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Abstract: Building information modeling (BIM), with detailed geometry and semantics of the indoor
environment, has become an essential part of smart city development and city information mod-
eling (CIM). However, visualizing large-scale BIM models within geographic information systems
(GIS), such as virtual globes, remains a technological challenge with limited hardware resources.
Previous methods generally removed indoor features in a single-source (BIM) scene to reduce the
computational burden from outdoor views, which have not been applied to the multi-source and
-scale geographic environment (e.g., virtual globes). This approach neglected special BIM semantics
(e.g., transparent windows), which may miss a part of geographic features or buildings and cause
unreasonable visualization. Besides, the method overlooked indoor visualization optimization,
which may burden computing resources when visualizing big and complex buildings from indoor
views. To address these problems, we propose a semantics-based method for visualizing large-scale
BIM models within indoor and outdoor environments. First, we organize large-scale BIM models
based on a latitude-longitude grid (LLG) in the outdoor environment; a multilayer cell-and-portal
graph is used to index the structure of the BIM model and building entities. Second, we propose a
scheduling algorithm to achieve the integrated visualization in indoor and outdoor environments
considering BIM semantics. The application of the proposed method to a multi-scale and -source en-
vironment confirmed that it can achieve an effective and efficient visualization for huge BIM models
in indoor-outdoor scenes. Compared with the previous study, the proposed method considers the
BIM semantics and thus can visualize more complete features from outdoor and indoor views of BIM
models in the virtual globe. Besides, the study only loads as visible data as possible, which can retain
lower the volume of increased geometry, and thus keep a higher frame rate for the tested areas.

Keywords: building information modeling; geographic information system; large-scale visualization;
semantics

1. Introduction

The integration of building information modeling (BIM) and geographic informa-
tion systems (GIS) has become a research focus [1–3]. Visualization lays the foundation
of BIM-GIS integration, and is necessary for fields such as indoor/outdoor route analy-
sis and navigation [4–6], three-dimensional (3D) cadaster [7–9], and urban environment
analysis [10,11].

In recent years, there has been a considerable research focus on integrated BIM-
GIS visualization, which includes two main steps: data organization and scheduling
optimization. Previous studies have mainly discussed index structures in single-source
(BIM-only) scenes for data organization. For example, Varduhn et al. (2011) organized
large-scale BIM using an octree index structure. Liu et al. (2016) proposed a sparse
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voxelization method to generate a scene index structure concerning large-scale BIM models;
their method mainly indexes buildings’ exterior products and interior products with
pre-calculated voxel size, which adapts to a single-scale environment. However, 3D GIS
(e.g., virtual globes) involves geographic environments constructed using multi-scale data
(e.g., terrain, satellite imagery, and 3D city models), which are organized using discrete
global grids for efficient processing and visualization [12,13]. Previous studies focused on
visualizing single or a few BIM models in the 3D GIS (i.e., virtual globes) based on local
index-structures [14,15].

Besides, there are significant technological challenges when applying a large number
of BIM models to the geographic environment with limited hardware resources. Previous
studies have generally reduced geometric data by mesh simplification or by conversion
to lower level of detail (LOD) models [16,17]. However, these approaches can change
topological relationships between indoor spaces and the geometric accuracy of the build-
ing [18]. To address this issue, some studies have extracted exterior entities from BIM
models, which can dynamically reduce geometric information by removing non-exterior
entities from outdoor views. Moreover, when entering into the indoor space, it is possible
to load indoor entities and even remove other BIM models from outdoor scenes [18,19].
However, previous algorithms face the following two problems. First, current methods
directly remove occluded features and neglect special BIM semantics (e.g., transparent
window or open door), which may lose some geographical features. Specifically, previous
methods cannot observe complete outdoor scenes near windows from indoor views, and
cannot see complete indoor information near windows from outdoor views, which causes
an unreasonable roaming process and limits the spatial analysis and application in the
smart city. For example, a previous study lost a part of exterior building features, and thus
could not support solar radiation and lighting analysis (such as the interior solar shading
analysis) in the green building [20]. Second, the algorithms explicitly did not focus on the
visualization optimization in the indoor space further, which may have heavy hardware
resources when loading large and complex indoor buildings from indoor views. Therefore,
we noticed that the indoor environment can be divided into multiple enclosed spaces, and
other invisible indoor spaces (e.g., rooms) removed by the current location of the indoor
view would efficiently reduce data volume.

In this study, we developed a semantics-based method for visualizing large-scale BIM
within the indoor-outdoor geographic environment. First, we created a hybrid index to
better organize large-scale BIM models: On one hand, we employed LOD strategy and
longitude-latitude grid (LLG)-based spatial index to organize large-scale BIM models,
which adapt to the virtual globe [21]. On other hand, according to the data structure of
the BIM model, we took a multilayer cell-and-portal graph index each space and entities
inside the BIM model. Second, we proposed a semantic-based scheduling algorithm for
indoor/outdoor scenes to achieve the integrated visualization in indoor and outdoor
environments (multi-source and -scale environments). The algorithm can easily and
rapidly judge the indoor/outdoor environment by BIM semantics (i.e., indoor space named
IfcSpace). Then it can observe realistic indoor-outdoor environments from “visibility”
entities (such as a transparent window or open door) and retain a lower computing burden
by taking out-of-core rendering technology to reduce the burden, combined with the
proposed hybrid index and view-frustum culling.

2. Related Work
2.1. Data Organization for Visualizing Building Information Modeling (BIM) Models in
Three-Dimensional Geographic Information Systems (3D GIS)
2.1.1. Level of Detail (LOD)-Based Data Organization

Previous studies have mainly converted BIM models into CityGML models by estab-
lishing relationships between BIM in the Industry Foundation Classes (IFC) format and
CityGML [22–24]. However, LOD models in CityGML employ a discrete LOD strategy;
lower LOD models require geometric simplification of the original model and thus lose
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geometric accuracy. Besides, Xu et al. (2020) organized four LOD models according to the
building type, which retains the geometric accuracy of each building entity. However, such
strategies focus on the organization of individual BIM models and neglect the organization
of the building entities from the perspective of indoor visualization.

2.1.2. Index-Based Data Organization

Compared with LOD-based data organization, index-based data organization can
index fine-grained building elements or spatial structures of BIM models. For example,
Varduhn et al. (2011) employed an octree index for large-scale BIM models for positioning
and dynamic scheduling in huge scenes. However, this approach neglects possible indoor
structures of the building. Therefore, Liu et al. (2016) proposed a double-layered sparse
voxel (DLSV) structure for data indexing, which mainly uses sparse voxelization by setting
a fixed voxel size to build the scene index without any loss of scene detail. This method
essentially indexes exterior and interior products separately to organize indoor-outdoor
scenes. However, this method only separates the building into indoor and outdoor parts,
but lacks the further subdivision of indoor spaces. As such, this strategy may overburden
limited hardware resources for loading large and complex indoor buildings.

Moreover, ArcGIS and Cesium can support large-scale BIM models visualization by
converting IFC data into specific tree-index in specific data formats such as Indexed 3D
Scene Layer(I3S) and 3DTiles [15,25]. However, relevant methods focused on visualizing
single or a few BIM models in the virtual globe by local tree-index structures.

Therefore, we created a hybrid index to better organize large-scale BIM models: On the
one hand, we employed LOD strategy and LLG-based spatial index to organize large-scale
BIM models. In particular, LLG-based spatial index (a global index-structure used by
mainstream virtual globe platforms) can give each extent global coding for each level, extra
BIM models can easily fuse into the 3D GIS. On the other hand, according to the data
structure of the BIM model, we took a multilayer cell-and-portal graph index each space
and entity inside the BIM model, which further is subdivided into indoor spaces.

2.2. BIM-Based Scheduling Algorithm for Indoor and Outdoor Scenes

BIM-based scheduling algorithms for indoor and outdoor scenes can be separated
into LOD-based scheduling algorithms and index-based scheduling algorithms.

2.2.1. LOD-Based Scheduling Algorithms

Using LOD-based organization, these algorithms can dynamically select and load an
appropriate LOD model according to the distance between the viewpoint and the model
center. There are two possible approaches, discrete and continuous LOD-based scheduling
algorithms. However, in general, these approaches lack optimization strategies for the
indoor structure of the BIM model. As such, it is not possible to significantly reduce the
computing burden for BIM models with complex indoor structures and a large volume
of geometric data. On this basis, this approach cannot efficiently meet the demand for
indoor visualization.

2.2.2. Index-Based Scheduling Algorithms

In index-based data organization, algorithms can dynamically load building entities
based on viewpoint distance and visible range. For example, a previous study dynamically
loaded the BIM model based on an octree index structure neglecting indoor structures [26].
Generally, progressively loading a building’s exterior products from outdoor views. But
when roaming into indoor space, the whole product of building would be loaded, which
may increase the burden of hardware. Therefore, Liu et al. (2016) proposed a scheduling
algorithm called Incremental Frustum of Interest (I-FOI) based on DLSV to progressively
load a building’s exterior products from outdoor views, to load indoor products, and to
remove other BIM models from indoor scenes. However, the previous algorithm simply
eliminated the invisible entities and ignored BIM semantics (such as translucent windows),
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which may cause unreasonable BIM-GIS visualization especially of an indoor environment.
For example, other BIM models are removed directly from indoor views, and realistic and
complete scenes near windows cannot be observed. When observing the interior space from
outdoor views, the indoor entities cannot be loaded. Undoubtedly, this approach limits the
subsequent analysis and application. For example, the previous methods cannot support
the solar radiation and lighting analysis, because of the lack of interior and exterior building
entities [20]. Moreover, previous research neglected the indoor visualization optimization,
and explicitly did not unload other spaces (e.g., rooms) by the current location of the indoor
space, which would increase the computing burden for loading big and complex buildings.

Therefore, we propose a semantics-based method for visualizing large-scale BIM
models within indoor and outdoor environments. This study decreases the computing
burden in the indoor and outdoor views, improve the realistic features, which can lay
the foundation of analysis and application. For example, the proposed method can easily
provide related building features from indoor and outdoor views, and thus can easily
support solar radiation and lighting analysis (such as interior and exterior solar shading
analysis) in the green building.

3. Materials and Methods
3.1. BIM Semantics

BIM semantics mainly describe architectural details (more than 600 definitions of
building entities and 300 definitions of component types) and semantic connections be-
tween various building entities [14,27]. As seen in Figure 1, a hierarchical project structure
defined by BIM/IFC comprises a well-defined set of semantic information, which includes
basic building entities (e.g., IfcProject, IfcSite, IfcBuilding, IfcBuildingStorey) and the rela-
tionship called IfcRelAggregates. IfcWindow is associated with properties such as color
and transparency via IfcSurfacStyleRendering and other semantics. A detailed description
can be found in the IFC4 standard [28].
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Figure 1. Building information modeling (BIM)/Industry Foundation Classes (IFC) data organization.

For a better explanation, we define the term “visibility” based on BIM semantics. And
the term “visibility” represents portal entities and relevant attributes affecting the visible
range of viewpoints in the building. Specifically, when “visibility” is true, the building
type is a portal entity, and spaces connected by the portal are visible to each other (e.g., the
opening-closing state of the door is open; Table 1).
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Table 1. Definition of “visibility”.

Class IFC Type Description

Portal entity
IfcDoor Door

IfcWindow Window
IfcStair Stair

Property
IfcSurfaceStyleShading Transparency (value between 0 and 1)

IfcSurfaceStyleRendering Transparency (value between 0 and 1)

IfcProperty Custom property (e.g.,
opening-closing state of door)

3.2. Semantic-Based Data Organization for Large-Scale BIM Models in 3D GIS

We investigated semantic data organization for large-scale BIM models in 3D GIS.
Previously, georeferencing has linked local coordinates inside the BIM model with cor-
responding real-world coordinates, by which a single building or construction is placed
within the geographical environment [29–32]. However, to address the technological chal-
lenge of visualizing large-scale BIM models in indoor/outdoor GIS with limited computing
resources, we proposed a two-part data organization approach. For the indoor space,
we refined the BIM model to construct an index structure (i.e., multilayer cell-and-portal
graph) according to BIM/IFC semantics [33]. For the outdoor scene of the building, we
extended the exterior building entities of the BIM model based on a LLG index on a virtual
globe, and achieved scheduling in a multi-source and multi-scale environment [12,34].

3.2.1. Semantic-Based Data Organization for Indoor Scenes in BIM Models

As shown in Figure 2, according to the IFC structure, we proposed a multilayer cell-
and-portal graph for data index, represented by G(V, E). The IfcSpace or outdoor space is
abstracted as a node of the spatial structure Vcell . The node adds type, FID, and building
entities associated with the associated space.
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Figure 2. Multilayer cell-and portal graph.

Portal entities (e.g., IfcWindow, IfcDoor, and IfcStair) define portal nodes (Vportal) in
the graph (e.g., type, FID, and “visibility”, as described in Section 3.1). The edge in the
graph represents the connection between nodes. Each building floor (IfcBuildingStorey)
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can create a single-layer cell-and-portal graph, and then floors are associated with each
other through Vportal(type = I f cStair), which finally forms the multilayer cell-and-portal
graph in the BIM model.

The Vcell(type = I f cSpace) can obtain related building entities based on semantics.
For example, we can extract entities making up the room (or corridor) from the IfcRelSpace-
Boundary in Figure 2. The related entities are stored in the Table(FID, FIDs), where FID
denotes the unique identifier of IfcSpace, and FIDs represent unique identifiers of building
entities. Similarly, Vportal stores two associated Vcell in the Table(FID, FID), where FID in-
dicates the unique identifier of IfcSpace. When FID = −1, Vcell represents outdoor scenes.

3.2.2. Semantic-Based Data Organization for Outdoor Scenes in BIM Models

As shown in Figure 3, exterior building entities (ExteriorBIM) first are obtained from
each BIM model using previous algorithms that aim to reduce the computing burden [18,19].
Then, similar to other multi-scale GIS data sources (e.g., terrain, satellite imagery, and
oblique aerial images) in virtual globes, we employ the LLG-based tile pyramid of the dis-
crete global grid to organize the ExteriorBIMs [12,34]. The ExteriorBIM in the upper-level
tile is simplified geometrically by the ExteriorBIM in the lower-level tile. Explicitly, the
multilayer cell-and-portal graph index building entities inside the ExteriorBIM (Figure 2)
and the portal node in the ExteriorBIM have the following property: FID = −1 in two
associated Vcell .
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Figure 3. Data organization for large-scale Building Information Modeling (BIM) models in
outdoor scenes.

The geometric simplification means that the ExteriorBIM is classified into different
levels according to semantics, and each level contains entities of specified semantics. As
shown in Table 2, we generated four LOD models from the ExteriorBIM by IFC type. The
continuous LOD strategy is inspired by Xu et al. (2020). For example, the LOD1 model
only includes building entities named IfcSite. The LOD2 model consists of building entities
named IfcSlab, IfcRoof, and IfcSite from the LOD1 model. Each LOD model includes an
index table Table(FIDs, LOD), in which FIDs represents unique identifiers of building en-
tities, LOD indicates the tile level, and Table(FIDs, LOD) indexes the relationship between
tiles and LOD. When LOD = 4, ExteriorBIM(LOD) = ExteriorBIM.
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Table 2. Hierarchical level of detail (LOD) for Building Information Modeling (BIM) models.

Level IFC Type Geometric Type

LOD1 IfcSite Body
LOD2 IfcSlab, IfcRoof Body
LOD3 IfcWall, IfcColumn Body
LOD4 Other entities Body

In particular, tiles and ExteriorBIM(LOD) only are used as indices, and the geometry
and semantics still are stored in the BIM model. The loading and rendering the BIM model
depends on the distance from the viewpoint to the model center when browsing scenes.

3.3. Semantic-Based Scheduling Algorithm for Indoor/Outdoor Scenes in 3D GIS

According to the data organization in Section 3.2, we developed a semantic-based
scheduling algorithm for indoor/outdoor scenes in 3D GIS (Algorithm 1). Algorithm 1
includes the following parts based on scene types: (1) semantic-based scheduling algorithm
for indoor scenes in 3D GIS, (2) semantic-based scheduling algorithm for outdoor scenes in
3D GIS.

Since different method are used in different scene types, we first proposed a ray
intersection algorithm to determine the current scene type. As shown in Figure 4, we
constructed the central ray between the viewpoint and central point of the camera. The
intersection result can identify the scene type. For example, when the ray intersects with
the model and the first intersection is the IfcSpace, the scene type is indoors, otherwise it is
outdoors. ExteriorBIMs organized by an LLG-based tile pyramid can be quickly traversed
to obtain visible data combined with view-frustum culling; this reduces the time needed to
update the results [33].

Algorithm 1. Semantic-based scheduling algorithm for indoor scenes in 3D GIS

Input: Camera; Root node of LLG-based tile pyramid.
Output: BIM-GIS visualization.
1: Initialize the potential visibility set : PVS = NULL; Set type(environment) = outdoor.
2: Calculate the current extent Extent(lonmin, latmin, lonmax, latmax) from the camera.
3: Traverse LLG− based tile pyramid according to Extent, and thus obtain visible tile set Tiles.
4: for each Tile in Tiles
5: Obtain ExteriorBIMs from Tile.
6: for each ExteriorBIM in ExteriorBIMs

7:
if the central ray from camera intersect with ExteriorBIM and the type of first

intersection is IfcSpace
8: type(environment) = indoor, go to Step2.
9: end if
10: end for
11: end for
12: if type(environment) = indoor
13: Step1. semantic-based scheduling algorithm for indoor scenes in 3D GIS, return PVS.
14: else
15: Step2. semantic-based scheduling algorithm for outdoor scenes in 3D GIS, return PVS.
16: end if

17:
Send PVS in the central processing unit (CPU) to the graphic processing unit (GPU) for
model rendering.
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3.3.1. Semantic-Based Scheduling Algorithm for Indoor Scenes in 3D GIS

For visualizing large-scale BIM models in indoor scenes, two issues must be addressed:
(1) retaining only currently visible interior building entities from indoor views to reduce
the computing burden; and (2) for the realistic visualization, the algorithm must iden-
tify the “visibility” to decide whether to load associated multi-scale GIS data, such as
ExteriorBIM(LOD) and oblique aerial images.

We proposed a semantic-based scheduling algorithm for indoor scenes in 3D GIS (Al-
gorithm 2). This algorithm includes three key steps. First, building entities associated with
the current IfcSpace are obtained according to the camera combined with the multilayer
cell-and-portal graph (see Section 3.2.2); the entities are added to the PVS. Second, “visibil-
ity” is recognized by a similar method as described in Section 3.3.1, and used to determine
whether the associated information is loaded. As shown in Figure 5, if “visibility” is false,
the far plane of the camera is set as the diameter of the bounding sphere from the BIM
model (Figure 5a); if “visibility” is true, the far plane is expanded, and associated entities
and other multi-scale GIS data are added into the PVS by view-frustum culling (Figure 5b).
Finally, the PVS is sent to the GPU for drawing.
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Algorithm 2. Semantic-based scheduling algorithm for indoor scenes

Input: Camera; IfcSpace; threshold = 10,000.
Output: PVS.
1: Set PVS = NULL and Distance = 0.
2: Obtain building entities associated with IfcSpace and insert into PVS by Section 3.2.2.

3:
Construct multiple rays parallel to the center ray in algorithm 1 around the view and obtain
the intersection entity set Set.

4: for each building entity in Set
5: if “visibility” is true
6: Obtain other FID associated with the portal node by Table(FID, FID).
7: if FID 6= −1

8:
Obtain associated entities inside the BIM model, and add them into PVS by

Table(FID, FIDs).
9: Distance = 2× radius.
10: else
11: Distance = threshold.
12: end if
13: end if
14: end for

15:
Set the distance of the far plane inside the camera is Distance, and add other ExteriorBIMs
into PVS by view-frustum culling.

16: return PVS.

3.3.2. Semantic-Based Scheduling Algorithm for Outdoor Scenes in 3D GIS

For visualizing large-scale BIM models on a virtual globe, a number of issues should
be considered. First, efficient scheduling for BIM models combined with multi-scale GIS
data (terrain, satellite imagery, and oblique aerial images) needs to be addressed. Second,
the algorithm recognizes the semantic information from BIM/IFC, and then determines
the “visibility” in the current view to realize a realistic visualization. For example, if there
are transparent windows in the current scene, the associated entities in the indoor space
should be loaded.

We proposed a semantic-based scheduling algorithm for outdoor scenes in 3D GIS,
which is based on the scheduling algorithm in a virtual globe (Algorithm 3). First, visible
ExteriorBIM(LOD)s and multi-source GIS data can be filtered in the current view; they
are then added into the potential visibility set (PVS). In particular, based on the LLG-based
tile pyramid, the algorithm can quickly obtain the PVS by view-frustum culling and can
remove invisible data in time. Second, the algorithm identifies semantics (building type
and property inside the BIM/IFC) to determine whether to load interior building entities.
As shown in Figure 6, the algorithm generates multiple rays parallel to the central ray to
intersect with ExteriorBIM(LOD), and thus to acquire “visibility”. If “visibility” is true,
the algorithm adds the interior entities to PVS through the multilayer cell-and-portal graph
(see Section 3.2.2). Finally, the PVS is sent to the GPU for rendering.
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Algorithm 3. Semantic-based scheduling algorithm for outdoor scenes

Input: Camera; Scene root.
Output: PVS.
1: Set PVS = NULL and threshold = 15.
2: Obtain visible ExteriorBIM(LOD)s and other GIS data sources by view-frustum culling.
3: for each ExteriorBIM(LOD) in ExteriorBIM(LOD)s.

4:
Calculate the distance from the viewpoint to the ExteriorBIM(LOD)cener.
Entities of LOD models are added to PVS by Table(FIDs, LOD) from

ExteriorBIM(LOD).
5: end for

6:
Construct multiple rays parallel to the center ray in algorithm 1 around the view and intersect
with each model in ExteriorBIM(LOD).

7: if rays intersect with a portal node and the intersected distance is less than threshold
8: if “visibility” is true
9: Obtain ID of the IfcSpace associated with the portal node.

10:
Obtain associated entities associated with the IfcSpace, and add them into PVS

according to Table(FID, FIDs).
11: end if
12: end if
13: return PVS.
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4. Results
4.1. Experimental Setup

To verify the validity of our proposed approach, the method was implemented in
IfcPlusPlus for parsing IFC files and osgEarth, which is an open-source virtual globe. Ex-
periments were conducted on a laptop with an Intel® Core(TM)® CPU i7-8750H @2.20GHz
(Intel, Santa Clara, CA, USA), with one NVIDIA GeForce GTX1060 (NVIDIA, Santa Clara,
CA, USA) and 8GB RAM (Samsung, Seongnam City, Gyeonggi Province, Korea).

As shown in Figure 7, different types of GIS data are available for the experimental
region, located in China (labeled in yellow in Figure 7); these mainly include global satellite
imagery from Google, oblique aerial images of ~2.51 GB in size, and BIM models. The
ExteriorBIM was extracted from the original IFC data, and divided into a four-level LOD
hierarchy, in which the maximum visible distance is 1000 m. Building entities of the IfcSite
were loaded when the distance was 1000 m(LOD1 model), and all building entities from
ExteriorBIM were loaded when the distance was 50 m(LOD4 model). Detailed geometric
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information for the experimental BIM model are given in Table 3. Note, limited by the
number of experiment data models, the experimental model was repeatedly loaded into
the virtual globe 402 times to form large-scale BIM models in the virtual globe. The total
data volume (of ~4.06 GB) included 180,614,400 vertices and 70,216,000 triangles.
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Table 3. Statistical results for the experimental model.

Type No. of IfcProduct No. of
Vertices No. of Triangles Visible

Distance (m)

Original BIM
model 785 451,536 175,540 -

LOD1 model 1 1092 436 500~1000
LOD2 model 27 4356 1712 200~500
LOD3 model 75 107,456 40,567 50~200
ExteriorBIM

(LOD4 model) 282 209,800 80,508 <50

4.2. Validity Analysis of Large-Scale BIM Models in the Virtual Globe

To verify that our method can visualize huge BIM models in the virtual globe, the red
area and cyan area in Figure 7 are selected to record the rendering efficiency of large-scale
BIM models loaded at different distances. The average frames per second (FPS) at different
distances can be found in Figure 8. Obviously, the average frame rate of both areas is higher
than 60 FPS. Among them, the red area contains oblique aerial images and large-scale BIM
models, and the average frame rate of this area is more than 83.60 FPS. Visual result about
part results can be shown in Figure 8; The cyan area only contains BIM model data, and the
average frame rate of this area is 78.28 FPS, and Figure 9 shows the part result; The cyan
area only contains BIM model data, and the average frame rate of this area is 78.28 FPS,
and visual results can be found in Figure 10. Therefore, the proposed method can maintain
a higher frame rate from outdoor views when loading huge BIM models in the virtual
globe, according to the above experiments.
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4.3. Comparative Analysis of Experimental Results

Given that the method of Liu et al. (2016) optimizes the visualization of outdoor and
indoor scenes, and also is a common strategy, we used it for the comparison with our
proposed method. Note, we mainly simulated the indoor or outdoor visualization strategy
for Liu’s method in the virtual globe.

4.3.1. Visualizing Outdoor Scenes

As shown in Figure 11, we selected two experimental areas with transparent windows
for comparative analysis (labeled in green in Figure 11).
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Using the Liu et al. (2016) method (Figure 12), when the viewpoint is located outdoors,
interior building entities cannot be loaded when observing through a window. In contrast,
using the proposed method, interior entities corresponding to the window are loaded when
the viewpoint is close to the model and there is a transparent window (Figure 13).
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Figure 13. Results of the proposed method. (a) Area 1 and (b) area 2 of Figure 11.

When loading the interior entities inside the model at a close distance, our method
inevitably increases the geometric data compared with the Liu et al. (2016) method.
However, only entities associated with the portal are loaded, and the volume of increased
geometry is limited (Table 4).
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Table 4. Statistical results for the experimental test.

Experimental Area IfcProduct Number No. of Vertices No. of Triangles

Area 1 8 3418 1304
Area 2 11 3938 1507

As shown in Table 4, the numbers of incremental triangles relative to the original
data for area 1 and area 2 were just 1.62% and 1.87%, respectively. For area 1, the aver-
age frames per second (FPS) before and after loading were 59.07 and 62.68 (Figure 14),
respectively; for area 2, the average FPS before and after loading were 64.82 and 62.02
(Figure 15), respectively. The lack of significant change in FPS verifies the effectiveness of
our proposed method.
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4.3.2. Visualizing Indoor Scenes

The visualization of indoor GIS scenes mainly includes two cases: (1) the outdoor
space is visible from the viewpoint and (2) the outdoor space is not visible from the
viewpoint. These scenarios were compared using the Liu et al. (2016) method (Figure 16)
and our proposed method (Figure 17).
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When the outdoor scene is visible, the Liu et al. (2016) method results in an incomplete
and unrealistic environment (Figure 16a), because it removes all outdoor models from
indoor views, ignoring BIM/IFC semantics such as IfcWindow and transparency. In
contrast, when the outdoor scene is not visible, interior entities are loaded completely
(Figure 16b). In contrast, when using our proposed method, visible data (e.g., BIM models
and oblique aerial images) were loaded and ensure a realistic environment when the
view outdoors is visible (Figure 17a). When there is no view outdoors (Figure 17b), the
visualization result is the same as those using the model of Liu et al. (2016).

Table 5 compares the statistical results for the different methods when the outdoor
scene is not visible. The result proved that our method effectively reduced the geometric
information: the building entities decreased by 735, and numbers of vertices and triangles
were reduced by 421,176 and 163,963. In summary, our proposed method not only loads
visible entities to indoor views, but also effectively reduces the computing burden by
removing invisible indoor spaces in the building.

Table 5. Statistical information for interior building entities when the outdoors is not visible.

Experimental Area IfcProduct Number No. of Vertices No. of Triangles

Proposed method 50 30,360 11,577
Liu et al. (2016) 785 451,536 175,540

As shown in Figure 18, the average FPS over 1 min for the Liu et al. (2016) method
and the proposed method were similar (~100 FPS).
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Table 6 compares the statistical results for the different methods when the outdoor
scene is visible. Using our proposed method, the building entities decreased by 453, the
number of vertices decreased by 211,376, and number of triangles decreased by 83,455.
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Table 6. Statistical information for all building entities when the outdoors is visible.

Experimental Area IfcProduct Number No. of Vertices No. of Triangles

Proposed method 332 240,160 92,085
Liu et al. (2016) 785 451,536 175,540

As shown in Figure 19, the average FPS over 1 min for the Liu et al. (2016) method
higher than that of for our proposed method was (~100 FPS; lowest value = 98.64 FPS).
These results confirm that our proposed method can more effectively ensure a realistic
effect and simultaneously maintain a high frame rate.
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5. Conclusions

For integrated visualization of BIM and 3D GIS, an outline culling algorithm can
remove all occluded entities inside the BIM model from outdoor or indoor views; this
reduces the geometric data volume while retaining the geometric accuracy and spatial
characteristics of the BIM [18,19]. Nonetheless, previous studies have neglected special
BIM semantics, and simply eliminated all building entities from indoor views or removed
interior building entities from outdoor views, which resulted in a loss of geographic
features and led to unreasonable visualization. Moreover, the methods explicitly did not
focus on the visualization optimization in the indoor space, which may have required
significant hardware resources for loading large and complex indoor buildings.

Therefore, we proposed a semantics-based method for visualizing large-scale BIM
models within indoor and outdoor geographic environments. We analyzed the visualiza-
tion and efficiency of our proposed method, and compared it with a previous method or
strategy to verify the effectiveness of our approach:

(1) For outdoor scenes, the proposed LLG-based tile pyramid can effectively meet the vi-
sualization of large-scale BIM models on the virtual globe. When browsing windows
and exterior entities, visible entities of the interior spaces viewed from outdoors are
loaded, ensuring realistic visualization (Figures 12 and 13) while effectively maintain-
ing stable computing resources (Figures 14 and 15).

(2) For indoor scenes, a multilayer cell-and-portal graph can effectively reduce the geometric
data volume. For example, when browsing windows and interior entities, our method
can unload other spaces (e.g., rooms) and load entities of current space according to the
current location of the indoor space. Moreover, invisible BIM data from outdoor scenes
is removed, which not only ensures realistic visualization (Figures 16 and 17) but also
effectively reduces the volume of geometric data (Figures 18 and 19).

Our method can provide a solution for large-scale BIM models in the virtual globe.
Besides, the study can observe indoor-outdoor environments from “visibility” components
(such as a transparent window or open door) and retain a lower computing burden.
Specifically, visible outdoor entities can be observed by the transparent window from
indoor views, while other invisible entities are unloaded (or vice versa), which better
facilitates the spatial analysis and application of the complex geometry and semantics
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of indoor and outdoor environments. For example, the study can support the roaming
process from indoor to outdoor environments and solar radiation and lighting analyses in
the green building [20], which avoid the shortcomings of previous studies.

However, our method still has some limitations. For example, we classify geographic
scenes into two types (indoor and outdoor), and the proposed method cannot be directly
applied to BIM models with no clear distinction between indoor and outdoor spaces.
Besides, the indoor space of the building needs to be physically enclosed totally for indoor
organization. Therefore, in the future, we will focus on a visualization method for the
special BIM models mentioned above, such as special tree index, light-weighted technology,
and other strategies. Moreover, achieving stable and efficient rendering of BIM models
with different levels of hardware performance holds considerable promise.
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