated that the total carbon stock in Southeast Asia is estimated at 4.78 Pg Corg. Among
Southeast Asian countries, Indonesia ranks first in the total carbon stock. The seagrass and
mangrove ecosystems of Indonesia contribute to approximately 17% of the world’s total
blue carbon reserves [13]. In addition, Indonesia, which has one of the largest coral reef
ecosystems in the world, has higher average coral reef fish biomass than any other trophic
area [14].

Despite their ecological significance, the blue carbon ecosystems are one of the most
threatened ecosystems on Earth that release approximately 0.15–1.02 Pg Corg into the
atmosphere annually [15,16]. A previous study revealed that approximately 62% of global
mangroves were deforested between 2000 and 2016 [17], and the area of seagrass ecosystems
decreased from the meter to square kilometer scale [18]. Furthermore, the world’s annual
mangrove and seagrass ecosystem land conversion rates were approximately 1.9 and 1.5%,
respectively [16]. Based on the data collected from 1985 to 2012, the area of coral reefs
decreased by approximately 13.8–28%, at a current average rate of approximately 1.45%
per year; additionally, 60% of the coral reefs have been predicted to be lost by 2030 [19,20].
The decreasing proportions are caused by land conversion, coastal development, dredging,
pollution, aquaculture expansion, fishing with poisons, explosives, nets, diseases, storms,
extreme droughts, and climate change [21–25].

Concerning climate threats, climate anomaly factors, such as El Niño and La Niña
phenomena, significantly affect the interannual fluctuations of sea surface temperatures
(SST) and chlorophyll-a [26,27]. The variations in these two parameters further considerably
affect the blue carbon ecosystems [28,29]. Regarding human activity threats in the sea,
Zu [30] stated that fishing is strongly associated with mangrove ecosystems, with Indonesia
ranking first in mangrove-dependent fisheries. Overfishing has damaged seagrass and
coral reef ecosystems due to the excessive use of boat propellers and fishing gear [24,31].
Several studies have reported that mangrove and seagrass ecosystems are significantly
threatened by human activities, such as land pollution and waste dumping [31,32]. Another
study comprehensively explained that changes in the land use and land cover considerably
reduce the carbon stocks in blue carbon ecosystems by more than 20% [33].

A spatial model of the threats to the blue carbon ecosystems can provide an overview
of various potential stresses and assist in the quantitative assessment of their impacts [34–40].
Pressures on mangrove ecosystems have been mapped based on rainfall and temperature
factors [41], road network expansion and land use [42], aquaculture [43], climate change and
sea-level rise [44], wave power [45], and plastic dispersal [46]. Several studies have investi-
gated using a multi-stressor approach for local seagrass and coral reef ecosystems [47,48].
In addition, studies on damage factors and land suitability based on multi-source remote
sensing data products have been conducted at the regional level [49–53]. Hence, a data-
driven approach exposed an opportunity to extensively observe potential stressors of blue
carbon ecosystems from multiple aspects [54,55].
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On the other hand, previous studies also unveiled that blue carbon threats inves-
tigation based on spatial approach remain organized individually as a separate entity.
At the same time, some researchers initiated an integrated study [56,57]. In the context
of the Indonesia archipelago, the salt marsh ecosystem does not exist significantly. In
contrast, mangrove, seagrass, and coral reef ecosystems are closely tied and densely con-
centrated throughout the Indonesian inter-island waters [58]. In this case, a holistic and
seascape-wide approach is necessary to effectively conserve blue carbon ecosystems and
their associated services [57]. Thus, this study aimed to investigate the potential pressures
on the mangrove, seagrass, and coral reef ecosystems in Indonesia concerning climate,
marine activity, and land activity by integrating multi-source spatial datasets using remote
sensing and spatial analysis techniques. In this article, we used an inter-ecosystem and
interdisciplinary approach where mangrove, seagrass, and coral reef ecosystem are defined
as integrated elements of Indonesian blue carbon ecosystems.

2. Materials and Methods
2.1. Data

This study explored various open-access remote sensing data products to analyze the
potential disturbances to the blue carbon ecosystems in Indonesia. The specifications of the
data products are shown in Table 1.

Table 1. Specifications of the data products. WPP-RI: fisheries management areas; GMW: global mangrove watch; GDS:
global distribution of seagrass; GDCR: global distribution of coral reefs; MODIS OCSMI: moderate resolution imaging
spectroradiometer ocean color standard mapped images; VBD: VIIRS (visible, infrared imaging radiometer suite) boat
detection; GAIA: global artificial impervious area; MOD09GA: MODIS surface reflectance; MODIS11A2: MODIS land
surface temperature; MOD13A2: MODIS vegetation indices; Chl-a: chlorophyll-a; SST: sea surface temperature, and LST:
land surface temperature.

No. Data Product Data Information Data
Format

Spatial
Resolution Temporal Range Reference

1 WPP-RI Fisheries
Management Area Vector - 2013 [59]

2 GMW Mangroves Raster 25 m 1996, 2000, 2007–2010,
2015, 2016 [60]

3 GDS Seagrasses Vector - 1934–2020 [61]
4 GDCR Coral Reefs Vector - 1954–2009 [62]
5 MODIS OCSMI Chl-a and SST Raster 500 m 2002–2020 [63]
6 VBD Vessels Raster 15 arc degrees 2015–2019 [64]
7 GAIA Impervious Surface Raster 30 m 1985–2018 [65]
8 MOD09GA Surface Reflectance Raster 1 km 2000–present [66]
9 MOD11A2 LST Raster 1 km 2000–present [67]
10 MOD13A2 Vegetation Indices Raster 1 km 2000–present [68]

In general, data products can be classified based on their intended use in this study.
Some data were used for more than one analysis purpose (Table 2).
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Table 2. Classification of data products based on the purpose of the analysis.

Remote Sensing
Data Products

Natural Climate
Pressure

Marine Human
Activities Pressure

Terrestrial Human
Activities Pressure

GMW
√ √ √

GDS
√ √ √

GDCR
√ √ √

Chlor-A
√ √

SST
√ √

VBD
√

GAIA
√

MOD09GA
√

MOD11A2
√

MOD13A2
√

2.1.1. Global Mangrove Watch

The GMW is a global mangrove forest data product produced by the Global Wetlands
Observation System with a spatial resolution of 25 m and a time series of 1996, 2007, 2008,
2009, 2010, 2015, and 2016. It was developed based on Advanced Land Observation System
Phased-Array Synthetic-Aperture Radar and Landsat satellite data using the random
forest method [60]. The GMW data product was validated by comparing the observed
changes in radar data with dense time-series Landsat images from 1984 to 2012 and high-
resolution imageries from Google Earth. The quality of GMW data in 2018 was tested using
53,800 sample points in 20 randomly selected regions, which resulted in an accuracy of
95.25% [69].

2.1.2. Global Distribution of Seagrass

The GDS data product provides spatial data of global seagrass distribution in vector
format compiled from 1934 to 2020 by the United Nations Environmental Programme—
World Conservation Monitoring Centre (UNEP-WCMC) in collaboration with various
global research institutions. It is generated in various scale maps from various sources from
128 countries and samples and interpolations from experts. Seagrass maps or locations
were reviewed based on published reports, peer-reviewed articles, and expert consultations.
The first version of this data product was validated through a global seagrass workshop,
which included experts from 23 countries [61].

2.1.3. Global Distribution of Coral Reefs

The GDCR data product presents the global distribution of coral reefs in vector
format from 1954 to 2009 compiled from UNEP-WCMC and the WorldFish Center data,
and collaboration with the World Resources Institution and The Nature Conservancy.
Approximately 85% of this dataset comes from the Millennium Coral Mapping Project,
of which 35% has been validated by the Institute of Marine Remote Sensing—University
of South Florida and the Institute of Research Development—Noumea; 50% has been
interpreted by UNEP-WCMC [62].

2.1.4. MODIS Ocean Color Standard Mapped Images Aqua

The MODIS OCSMI Aqua data presents several data products, including those used
in this study, SST, and chlorophyll-a data with a spatial resolution of 500 m. These data
were developed based on the empirical relationship between the reflectance measured by
the satellite sensor and in situ measurements. MODIS OCSMI Aqua data can be used to
study the biology and hydrology of coastal zones, changes in the diversity and geographic
distribution of coastal marine habitats, biogeochemical fluxes, and their effects on the
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oceans and Earth’s climate over time, and the impacts of climate and environmental
variability on marine ecosystems [70].

2.1.5. Visible Infrared Imaging Radiometer Suite Boat Detection

The VBD data product provides monthly ship distribution data with a spatial resolu-
tion of 15 arc seconds from 2015 to 2019. VBD is generated based on a VIIRS day/night
band (DNB) data using an algorithm developed by Elvidge to identify vessels automati-
cally [64]. These data were validated using a cross-matching method between VBD data
and vessel monitoring system data, with 96% matches when the ship was fishing [71].

2.1.6. Global Artificial Impervious Area

The GAIA product is an annual built-up land area data product with a spatial reso-
lution of 30 m from 1985 to 2018. It is used as the leading indicator of human settlement
development [65]. This data product was developed based on a complete archive of Land-
sat images through the Google Earth Engine platform using the “Exclusion/Inclusion”
algorithm. The results were validated by interpreting Landsat images, high-resolution
Google Earth satellite images, and normalized difference vegetation index (NDVI) time-
series data, including 2000 samples. Validation of GAIA data using a randomly selected
sample unit demonstrated a consistent accuracy of over 89% on a global scale [72].

2.1.7. MOD09GA

The MOD09GA data product contains daily spectral reflectance information of the
surface of the Earth from geometrically and atmospherically corrected MODIS images with
a spatial resolution of 500 and 1000 m [73]. This data product stores spectral reflectance
information into seven bands, with data from 2000 to the present [66].

2.1.8. MOD11A2

The MOD11A2 data product contains information of an average of 8 d of land surface
temperature (LST) and emissivity of the Earth’s surface using MODIS images with a spatial
resolution of 1000 m. This data product also provides quality control bands of day and
night surface temperature, observation time, zenith angle of view, and clear sky coverage
with data available from 2000 to the present [67].

2.1.9. MOD13A2

The MOD13A2 V6 product provides two vegetation indices: NDVI and enhanced
vegetation index (EVI) with a spatial resolution of 1000 m and a temporal resolution of
16 d [74]. The algorithm selects the best available pixel value from all data acquisitions
over a 16-day period based on the minimum cloud cover, low viewing angle, and the
highest NDVI/EVI value. This data product contains a vegetation band, two layers of data
quality assurance, and four observation bands (reflectance red, near-infrared, blue, and
mid-infrared), with data available from 2000 to the present [68].

2.2. Indonesian Blue Carbon and Fisheries Management Area

Indonesia, one of the countries with the largest blue carbon ecosystem globally, was
selected as the study area for this research. The blue carbon ecosystems studied include
mangrove, seagrass, and coral reef ecosystems based on the UNEP-WCMC data. The man-
grove, seagrass, and coral reef ecosystems spread throughout Indonesian waters divided
based on the Fisheries Management Area of Indonesia Republic (WPP-RI) to facilitate
analysis and evaluation (Figure 1).
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Figure 1. Blue carbon ecosystem distribution in Indonesia and WPP-RI [61–63].

WPP-RI is a management area used for fishing. It comprises deep waters, archipelagic
waters, territorial seas, exclusive economic zones, and additional zones. According to the
Regulation of the Minister of Maritime Affairs and Fisheries of the Republic of Indone-
sia Number 18/PERMENKP/2014 Article 2 [59], WPP-RI is divided into the following
11 fisheries management areas:

1. WPP-RI 571: Includes the waters of the Malacca Strait and the Andaman Sea.
2. WPP-RI 572: Includes the waters of the Indian Ocean west of Sumatra and the Sunda

Strait.
3. WPP-RI 573: Includes the waters of the Indian Ocean south of Java to the south of

Nusa Tenggara, the Savu Sea, and the western Timor Sea.
4. WPP-RI 711: Includes the waters of the Karimata Strait, Natuna Sea, and the South

China Sea.
5. WPP-RI 712: Includes the waters of the Java Sea.
6. WPP-RI 713: Includes the waters of the Makassar Strait, Bone Bay, Flores Sea, and the

Bali Sea.
7. WPP-RI 714: Includes the waters of Tolo Bay and Banda Se.
8. WPP-RI 715: Includes the waters of Tomini Bay, Maluku Sea, Halmahera Sea, Seram

Sea, and Berau Bay.
9. WPP-RI 716: Includes the waters of the Sulawesi Sea and northern Halmahera Island.
10. WPP-RI 717: Includes the waters of Cendrawasih Bay and the Pacific Ocean.
11. WPP-RI 718: Includes the waters of the Aru Sea, Arafuru Sea, and the East Timor Sea.



ISPRS Int. J. Geo-Inf. 2021, 10, 778 7 of 30

2.3. Methodology

The potential disturbances in the blue carbon ecosystem are divided into three main
parts: natural climate pressure, marine human activity pressure, and terrestrial human
activity pressure (Figure 2).
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2.3.1. Marine Human Activity Pressure

Potential fishing zone (PFZ) was assessed using chlorophyll-a data with a range of
0.2–0.5 mg/m3 [75] and SST using the single-image edge detection algorithm [76] with
a threshold of 0.5 ◦C [75] that subsequently produced a thermal front. Afterward, the
chlorophyll-a and SST data for each month were overlaid to generate the potential fishing
points, which were then averaged to obtain results for 2018. Subsequently, modeling and
classification of the points were conducted based on the density of potential fishing points,
divided into very low, low, medium, high, and very high classes.

Vessel activity zone (VAZ) processing used VBD data [64] with a temporal resolution
of one month from January to December 2018. Initially, raster data were converted into
vector format to produce a monthly point distribution of ships in the Indonesian waters.
This distribution was then averaged to obtain results for 2018. Later, VAZs were classified
based on the vessel density per area, divided into very low, low, medium, high, and
very high classes. Finally, PFZ and VAZ were overlaid with the Indonesian blue carbon
ecosystem data to produce a map of fishing effectiveness and its impact on the blue carbon
ecosystem. The map comprised of nine classes, i.e., high productivity and high blue-carbon
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risk, moderate productivity and moderate blue-carbon risk, low productivity and low
blue-carbon risk, overexploitation and high blue-carbon risk, overexploitation and medium
blue carbon risk, under exploitation and moderate blue carbon risk, under exploitation
and low blue carbon risk, under exploitation and sustainable blue carbon, and sustainable
blue carbon.

2.3.2. Natural Climate Pressure

The MODIS OCSMI data product [70] was used to investigate the effects of climate
pressure, in terms of changes in the chlorophyll-a and SST values during the La Niña (2011)
and El Niño (2015) periods, on the waters of the Indonesian blue carbon ecosystem [77].
Chlorophyll-a and SST data were initially selected based on La Niña, normal (2013), and El
Niño periods referring to El Niño Southern Oscillation (ENSO) data. Later, the changes in
the chlorophyll-a were observed by calculating their differences during the three periods.
SST changes were calculated using the same procedure. Furthermore, an overlay analysis
was conducted on the blue carbon ecosystem data and the SST and chlorophyll-a differences
to observe the extreme changes that occurred during the three periods in each blue carbon
ecosystem.

2.3.3. Terrestrial Human Activity Pressure

During the early stages of the analysis using the emerging hotspot method [78], the
GAIA data product [65] with a range of 2007–2016 was processed using the spatiotemporal
cube feature at a distance interval of 2 km. Subsequently, the emerging hotspots were
processed to classify the increase in Indonesia’s built-up areas for ten years based on
deforestation trends. During the second stage, the ecological conditions of coastal areas
in 2007 and 2016 were analyzed using the risk-screening environmental indicator (RSEI)
method [79]. This method evaluates four main ecological parameters (greenness, wetness,
dryness, and heat). The greenness parameter was obtained based on the EVI method using
the MOD13A2 data product [68]. Temperature parameters were obtained based on the LST
data using the MOD11A2 data product [67]. Further, the dryness and wetness parameters
were estimated based on normalized difference build-up and soil index processing and the
wet index calculations using the MOD09GA data product [66]. Subsequently, the values of
the four parameters were standardized and weighed using principal component analysis
to obtain the RSEI [80]. Later, the difference between the 2007 and 2016 RSEI values was
calculated to evaluate the ecosystem conditions’ changes over ten years. In the last stage,
mangrove data for 2007 and 2016 were subtracted to obtain the deforested mangrove area.
Furthermore, emerging hotspots in built areas and RSEI changes were overlaid on the
acquired deforested mangrove areas.

3. Results
3.1. Chlorophyll-a and SST Variability during the 2011 La Niña and the 2015 El Niño Periods

Changes in chlorophyll-a during the 2011 La Niña and the 2015 El Niño periods
were divided into six classes: high reduction with a range of −1 mg/m3 to −0.5 mg/m3,
−0.49 mg/m3 to −0.50 mg/m3, and −0.2 mg/m3 for moderate decreases, −0.19 mg/m3

to 0 mg/m3 for low decreases, 0 mg/m3 to 0.06 mg/m3 for low increases, 0.07 mg/m3

to 0.1 mg/m3 for moderate increases, and 0.11 mg/m3 to 0.5 mg/m3 for high increases
(Figure 3). The chlorophyll-a concentration significantly increased during the El Niño
phenomenon in WPP-RI 714. Moreover, the chlorophyll-a concentration significantly
decreased during the La Niña phenomenon in WPP-RI 715. Particularly in seagrass
ecosystems, the chlorophyll-a concentration decreased during the La Niña years in WPP-RI
717. It increased during the El Niño years in WPP-RI 715.
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Figure 3. Changes in the average chlorophyll-a values in the Indonesian blue carbon ecosystem during the 2011 La Niña
and 2015 El Niño years.

In the coral reef ecosystems, the chlorophyll-a concentration decreased during the La
Niña years in WPP-RI 572 and WPP-RI 715. In contrast, it increased during the El Niño
years in WPP-RI 716 and WPP-RI 713. In the mangrove ecosystems, the chlorophyll-a
concentration decreased during La Niña in WPP-RI 715. It increased during El Niño in
WPP-RI 714. Changes in the SST values during La Niña and El Niño were divided into six
classes: high reduction with a range of −0.5 to −0.3 ◦C and −0.29 to −0.1 ◦C for moderate
decreases, −0.09 to 0 ◦C for low decreases, 0 to 0.5 ◦C for low increases, 0.51 to 0.7 ◦C
for moderate increases, and 0.71 to 1.2 ◦C for high increases (Figure 4). SST significantly
increased during the La Niña phenomenon in WPP-RI 717. In contrast, it significantly
decreased during the El Niño phenomenon in WPP-RI 715. In the seagrass ecosystem, SST
increased during La Niña in WPP-RI 572 and WPP-RI 715 and decreased during El Niño
in WPP-RI 718. In the coral reef ecosystems, SST increased during the La Niña years in
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WPP-RI 572 and WPP-RI 717, while it decreased during the El Niño years in WPP-RI 715.
In the mangrove ecosystems, SST increased during La Niña in WPP-RI 717 and decreased
during El Niño in WPP-RI 715 and WPP-RI 718.
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3.2. Potential Fishing Zone and Vessel Activity Zone

In 2018, the PFZ in Indonesia was divided into five classes: very low, low, medium,
high, and very high, and the location of each class varied monthly and was relatively
dynamic throughout the year (Figure 5). In Figure 5, the location of each PFZ class has been
given concerning the WPP zones shown in Figure 1. A high PFZ was found in January,
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June, and August in WPP-RI 571, in March–April, and September–December in WPP-RI
711. Further, a high PFZ was found in January–April and November–December in WPP-RI
712, January–February, June, and November in WPP-RI 713, and only in January–February
in WPP-RI 716.
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Figure 5. Monthly potential fishing zones in 2018.

A high PFZ was found in January–February, May–June, and November–December in
WPP-RI 715, only in May–June in WPP-RI 714, in January and April–May in WPP-RI 718,
only in January in WPP-RI 573, and in January–February, and July–October in WPP-RI 572.
However, in WPP-RI 717, no high PFZ was observed.

Figure 6 shows that WPP-RI 572 had the largest PFZ area, whereas WPP-RI 573 had
the smallest PFZ area.

Figure 6 shows that WPP-RI 712, WPP-RI 713, WPP-RI 716, and WPP-RI 715 showed
medium–high potential periods from September to April with peaks in January–December.
Other fish catch potential dynamics patterns of medium-high potential from July to Decem-
ber, with peaks in September, were observed in WPP-RI 711 and WPP-RI 572. The potential
dynamics patterns were not observed comprehensively in other WPP-RIs.
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The average fishing potential in Indonesian waters in 2018 was generally dominated
by medium to high classes in all areas of WPP-RI, except WPP-RI 573, WPP-RI 714, and
WPP-RI 717, as shown in Figure 7.

Regions with a high monthly average potential dominance during 2018 were WPP-
RI 572 and WPP-RI 715. Moreover, WPP-RI 711, WPP-RI 712, and WPP-RI 718 showed
medium potential. VAZ in Indonesia in 2018 was divided into three classes: low, medium,
and high, and the location of each class varied monthly, particularly in WPP-RI 571, WPP-RI
712, and WPP-RI 718 (Figure 8). WPP-RI 571, with high VAZ, was observed in February–
May and November–December. A high VAZ was observed every month in WPP-RI 712
from January to December and in WPP-RI 718 in January–April and July–December.
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Figure 9 shows that the average ship activity in 2018 was concentrated only in WPP-RI
571, WPP-RI 711, WPP-RI 712, WPP-RI 713, and WPP-RI 718. In particular, medium–high
VAZ was concentrated only in WPP-RI 571, WPP-RI 712, and WPP-RI 718.
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Figure 9. Average vessel activity zones in 2018.

The acquired PFZ and VAZ results were combined with the blue carbon ecosystem
distribution data to map fisheries’ effectiveness and blue carbon ecosystem threats. The
resultant map was divided into the following nine area classes (Figure 10):

• High productivity and high blue-carbon risk: characterized by high potential and
high ship activity; thus, this area has a high fishery yield. However, the blue carbon
ecosystem around this area faces high pressures due to the high ship activity.

• Moderate productivity and moderate blue-carbon risk: these areas have a moderate
level of fisheries potential and moderate ship activity; therefore, these areas have
moderate fishery production, and the blue carbon ecosystem experiences moderate
levels of damage.

• Low productivity and low blue-carbon risk: these areas have a low level of fisheries
potential and low ship activity; thus, they have low fishery production yields and
experience low levels of blue carbon ecosystem damages.

• Overexploitation and high blue-carbon risk: these areas have a low-to-moderate level
of fishery potential but a high level of ship activity; thus, these areas are overexploited
and have high levels of damage to the blue carbon ecosystem.

• Overexploitation and medium blue carbon risk: these areas have a low fishery poten-
tial but a moderate level of ship activity; thus, these areas are overexploited and have
moderate levels of damages to the blue carbon ecosystem.

• Under exploitation and moderate blue carbon risk: these areas have a high fishery
potential but a moderate ship activity. Therefore, these areas are less exploited and
have moderate levels of damages to the blue carbon ecosystems.

• Under exploitation and low blue carbon risk: these areas have a moderate level of
fishery potential but a low level of ship activity; therefore, these areas are less exploited
and have low levels of damages to the blue carbon ecosystems.

• Under exploitation and sustainable blue carbon: these areas have a low to a high level
of fishery potential but minimal ship activity; thus, these areas are less exploited, and
the blue carbon ecosystem is relatively sustained.

• Sustainable blue carbon: the areas belonging to this class have a very low fishery poten-
tial and ship activity level. Thus, the blue carbon ecosystems are relatively maintained.



ISPRS Int. J. Geo-Inf. 2021, 10, 778 15 of 30

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 15 of 31 
 

 

• Under exploitation and sustainable blue carbon: these areas have a low to a high level 

of fishery potential but minimal ship activity; thus, these areas are less exploited, and 

the blue carbon ecosystem is relatively sustained. 

• Sustainable blue carbon: the areas belonging to this class have a very low fishery po-

tential and ship activity level. Thus, the blue carbon ecosystems are relatively main-

tained. 

Figure 10 shows that the effectiveness of fishing and its impact on the blue carbon 

ecosystems in Indonesia were mostly underexploited and sustainable in most WPP-RIs. 

However, the overexploitation and high blue carbon risk classes, which were of major 

concern, were observed only in WPP-RI 571, WPP-RI 712, WPP-RI 711, WPP-RI 713, and 

WPP-RI 718. 

 

Figure 10. Spatial variation of fishing activity and blue carbon risk status in Indonesia. 

3.3. Coastal Urbanization and RSEI Changes on Deforested Mangrove Forests 

The results of mangrove deforestation based on the GMW data from 2007 to 2016 

included five deforestation classes: <5, 5–25, 25–50, 50–100, and >100 km2 (Figure 11). 

Based on visual observations, mangrove deforestation with <500 ha was evenly distrib-

uted in every region (Kalimantan, Sumatra, Sulawesi, Maluku, and Java). Mangrove de-

forestation in the class range of 5–25, 25–50, and 50–100 km2 primarily occurred in Kali-

mantan and Papua, Sumatra and Kalimantan, and Papua, respectively. 

Figure 10. Spatial variation of fishing activity and blue carbon risk status in Indonesia.

Figure 10 shows that the effectiveness of fishing and its impact on the blue carbon
ecosystems in Indonesia were mostly underexploited and sustainable in most WPP-RIs.
However, the overexploitation and high blue carbon risk classes, which were of major
concern, were observed only in WPP-RI 571, WPP-RI 712, WPP-RI 711, WPP-RI 713, and
WPP-RI 718.

3.3. Coastal Urbanization and RSEI Changes on Deforested Mangrove Forests

The results of mangrove deforestation based on the GMW data from 2007 to 2016
included five deforestation classes: <5, 5–25, 25–50, 50–100, and >100 km2 (Figure 11). Based
on visual observations, mangrove deforestation with <500 ha was evenly distributed in
every region (Kalimantan, Sumatra, Sulawesi, Maluku, and Java). Mangrove deforestation
in the class range of 5–25, 25–50, and 50–100 km2 primarily occurred in Kalimantan and
Papua, Sumatra and Kalimantan, and Papua, respectively.

Papua showed the largest mangrove deforestation area (290.44 km2). In contrast, Java,
Bali, West Nusa Tenggara, and East Nusa Tenggara showed the smallest deforestation area
(6.05 km2). The proportion of deforestation areas in Kalimantan, Sumatra, Maluku, North
Maluku, and Sulawesi was 128.36, 66.84, 44.27, and 24.71 km2, respectively.
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Figure 11. Distribution of mangrove deforestation in Indonesia during 2007–2016 with a grid visualization of 1 km.

The GAIA data processing results for 2007–2016 were classified into six classes of
incident trends: consecutive hotspots, new hotspots, oscillating hotspots, new cold spots,
oscillating cold spots, and sporadic cold spots, as shown in Figure 12. Oscillating cold
spots, areas with periodic urban growth and a below-average frequency value, had the
largest area (2123.45 km2). Consecutive hotspot class, characterized by successive urban
growth and an above-average frequency, covered an area of 5.12 km2. The new cold spot
class, characterized by areas that witnessed urban growth recently and characterized by
below-average frequency, covered an area of 72.05 km2. The new hotspot class, with areas
that witnessed urban growth recently and an above-average frequency, covered an area
of 270.55 km2. The oscillating hotspot class, characterized by periodic urban growth and
an above-average frequency, covered an area of 233.48 km2. Moreover, the sporadic cold
spot class, characterized by random urban growth and a below-average, had an area of
195.72 km2.

Emerging hotspots on mangrove deforestation were found in only two classes: os-
cillating hotspots that dominated North Sumatra and cold spots that dominated the East
Kalimantan and Riau Islands (Figure 12B). The areas covered by the oscillating hot and
cold spot classes were 10.47 and 1.87 km2, respectively.

Based on the RSEI changes during 2007–2016, five changes were obtained: high
decrease, moderate decrease, normal, moderate increase, and high increase (Figure 13).

In all regions of Indonesia, the most dominant changes in the RSEI during 2007–2016
occurred in the medium decrease class (80.13%). Further, the RSEI changes in the normal,
high decrease, and moderate improvement classes were 13.33, 5.95, and 0.58%, respectively;
however, RSEI changes were almost negligible in the high improvement class (0.01%).
Moreover, the RSEI changes in the deforested mangrove areas occurred only in four classes:
moderate increase (0.01%), normal (0.58%), medium decrease (84.91%), and high decrease
(14.01%).
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mangrove areas.



ISPRS Int. J. Geo-Inf. 2021, 10, 778 18 of 30

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 18 of 31 
 

 

Based on the RSEI changes during 2007–2016, five changes were obtained: high de-

crease, moderate decrease, normal, moderate increase, and high increase (Figure 13). 

 

Figure 13. Changes in Indonesia’s remote sensing ecological index (RSEI) using the MODIS data product during 2007–

2016 with a grid visualization of 1 km. (A) Changes in the RSEI in all regions of Indonesia; (B) changes in the RSEI in 

deforested mangrove areas. 

  

Figure 13. Changes in Indonesia’s remote sensing ecological index (RSEI) using the MODIS data product during 2007–2016
with a grid visualization of 1 km. (A) Changes in the RSEI in all regions of Indonesia; (B) changes in the RSEI in deforested
mangrove areas.

4. Discussion

The main results presented in the third section are classified based on three potential
pressures and briefly summarized in Table 3. These findings were discussed further in
subsection four.
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Table 3. Brief description of primary findings was discovered in this study.

Summary of Main Findings

Potential
Pressures

Climate

• In the seagrass ecosystems, the chlorophyll-a concentration
decreased during the La Niña years in WPP-RI 717, and
increased during the El Niño years in WPP-RI 715.

• In the coral reef ecosystems, the chlorophyll-a concentration
decreased during the La Niña years in WPP-RI 572 and
WPP-RI 715, whereas it increased during the El Niño years in
WPP-RI 716 and WPP-RI 713.

• In the mangrove ecosystems, the chlorophyll-a concentration
decreased during La Niña in WPP-RI 715 and increased
during El Niño in WPP-RI 714.

• In the seagrass ecosystem, SST increased during La Niña in
WPP-RI 572 and WPP-RI 715 and decreased during El Niño in
WPP-RI 718.

• In the coral reef ecosystems, SST increased during the La Niña
years in WPP-RI 572 and WPP-RI 717, while it decreased
during the El Niño years in WPP-RI 715.

• In the mangrove ecosystems, SST increased during La Niña in
WPP-RI 717 and decreased during El Niño in WPP-RI 715 and
WPP-RI 718.

Marine

• The average fishing potential in Indonesian waters was
dominated by medium to high classes in all areas of WPP-RI,
except WPP-RI 573, WPP-RI 714, and WPP-RI 717.

• Regions with a high monthly average potential dominance
were WPP RI 572 and WPP-RI 715.

• The average ship activity was concentrated only in WPP-RI
571, WPP-RI 711, WPP-RI 712, WPP-RI 713, and WPP-RI 718.

• The effectiveness of fishing and its impact on the blue carbon
ecosystems in Indonesia were mostly underexploited and
sustainable in most WPP-RIs.

• The overexploitation and high blue carbon risk were observed
in WPP-RI 571, WPP-RI 712, WPP-RI 711, WPP-RI 713, and
WPP-RI 718.

Terrestrial

• Papua showed the largest mangrove deforestation area
(290.44 km2), while Java, Bali, West Nusa Tenggara, and
East Nusa Tenggara showed the smallest deforestation area
(6.05 km2).

• The proportion of deforestation areas in Kalimantan, Sumatra,
Maluku and North Maluku, and Sulawesi were 128.36, 66.84,
44.27, and 24.71 km2, respectively.

• Emerging hotspots on mangrove deforestation were found in
only two classes: oscillating hotspots that dominated North
Sumatra and oscillating cold spots that dominated the East
Kalimantan and Riau Islands.

• In all regions of Indonesia, the most dominant changes in the
RSEI during 2007–2016 occurred in the medium decrease class
(80.13%).

4.1. Impact of the 2011 La Niña and 2015 El Niño Phenomena on the Blue Carbon Ecosystems
in Indonesia

Indonesian waters experience a decrease in the chlorophyll-a concentration and an
increase in the SST during La Niña. Furthermore, during the El Niño phenomenon, the
dominant chlorophyll-a value increased, and the dominant SST decreased (Figure 14).
Seprianto [81] stated that the value of chlorophyll-a in Karimun Jawa waters increased
during the El Niño phenomenon and decreased during the La Niña phenomenon. Similarly,
other previous studies reported that the SST temporarily decreased during the El Niño
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phenomenon, while it increased during the La Niña phenomenon [26,82]. This occurs
because ocean–atmosphere climate interactions, such as those resulting from the ENSO,
affect the sea level, SST, air temperature, chlorophyll-a, and upwelling intensity. During
the El Niño period, the upwelling intensity increased, followed by an increase in the
chlorophyll-a concentration; in contrast, during the La Niña period, the upwelling intensity
decreased followed by a decrease in the chlorophyll-a concentration [26,82–85].
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Figure 14. Average monthly increase and decrease in the SST and chlorophyll-a values during the La Niña and El Niño
periods: (A) Increase in the SST during the La Niña period; (B) decrease in the SST during the El Niño period; (C) increase
in the chlorophyll-a concentration during the El Niño period; (D) decrease in the chlorophyll-a concentration during the La
Niña period.

The SST increased significantly in the blue carbon ecosystem in 2011 (La Niña), with
an average value of 29.6 ◦C and the highest value of 31.8 ◦C in June. Moreover, the SST
decreased significantly in 2015 (El Niño), with an average value of 28.8 ◦C and the lowest
value of 26 ◦C in August. These results were confirmed by the observations by Nabilah [82],
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who conducted research on the Java Sea and indicated that during El Niño, the SST was in
the range of 27–28 ◦C with an average value of 27.71 ◦C; moreover, during La Niña, the
SST was in the range of 29–30 ◦C with an average value of 29.06 ◦C.

The chlorophyll-a concentration significantly increased in the blue carbon ecosystem
in 2015 (El Niño), with the highest value of 1.02 mg m−3 in June and an average value of
0.3 mg m−3. However, in 2011 (La Niña), chlorophyll-a concentration decreased signifi-
cantly with an average value of 0.2 mg m−3 and a lowest value of 0.09 mg m−3 in July.
These results were confirmed by Sari [86], who conducted similar research in Tomini Bay,
Sulawesi, and found that during El Niño, the chlorophyll-a concentration increased to
>0.1 mg m−3, while during La Niña, it decreased to <0.1 mg m−3.

Significant changes in the SST and chlorophyll-a concentrations considerably affect
the vulnerable and sensitive blue carbon ecosystems [87]. Heron [88] showed that corals in
coral reef ecosystems can experience bleaching when exposed to temperatures of 1 ◦C above
normal. Several studies on mangrove ecosystems have revealed that climatic factors signif-
icantly influence the development of mangroves and their ability to store carbon [89,90].
Moreover, other studies on seagrass ecosystems separately reported the threats to and mass
death of seagrass beds triggered by hypersalinity and acidification caused by increased
SSTs [91,92].

4.2. Comparison of the Potential Fishing Zone and Vessel Activity Zone with Production Data and
the Number of Fishing Vessels of the Ministry of Maritime Affairs and Fisheries

In general, the average fishing potential in Indonesian waters in 2018 was dominated
by classes with medium to high potential levels covering almost all WPP-RIs, except
WPP-RI 573, WPP-RI 714, and WPP-RI 717. Insanu [93] reported that in the waters of the
Mahakam Delta and Makassar Strait, the high fishing zone occurs south of the Mahakam
Delta, and in the middle of the Makassar Strait. Furthermore, Suhadha [75] reported water
areas with high fishing potential in WPP-RI 715 and WPP-RI 712. Similar patterns were
also observed according to the PFZ in Indonesian waters, and the results of the Institute of
Aeronautics and Space Indonesia (SPBN lapan.go.id).

The high level of PFZ is attributed to the location of the mesotrophic area, which has a
sufficiently high chlorophyll-a concentration; therefore, the seawaters of this PFZ has mod-
erate biological productivity, sufficient water quality, and high nutrient richness [75,94,95].
PFZ is also influenced by temperature. Insanu [93] reported that high potential fishing
areas have SSTs ranging from 27 to 30 ◦C and high chlorophyll-a concentrations [75,96,97].
Based on our results, VAZs in Indonesia in 2018 were dominant in WPP-RI 712, WPP-RI
571, and WPP-RI 718. This was consistent with the findings by Hsu [71] and Lumban [98],
who reported that VAZ was dominant because it is used as a fishing ground and a shipping
area. In particular, WPP-RI 718 and WPP-RI 712, which are located around the Sunda Strait,
are gateways for shipping vessels used for economic trade activities with China and other
countries [99].

Figure 15 shows the comparison between the results of our study and the data from
the Ministry of Maritime Affairs and Fisheries (MMAF a.k.a. KKP) The distribution of
potential fish catch areas has not been represented by the distribution of fishery production
in each WPP-RI. This is because most areas were underexploited. Further, the distribution
of the VAZ vessels was not uniform with the number of vessels based on the MMAF data.
This is because VAZ is a general vessel, while MMAF provides information on the fishing
vessel data.

In WPP-R1 715, WPP-R1 714, WPP-R1 717, and WPP-RI 572, data from both sources
showed an under-exploitation status, with the MMAF data showing lower number of
production and fishing vessels in the above-mentioned areas than other areas, and the
results of our study showed that these areas had high fishing potential. WPP-R1 711,
WPP-R1 712, WPP-RI 713, and WPP-RI 573 indicated overexploitation based on the high
production level and number of fishing vessels based on the MMAF data; additionally,
our study results showed low fishing potential and high ship activity. These observations
were consistent with the findings by Darmawan [100], who stated that the high damages
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in WPP-RI 712 occurred due to waste pollution, and thus, coral reefs were not preserved.
Noviyanti [101] reported that mangroves were damaged in this area. Another study
stated that coral reef damage in WPP-RI 713 was reported to be caused by tourism and
fishing activities that were not environmentally friendly [102]. Syukur [103] also reported
damages to seagrass beds in WPP-RI 713 on the island of Lombok that were caused by
overexploitation.
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4.3. Mangrove Deforestation and the Decline in the RSEI in Indonesia during 2007–2016

The rate of mangrove deforestation in Indonesia during 2007–2016 was 56.068 km2/year.
A previous study has shown that the rate of mangrove deforestation in Indonesia during
the 2000–2012 was 57.74 km2/year [104]. Therefore, mangrove deforestation has gradually
decreased, despite the percentage decrease of only approximately 1.68 km2 or 2.9% of the
total. Coastal urbanization contributes only 12.34 km2 or 2.2% [49], indicating that urban
growth is not a significant factor causing mangrove deforestation in Indonesia.

The largest mangrove deforestation incident during 2007–2016 occurred in the Papua
region (290.44 km2). A study conducted on the coast of the South Manokwari District,
particularly at Wasti Sowi IV Lake, indicated a decrease in the mangrove forest area from
2006 to 2018 because of the use of mangrove plants as building construction materials, fuel
wood, medicinal resources, and other essential supplies [105]. Mangrove deforestation due
to urban expansion marginally contributes to the total mangrove deforestation and occurs
in North Sumatra, East Kalimantan, and the Riau Islands. Among these, development in
the coastal areas of East Kalimantan has been conducted since 2007 to develop the area as a
tourist destination [106].

In this study, correlation analysis was conducted using 100 samples randomly collected
in intersecting regions of deforested mangrove forest and RSEI decline. Subsequently, a
correlation coefficient of 0.72 was obtained (Figure 16), indicating a strong relationship
between the two variables [107]. Thus, the RSEI can be used to measure the level of damage
in deforested mangrove areas.
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4.4. Study Limitations

This study is limited by several factors, including topic limitations, data availability,
analytical methods, and data validation. Regarding topic limitations, the blue carbon
ecosystem research did not include salt marsh ecosystems due to the lack of distribu-
tion data of such ecosystems in the Indonesian regions. Further, while investigating the
pressures due to climatic factors, natural phenomena were considered based on only the
conditions of the extreme La Niña and El Niño phenomena. In addition, only changes
that occurred in two oceanographic parameters of the sea (SST and chlorophyll-a) were
considered. Regarding data availability, several gaps existed with incomplete monthly
datasets for both SS and chlorophyll-a. During data preprocessing, no data gap-filling or
interpolation processes were conducted to obtain a comprehensive understanding.

While investigating the potential stresses due to human activities in the sea, the
distribution model of fishing potential used only oceanographic parameters of SST and
chlorophyll-a, while the criteria for the range of values of these two parameters were used
only for pelagic fish species. The VBD data included the VAZ distribution, which was
general vessel activity, and did not refer to the type of vessels specifically used for fishing
activities. In addition, the classification of monthly fishing potential and vessel activity
referred to the range of monthly values, instead of the absolute values used as standards.

Furthermore, the investigation of pressures due to human activities in coastal areas
only analyzed the blue carbon areas of mangrove ecosystems. This was because of the
unavailability of multi-temporal seagrass and coral reef data that could assist in further
analyzing the changes. In addition, the seagrass and coral reef ecosystems were not
assessed during the analysis using the hotspot method and RSEI because of difficulty of
access of these ecosystems through the method based on land area data. Moreover, all
data analyses in this study relied only on previous similar studies, reliable literature, and
secondary data to validate the accuracy of the acquired results. This was because of the
limitations of comparative data and limitations in conducting field surveys in the selected
large study area.

4.5. Future Research Directives

Several future research avenues can be explored further to supplement and improve
the accuracy of the results acquired in this study. The analysis of climate effects can apply
various methods, such as the data interpolating empirical orthogonal functions [108] and
fixed rank kriging [109] to fill the gaps in the chlorophyll-a and SST data occurring due
to cloud cover. In addition, several other climatic phenomena, such as typhoons [110],
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storms [111,112], heat waves [113], and droughts [114] have been reported to significantly
affect the blue carbon ecosystems; thus, these climatic events should be comprehensively
studied. Additionally, physiochemical parameters, such as salinity [115–117], total sus-
pended solids [118], and colored dissolved organic matter [119], that can be extracted
through remote sensing can be used to build more complex and comprehensive models.
Moreover, several studies have acquired data directly in the field to determine the actual
conditions and to validate the acquired results [120,121].

During the analysis of pressure due to fishery activities, PFZ can be modeled using
more parameters, such as TSS, sea surface height [122], sea surface salinity [123,124], and
merged sea level of anomaly [125]; additionally, the PFZ can be quantitatively converted
to the potential fish catch weight per area. Another important research consideration is
the classification of the VBD data using specific algorithms to separate fishing vessels
from other vessel types [71,126]. In addition, future research can formulate and recom-
mend ideal fishing zones and blue carbon conservation zones to mutually encourage
fishing productivity while preserving ecosystems to support the implementation of a blue
economy [127].

The current data on the distribution of seagrass and coral reefs regarding land distur-
bances are still limited. However, several mapping methods based on remote sensing have
been developed and proven to be able to map these ecosystems efficiently [128]. Future
research should focus on monitoring the quantity and quality of blue carbon ecosystems in
Indonesia by utilizing a proven methodology using basic data for conserving coastal and
marine ecosystems by developing global climate change mitigation strategies and explor-
ing the potential for ecotourism in the tropical regions [128,129]. In addition, other spatial
data products, such as nighttime lights, population, and accessibility, can be integrated
to develop an indicator of human activity pressure in coastal areas to detect potential
degradation of aquatic waste [79,130].

From the perspective of maritime ecosystem conservation, this study serves as a basis
that can promote the development of a spatial model of ecosystem services and threats to
the blue carbon ecosystem using complex parameters and methods based on extensive data
from remote sensing, cloud computing, and artificial intelligence to expand regional study
areas to a global scale [34,131,132]. Furthermore, the model can be studied through not only
the physical aspect of the environment but also the socio-economic aspects by involving
multiple stakeholders, including a multidisciplinary research team, the government, and
local residents [133].

5. Conclusions

Based on the findings of the study, we can conclude that several blue carbon ecosys-
tems in Indonesia are threatened due to significant changes in the chlorophyll-a concen-
tration and SST during the La Niña period (2011). During this period, 52.46 km2 of the
total blue carbon ecosystem experienced a decrease in the chlorophyll-a concentration
reaching −1 mg/m3, and 19.83 km2 of these ecosystems experienced an increase in the SST
of up to +1.2 ◦C. Further, from the perspective of pressures in the sea, most blue carbon
ecosystems in the Indonesian waters are underexploited and are sustainable, while WPP-RI
571, WPP-RI 712, WPP-RI 711, WPP-RI 713, and WPP-RI 718 experienced overexploitation
and were included in the high-risk blue carbon class. Regarding terrestrial pressures,
mangrove deforestation during 2007–2016 occurred in 560.69 km2, as confirmed by the
decrease in the RSEI (84.9%). Coastal urbanization contributed to only 12.34 km2 or 2.2% of
the total mangrove deforestation. Overall, this study could successfully map the potential
pressures on Indonesia’s blue carbon ecosystems, which have varied geographical charac-
teristics. The results obtained can be used as a reference for the development of habitat
threat models to support the planning of conservation priority areas. Equipped with a
service ecosystem model that integrates physical and socio-economic aspects, the main
goals of sustainable development goals (SDGs) 2 (zero hunger), 13 (climate action), and
14 (life below water) can be achieved through simultaneous efforts to increase fisheries’
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productivity, conservation, and restoration of blue carbon ecosystems based on the blue
economy. In the near future, spatial data can explore further opportunities to study the
food–marine biodiversity–climate nexus interaction approach to achieve a global maritime
ecological balance.
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