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Abstract: Machine learning (ML) as a powerful data-driven method is widely used for mineral
prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support
vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China.
In the proposed method, GA is used as an adaptive optimization search method to optimize the
SVM parameters that result in the best fitness. After obtaining evidence layers from geological
and geochemical data, GA–SVM models trained using different training datasets were applied
to discriminate between prospective and non-prospective areas for Au deposits, and to produce
prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were
calculated to objectively evaluate the performance of each prospectivity model. The best model
predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study
area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral
prospectivity.

Keywords: support vector machine; genetic algorithm; mineral prospectivity mapping; Au deposits

1. Introduction

Mineral prospectivity mapping (MPM) is a critical step in mineral exploration and
exploitation, as it reduces uncertainty and risk by narrowing the target area [1–3]. In MPM,
multiple datasets (e.g., geological, geophysical, geochemical, and remote sensing data)
are collected, analyzed, and integrated to delineate target areas most likely to contain
mineral deposits of interest. To achieve this goal, a variety of MPM approaches have been
proposed, which can be categorized into knowledge-driven and data-driven methods [4,5].
(1) Knowledge-driven MPM methods use expert knowledge to qualitatively assess the im-
portance of each evidence layer for known deposits of the type sought. Index overlay [6,7],
fuzzy logic [8–10], and multiple-criteria decision-making methods [11–13] are examples
of knowledge-driven MPM methods, which are used in frontier or less-explored areas
(so-called “greenfields”) with no or very few known mineral deposits of the desired type.
(2) Data-driven MPM methods analyze and quantify spatial associations between each
evidence layer and the locations of known deposits that share a common genesis, and
include weights of evidence [14,15], evidence belief functions [16,17], and logistic regres-
sion [18,19]. These methods are commonly applied in well-explored areas with sufficient
known mineral deposits of the desired type.

Over the last decade, some machine learning methods as data-driven methods have
been developed for MPM. These include support vector machine (SVM) [20–22], a margin-
based classifier based on small sample learning that has good generalization capabili-
ties [23] and is an effective tool to model the complex nonlinear relationships between
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evidence layers and mineral occurrences. However, in standard SVM, classification perfor-
mance is heavily dependent on parameter selection (hyper-parameters and kernel parame-
ters) in cases with no criteria or principles to follow when setting SVM parameters. Genetic
algorithm (GA) [24] is a well-known and widely used method for variable selection [25,26].
GA provides a search technique that solves optimization problems by employing simulated
evolution via “survival of the fittest” using various genetic functions. Therefore, an SVM
classifier incorporating GA for parameter optimization has great potential in MPM, making
full use of the unique merits of these two data-mining approaches.

With respect to training data, SVM, as a supervised algorithm, is different from the
traditional data-driven methods used in MPM (e.g., weights of evidence), which usually
require both mineralized and non-mineralized training datasets. Because an optimal
separating hyperplane between the mineralized and non-mineralized locations is affected
by both the mineralized and non-mineralized training datasets, learning bias can be caused
by imbalanced training datasets, increasing misclassification [27]. Consequently, balancing
the number of mineralized and non-mineralized training datasets is an efficient way to
obtain more reliable classifications [28]. However, the selection of non-mineralized samples
is challenging, as it is not possible to identify whether all non-mineralized samples are
truly non-mineralized, because of the complexity of geological conditions [29]. In this
context, Carranza et al. [30] summarized four criteria for the selection of non-mineralized
samples: (1) non-mineralized samples must be randomly distributed in the study area;
(2) non-mineralized samples should be distal to any known mineralized samples; (3) non-
mineralized samples must have values for all the univariate geoscience spatial data; and
(4) the number of non-mineralized samples must be equal to the number of mineralized
samples. In addition, point pattern analysis was applied to evaluate the spatial pattern of
non-mineralized samples and determine the optimal distance between the mineralized
and non-mineralized samples. Nykänen et al. [31] proposed that other types of known
deposits can be used as non-mineralized samples in well-explored areas, whereas random
locations that are geologically constrained could represent non-mineralized samples in
greenfields. In recent years, various sampling techniques, such as undersampling and
oversampling, have been used to select non-mineralized samples [1,32,33]. Prado et al. [33]
used the synthetic minority over-sampling technique and random under-sampling to create
400 training datasets with proportions of mineralized-to-non-mineralized samples ranging
from 600:30 to 30:600.

In this study, SVM and GA were combined to optimize parameter design and develop
a predictive model for mapping Au prospectivity zones in Karamay, NW China. For
this purpose, after constructing five evidence layers from geological and geochemical
data using spatial data processing methods and a prediction-area (P-A) plot [34,35], point
pattern analysis was employed to estimate and randomly select non-mineralized samples
based on the selection criteria. Subsequently, GA–SVM models trained using different
training datasets were employed to delineate target areas and generate binary prospectivity
maps. Ultimately, the F1 score and spatial efficiency were compared between different
prospectivity models to evaluate their performance.

2. Methodology
2.1. Support Vector Machine

Support vector machine (SVM), introduced by Vapnik [23] and proposed for classifica-
tion and regression tasks, is a novel type of machine learning method. SVM is constructed
on the Vapnik–Chervonenkis dimension theory and the structural risk minimization prin-
ciple. In essence, it employs a nonlinear transformation of the inner product function
definition to transform the input space into a high-dimensional space, where it finds the
optimal linear separating hyperplane. A detailed description of SVM can be found in
Cristianini and Shawe-Taylor [36]. Here, a brief summary of SVM is provided.

Given a training set of instance–label pairs (xi, yi), i = 1, 2, . . . , n, where xi ∈ Rd and
yi ∈ {+1,−1}:
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In linearly separable cases, the following optimization problems need to be solved to
find an optimal separating hyperplane:

Minimize :
1
2
‖ω‖2 Subject to : yi(ω·xi + b) ≥ 1, i = 1, 2, . . . n (1)

whereω is a vector normal to the hyperplane, and b is a scalar quantity.
The Lagrangian multipliers method was introduced to solve the aforementioned

problem and obtain a classifying determination function:

f (x) = sign[(ω·xi) + b] (2)

In linear non-separable cases, a non-negative slack variable ξi ≥ 0, i = 1, 2, . . . n, was
introduced, and the equation to be solved became:

Minimize : 1
2‖ω‖

2 + C
n
∑

i=1
ξi

Subject to : yi(ω·xi + b) + ξi ≥ 1, i = 1, 2, . . . n
(3)

where C is the penalty parameter, which has an important effect on the accuracy of the
SVM classifier. This should be predetermined by the user. Similar to the linearly separable
cases, this optimization model can be solved using the Lagrangian multipliers method.

In nonlinear separable cases, the input features are mapped into a new high-dimensional
feature space using a kernel function K

(
xi, xj

)
, transforming it into a linearly separable

case. Several kernel functions, including the polynomial kernel, radial basis function
(RBF) kernel, and sigmoid kernel, are popular. This study used the RBF kernel function
(Equation (4)), which is an effective kernel function with fewer parameters and provides
excellent overall classification performance:

K
(
xi, xj

)
= exp

{
−‖xi − xj‖2/2σ2

}
(4)

where σ is the kernel parameter, which is always greater than zero.

2.2. GA–SVM Model

Genetic algorithm (GA) was first introduced by Holland [24] as an adaptive optimiza-
tion technique based on the Darwinian evolutionary hypothesis of natural selection. The
aim of GA is to find optimum solutions within the potential areas by defining a fitness
function and applying the biological processes of natural selection, crossover, and mutation
to individuals in the population. Compared to traditional algorithms, GA can handle
large search spaces efficiently and is less prone to converging on a locally optimal solution.
Recently, GA has been progressively developed in conjunction with other techniques and
has been applied to many optimization problems [37–39].

Therefore, GA is used to optimize the SVM parameters σ and C based on the process
of natural selection, in which Accuracy is adopted as the fitness function to evaluate the
quality of the solutions. For a two-class mapping of the mineral prospectivity problem, the
classified results can be represented as a confusion matrix (Table 1), which was defined
using Equation (5). To determine the optimal parameters for SVM model, k-fold cross-
validation [40,41] was used to construct a series of independent test datasets for the GA–
SVM model, which was trained with the remaining k − 1 subsets of the training dataset, to
search for the best fitness; k = 5 could achieve an adequate balance between the reliability
of the calculation time and parameter estimation [42]. After repeating the cross-validation
process, the fitness was obtained by calculating the accuracy of each test dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)
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Here, true positives (TP) and true negatives (TN) are the numbers of known min-
eralized samples and known non-mineralized samples, respectively; FP (false positives)
and FN (false negatives) are the numbers of predicted mineralized samples and predicted
non-mineralized samples, respectively.

Table 1. Confusion matrix.

Prediction ‘Mineralized’ ‘Non-Mineralized’
Known

‘Mineralized’ TP FN
‘Non-mineralized’ FP TN

Total TP+FP FN+TN

The proposed GA–SVM model was employed to extract the optimal combined param-
eters of SVM to distinguish between prospective and non-prospective areas. The procedure
involved in the GA–SVM model for MPM is divided into three parts (Figure 1), as follows:

Figure 1. The procedure involved in the GA–SVM model for MPM.

• Data processing. After constructing a geospatial database, geological maps and
geochemical data were analyzed to map five evidence layers and generate training
and testing datasets.

• GA optimization. After setting the initial parameters for GA and SVM, the training
dataset was used to train an SVM model, while the fitness was calculated by k-fold
cross-validation classification accuracy. If the termination conditions were satisfied,
the optimal parameters of SVM were determined. Otherwise, the selection, crossover,
and mutation operations were performed to create a new population, and the GA
optimization process was repeated.
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• Classification. An SVM model was trained with the optimal parameters, and a
prospectivity map was produced. Ultimately, the F1 score and spatial efficiency were
combined to evaluate the classification ability of the GA–SVM model.

2.3. Performance Evaluation

In MPM, although evaluating the prospectivity model’s ability to identify mineralized
and non-mineralized locations is equally important, evaluating mineralized locations often
has greater significance for the following reasons: (1) MPM aims to identify and distinguish
mineralized locations; (2) a mineralized location misclassified as a non-mineralized location
can result in the loss of important mineralization and incur high costs [43]; and (3) non-
mineralized locations always introduce uncertainty, which is often randomly selected.
Therefore, the F1 score [44], which is the harmonic mean of precision and recall, was used
to measure the ability of the prospectivity model to identify mineralized locations:

F1 score = 2× Precision× Recall
Precision + Recall

(6)

Here, precision represents the probability of known deposits being correctly classified
as deposits, and recall represents the probability of known deposits in the total number of
classified deposits, as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

(7)

The relevant parameters are mentioned in Table 1 and Equation (5).

3. Study Area and Evidence Layers
3.1. Study Area

The study area is located in the eastern part of the Tangbale–Hatu belt (western Jung-
gar region, China), part of the eastern extension of the Balkhash–Junggar metallogenic
domain, in which a number of Au deposits were discovered, including Hatu, Qi-II, Qi-III,
Qi-IV, and Qi-V. The study area covers approximately 11,784 km2. The region is charac-
terized by ophiolitic mélanges, Carboniferous volcanic-sedimentary rocks, and granitoid
intrusions (Figure 2). Several ophiolitic mélanges show contact relationships with the
Lower Carboniferous volcanic-sedimentary strata via faults [45]. Extensive Carboniferous
volcanic-sedimentary rock outcrops, which are mostly distributed on both sides of the
Darabut, occur in three successive formations: the Tailegula, Baogutu, and Xibeikulasi
formations (ordered from bottom to top) [46]. The regional structure is dominated by a
series of NE-trending faults. The larger NE-trending faults, namely, the Darabut, Anqi, and
Hatu, constitute the basic framework of the region. Distributed between these large faults
are various-sized granite bodies, including the Akebasitao, Hatu, Miaoergou, and Karamay
plutons, formed 300–280 Ma [47–49]. These granite plutons provided a favorable tectonic
environment for Au mineralization.

Based on the zonal distribution or clustered occurrence of metallogenesis, the study
area can be roughly divided into two metallogenic belts: the Hatu metallogenic belt and
Baogutu metallogenic belt [50,51]. The Hatu metallogenic belt, located north of the Darabut
fault, is an extremely important Au-producing base. The Au occurrences in this belt
are primarily controlled by the fault basin formed by the north-east-oriented Anqi fault
and Hatu fault. Currently, Au deposits with large proven reserves are all located in this
metallogenic belt and the Hatu Au deposit is a representative large-scale deposit. The
Baogutu metallogenic belt is located in the south of the Baogutu fault. The Kuogashaye
Au deposit is representative of its medium-sized Au deposits. The veins in this belt are
primarily distributed around small intermediate-acid intrusive and intermediate dike rocks
and essentially follow the direction of the intermediate dike rock group’s distribution [50].
Thus, based on the synthetic studies of the typical Hatu and Kuogashaye Au deposits,
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a conceptual model for Au mineralization in the study area was proposed, as shown in
Table 2.

Figure 2. Spatial context of the study area: (a) location of Xinjiang in China; (b) location of the study
area in Xinjiang; (c) schematic geological map of the study area (modified after 1:200,000 geological
map).

Table 2. Conceptual Model of Au Deposits in the Study Area.

Metallogenic Factor Description

Regional geological
background

Tectonic
environment

The north-east fault is the main tectonic line in the region. The crustal
uplift and depression transitional zone to the north of the Darabut fault
shows evidence of intense magmatic and volcanic activities and is the

main ore-forming material source of Au deposits.

Intrusive rocks Intermediate-acid intrusive rocks are closely spatially related to mineral
deposits.

Ore-bearing strata The vast majority of Au deposits are located in the Tailegula and Baogutu
Formations of the upper Carboniferous in the Paleozoic.

Ore-forming epoch Middle and late Variscan age

Wallrock alteration Common forms of wallrock alteration include silicification, pyritization,
arsenpyritization, and sericitization.

Regional geochemical field
The geochemistry of this region is dominated by Au anomalies. High

concentrations of Au exist distributed between Toli and Karamay, with
clear concentration centers and zoning.
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3.2. Mapping Evidence
3.2.1. Data

In this study, a spatial dataset was derived from established multi-source geological
spatial databases containing geological and geochemical data. Geological maps at a scale
of 1:200,000 were collected from the Bureau of Geology and Mineral Resources of Xinjiang.
Stream sediment geochemical data at a scale of 1:200,000 were obtained from the National
Geochemical Mapping Project of China, with a sampling density of 1 per 4 km2 [52].

3.2.2. Evidence Layers

The selection of evidence layers requires consideration of the characteristics of Au
deposits, favorable conditions for Au mineralization, and the available data in the study
area. Five evidence layers were used to produce a potential map, as shown in Table 3.

Table 3. Summary of Evidence Layers Used in this Study.

Criteria Evidence Layer Relevance

Geology

Proximity to lithostratigraphic contacts
The ore-forming elements migrate to the lithostratigraphic

contacts and accumulate, resulting in precipitation, enrichment,
and mineralization.

Proximity to NE-trending faults
The region’s main tectonic line runs NE and provides the

driving force, the migration channel, and the depositing space
for the mineral flow.

Fault intersection
density

Fault density reflects the location of frequent magma and
hydrothermal activity, and the frequent superimposition of

ore-forming elements.Fault linear density

Geochemistry PC1 scores generated by singularity
indices of ore-forming elements

Ag, As, Au, and Sb are present in high concentrations above ore
bodies. These elements can be used to differentiate provenance

characteristics, understand the migration and evolution
patterns of elements, and distinguish geochemical anomalies.

In this area, Au deposits are mainly hosted in Carboniferous formations or in contact
with granitoid intrusions. The contacts of the granitoid intrusions and the stratigraphic
units between the Tailegula, Xibeikulasi, and Baogutu Formations were extracted from a
1:200,000 geological map of the study area, and a map of proximity to lithostratigraphic
contacts was produced using Euclidean distance in the ArcGIS environment (Figure 3a).
Similarly, a map of proximity to NE-trending faults was generated (Figure 3b), because
NE-trending faults play a dominant ore-controlling role during Au mineralization. Fault
density, consisting of fault intersection density and fault linear density, reveals the spatial
relationship between the development and accumulation levels of faults and Au deposits.
Here, the fault intersection density and fault linear density were analyzed, and the cor-
responding maps were generated using point density and line density in the ArcGIS
environment, respectively (Figure 3c,d).

The element contents of Ag, As, Au, and Sb obtained from 1:200,000 stream sediment
geochemical data were analyzed using the singularity mapping technique [53] and principal
component analysis (PCA) [54,55]. The singularity mapping technique was implemented
to identify local anomalies of Ag, As, Au, and Sb from geochemical background fields
based on sliding windows in MATLAB. To highlight the inherent relevance of multiple
elements and reduce the uncertainty of each single element, PCA was used to integrate
multi-element singularity indices, based on their correlations to delineate comprehensive
anomalous areas. As shown in Figure 4a, the first principal component (PC1) accounted
for 40.7% of the overall variance, whereas PC2, PC3, and PC4 modeled an additional
23.1%, 21.0%, and 15.2% of the total variance, respectively, indicating the importance of
each component. In addition, the resulting PC1 shows positive loadings on the singular
association of Ag, As, Au, and Sb, which is consistent with the characteristics of the
geochemical anomalies (Figure 4b). Accordingly, PC1 can be used as an evidence layer
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for Au deposits. As shown in Figure 4c, low PC1 scores have a strong spatial association
with most of the known Au deposits. More details on the analytical methods and data
processing can be found in Zhou et al. [56].

Figure 3. Derived geo-evidential layers: (a) proximity to lithostratigraphic contacts; (b) proximity to
NE-trending faults; (c) fault intersection density; (d) fault linear density.

Figure 4. PCA results for the geochemical dataset: (a) Scree plot of the principal component (PC1–
PC4) eigenvalues for singularity indices of ore-forming elements; (b) loadings on principal compo-
nents (PC1–PC3); (c) PC1 scores generated by singularity indices of ore-forming elements.
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4. Application of GA–SVM Model
4.1. Target Variable and Feature Vectors

The application of the GA–SVM model for MPM requires a training dataset with
geological feature vectors of five evidence layers and a target variable to represent mineral
prospectivity. The target variable expresses mineralized locations or non-mineralized
locations with scores of 1 and 0, respectively. For mineralized locations, we used 24 known
Au deposits to ensure classification accuracy. For non-mineralized locations, we used
point pattern analysis [57,58] to analyze the nearest-neighbor distances between every
pair of deposits within the study area to determine the optimal distance from known
deposits at which the probability of finding a deposit decreased. In this study, most of the
nearest-neighbor distances were less than 14.5 km, and there was only one outlier. Thus,
14.5 km is regarded as the optimal distance for the selection of non-mineralized samples.
In addition, to obtain a balanced dataset, the number of non-mineralized samples should
be the same as the number of known Au deposits. To this end, we created four training
datasets, each consisting of 24 randomly selected non-mineralized samples, according to
the selection criteria used by Carranza et al. [30]. Figure 5 shows the spatial distribution of
the four training datasets.

The feature vector is a multidimensional numeric vector representing a combination
of the attributes of evidence layers in a specific location. In this study, the attributes of the
five evidence layers were encoded as either 1 or 0, where 1 and 0 indicate favorable and
unfavorable conditions for Au mineralization, respectively. Consequently, to obtain binary
patterns for the evidence layers used in the GA–SVM model, it was necessary to define the
optimum threshold for classifying the maps. The P-A plot, which is a simple prediction
rate-occupied area plot [34,35], was employed to determine the optimum thresholds with
respect to the evidence layers. When the intersection point of two curves is high in a
P-A plot, it portrays a small area containing a large number of mineral deposits. In this
study, the P-A plot consisted of the curve of the percentage of known mineral occurrences
corresponding to the classes of the evidence layer and the curve of the percentage of
occupied areas corresponding to the classes of the evidence layer. Therefore, the location
of the intersection point in the P-A plot could guide us in finding the binary pattern of
evidence layers for Au mineralization. Figure 6 shows that (1) the optimum distances
between the location of Au deposits and lithostratigraphic contacts and NE-trending faults
are 1028.63 and 1108.10 m, respectively; (2) the optimum densities between the location
of Au deposits and fault intersection density and fault linear density are 0.10 and 0.35,
respectively; and (3) the optimum cutoff value between the location of Au deposits and PC1
scores was 22.1. According to the above optimal values and spatial associations between
each evidence layer and the known Au deposits, all the evidence layers were encoded and
combined to generate 2968 feature vectors.

4.2. Mineral Prospectivity Mapping

The GA–SVM model implemented in this study was programmed using the LIBSVM
package [59] as a supplementary tool in MATLAB. The GA–SVM model with the parame-
ters shown in Table 4 was used to search for the kernel parameter σ of RBF and the penalty
parameter C of SVM (Figure 7), and the best fitness values corresponding to the optimal
parameters of SVM were obtained (Table 5). Prospectivity models were established using
these optimal parameters to determine the spatial associations between evidence layers and
mineralized locations and produce prospective maps for mineral exploration (Figure 8).
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Figure 5. Maps show the locations of four training datasets: (a) training dataset 1; (b) training dataset 2; (c) training dataset
3; (d) training dataset 4.

Figure 6. Prediction-area (P-A) plots for evidence layers: (a) proximity to lithostratigraphic contacts; (b) proximity to
NE-trending faults; (c) fault intersection density; (d) fault linear density; (e) PC1 scores generated by Ag, As, Au, and Sb.
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Table 4. Parameters used for the GA–SVM models.

Parameter Description Value

maxpop Maximum number of population 50
maxgen Maximum number of Generation 200

C The penalty parameter of SVM 0–100
σ The kernel parameter of RBF for SVM 0–100
k k-fold cross-validation 6

Table 5. The optimal parameters of the SVM model, based on GA.

Parameters Training Dataset 1 Training Dataset 2 Training Dataset 3 Training Dataset 4

Best 0.0947 93.0015 0.1940 50.5152
Best C 2.3241 2.1234 0.0547 1.2698

Accuracy 83.33% 75% 77.08% 75%

Figure 7. The parameters searching process of GA: (a) training dataset 1; (b) training dataset 2; (c) training dataset 3;
(d) training dataset 4.
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The confusion matrices and F1 scores for the individual models are presented in
Table 6 to demonstrate the performance evaluation results of the GA–SVM model presented
in this study. In terms of the confusion matrices, most of the known deposits were classified
accurately, and the highest precision was 0.96. In addition, the results show that the F1
score based on training dataset 2 was the highest, indicating that it had the greater ability
to distinguish mineralized locations than the other models.

Although the F1 score provides a proxy for measuring the classification ability of
the GA–SVM models, it cannot assess the spatial efficiency of the prospectivity model
classifications [33]. Therefore, the number of known deposits in the prospectivity area and
the percentage of occupied areas corresponding to the prospectivity area for each prospec-
tivity model were calculated to measure the relative spatial efficiency. From the statistical
comparison between the GA–SVM models with the four training datasets (Table 7), it is
obvious that the GA–SVM model that used training dataset 2, which occupied the largest
area of the study area, had a larger number of known Au deposits, accounting for the
poor spatial efficiency of the prospectivity model, although the F1 score was the highest.
This may have resulted from overfitting. In contrast, although the lowest F1 score was
obtained for the GA–SVM model trained using training dataset 3, it was more efficient
in its classification than the other models. This illustrates that the prospectivity model is
sensitive to randomly selected non-mineralized samples.

Figure 8. Prospectivity maps generated using GA–SVM model: (a) training dataset 1; (b) training dataset 2; (c) training
dataset 3; (d) training dataset 4.
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Table 6. Performance metrics for the GA–SVM models.

Known Training Dataset 1 Training Dataset 2 Training Dataset 3 Training Dataset 4

Prediction A B A B A B A B

A 18 2 22 2 18 4 23 5
B 6 22 2 22 6 20 1 19

Precision 0.75 0.92 0.75 0.96
Recall 0.9 0.92 0.82 0.82

F1 0.82 0.92 0.78 0.88
A: Mineralized samples; B: Non-mineralized samples.

Table 7. Statistical results for the GA–SVM models.

Training Dataset 1 Training Dataset 2 Training Dataset 3 Training Dataset 4

Number of known deposits 18 22 18 23
Prospective area (%) 25.24% 43.56% 25.13% 35.68%

The prospectivity model with training dataset 4 was the best in terms of both the F1
score and the spatial efficiency of the classification, as it reduced the target area of the study
area while predicting the same number of known deposits and exhibited good performance
in identifying mineralized locations. The prospective areas in Figure 8d occupied 35.68% of
the study area and contain 95.83% of the known Au deposits. From the perspective of the
spatial domain, the spatial distribution of the best prospectivity map (Figure 8d) showed
a spatial correlation with proximity to NE-trending faults, which is consistent with the
model of Au mineralization.

5. Conclusions

This study employed a hybrid support vector machine (SVM) model with genetic
algorithm (GA) to discriminate between prospective and non-prospective areas for Au
deposits in Karamay, northwest China. The findings support the following conclusions:

• Since SVM generalization performance is heavily dependent on parameters σ and C,
it is necessary to adopt GA as an objective function to select better combinations of
the two parameters for SVM.

• Owing to the characteristic of P-A plot, it can be used for classifying evidence layers
into binary patterns. It is important to note that the knowledge of the metallogenic
model should be applied to differentiate favorable and unfavorable areas in the binary
maps.

• A key procedure in implementing the GA–SVM model was the selection of the
training dataset, especially the ‘non-mineralized’ locations. In complex geological
environments, it is impossible to identify non-mineralized locations; thus, point
pattern analysis is a useful measure for determining the optimal distance at which
non-mineralized locations can be randomly selected based on the selection criteria.

• The performance of the GA–SVM model for distinguishing prospective areas in the
study area was evaluated using both the F1 score and spatial efficiency. The best
prospectivity model predicted 95.83% of the known Au deposits within prospective
areas, occupying 35.68% of the study area.

• The best prospectivity map, as classified by the GA–SVM model, displayed a strong
spatial correlation between prospective areas and proximity to NE-trending faults.
This conforms to the characterization of spatial associations between geological fea-
tures and Au deposits, indicating that the results emphasize the strong control of Au
mineralization by NE-trending faults within the study area.
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