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Abstract: This study presents a multi-platform analysis for accelerating the deployment of distributed
renewable energy (DRE) systems for the electrification of healthcare facilities (HCFs) in low-income
regions. While existing tools capture national and regional scale planning for DRE deployment in
HCFs, there are limited tools for facility level energy needs and no existing data-driven approach
for systematic decision-making and resource allocation across a portfolio of HCFs. We address
this gap by utilizing decentralized data collection, and multi-criteria decision-making to evaluate
each HCF against a set of weighted decision criteria. We applied the approach presented in this
research in a case study across 56 HCF in Uganda. Results present current and future energy
needs for each individual clinic and the prioritization of HCFs for allocation of resources for DRE
deployment. Additionally, results provide insight for best practices for reliability of services that
are specific to each HCF. For example, failures in the existing solar photovoltaic (PV) systems are
approximately up to 60% due to a lack of proper operation and management (O&M) strategy, and 40%
is attributable to improper system design and installation. Thus, this study enables decision-makers
to better understand the electrification needs of different HCFs, prioritize DRE deployment, financial
investments, cost-effective procurement, and long-term O&M.

Keywords: renewable energy planning; off-grid electrification; healthcare facility; cloud-based data
collection; multi-criteria decision-making; TOPSIS; distributed renewable energy

1. Introduction

Energy poverty remains one of the main challenges of sustainable development in
low-income countries. The United Nations (UN) has recognized its importance through
Sustainable Development Goal 7. The International Energy Agency estimates that approxi-
mately 770 million people have no access to electricity globally [1]. Lack of access to reliable
electricity leads to inadequate operation of critical services, such as healthcare facilities
(HCF) in low resource settings. Healthcare is one of the main infrastructures that heavily
depends on reliable electricity access for providing health services. A survey in more than
70 low- and middle-income countries suggests that nearly 60% of HCFs have no access or
limited access to electricity [2].

It is conventional wisdom that access to electricity is an enabling factor for devel-
opment purposes and even insufficient access, although undesirable, still contributes to
improved livelihoods. A tier-based framework developed by the World Bank sheds light
on the capacity and potentials associated with limited electricity access for development [3].
However, unreliable access to electricity in the case of health centers is unlikely to lead to
improved public health. Many health services and equipment are dependent on electricity
to operate. For example, unreliable electricity access may interrupt the operation of equip-
ment, such as nebulizers and ventilators, with life threatening consequences. Similarly,
interruptions in the operation of vaccine fridges and freezers could be detrimental to
immunization plans in a region threatened with the risk of outbreaks. Therefore, decision
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makers and public health policy experts should consider reliable access to electricity a
priority in the allocation of resources that aims to improve public health.

A study in rural Malawi identified that poor electricity access contributed to adverse
health practices such as irregular sterilization of equipment, lack of access to clean water,
and inadequate lighting for procedures [4]. Another study in rural Nigeria identifies lack
of access to electricity a “neglected barrier to effective intervention” for improved health
services particularly aimed at reducing maternal and neonatal mortalities [5]. Unreliable
electricity access in HCF not only exacerbates the quality of health services in a regional
scale, but it is also a potential public health threat on national and global scales as well.
The COVID-19 pandemic revealed that inefficient access to electricity in HCF is a factor
contributing to the spread of the disease and poses further complications to prevent it [6].

One of the frequently used energy sources in HCF located in low resource communities
is the diesel generator. Lower upfront cost and widespread availability have led to their
use as the primary electricity generation in HCF. The costs of fuel, its dependence on global
fossil fuel markets, challenges in consistent supply—particularly in conflict zones—and
climate change concerns are the main challenges that lead to the undesirability of diesel
generators as a sustainable and reliable main source of electricity for HCF [7]. These
logistical difficulties are among the main limitations to using diesel generators, particularly
in remote and low-resource settings [8].

While reliable grid electricity is the ideal source for the operation of healthcare facilities,
with the lack of a grid’s presence or the unreliability of its power, distributed renewable
energy (DRE) is a promising alternative. DRE—such as stand-alone solar photovoltaic (PV)
systems or wind turbines—if designed properly, could provide reliable and sustainable
electricity to HCF [9]. In addition, such systems could contribute as a source of income
for HCF, increasing their role in community development. The effective replacement of
diesel generators with DRE for HCF in low resource communities demands thorough
planning, policy support and resource allocation to ensure that these systems are reliable
and sustainable.

While existing tools capture the national and regional scale planning for DRE de-
ployment in HCF, there is no data-driven and systematic approach for granular, portfolio
level decision support and resource allocation. Therefore, the objective of this study is
to develop a cost-effective, portfolio level energy access planning tool that captures the
context specific attributes and the unique situation of each facility for decision makers. The
proposed approach in this study accomplishes this objective in three phases. In the first
phase, we use a novel social study to collect data at each HCF from its non-technical staff
through a cloud-based, off-line method. Using the portfolio level data, in the second phase
we estimate the size and cost of DRE systems under two scenarios: one for electrifying
currently existing equipment and one for supplying enough electricity if the HCF receives
all of the equipment it needs for providing health services. Using the contextual and HCF
level data, as well as estimated costs under each scenario, in the third phase, we rank HCF
from the highest priority to receive DRE to the lowest priority. For this ranking, we apply
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Method—a
multi-criteria decision-making tool—that evaluates each HCF against a set of decision
criteria defined by decision makers. As a result, decision makers could identify the best
allocation of limited resources that leads to the highest public health impact. In addition,
the portfolio level data enables policy makers to identify and evaluate the effectiveness of
healthcare services across their operations.

In Section 2 of this paper, we discuss the existing state-of-the-art approaches for
planning electricity access in healthcare facilities in low-resource settings. In Section 3, we
present the methodology of this study to address the gap in data driven and portfolio level
analysis. Section 4 presents the results of a case study in Uganda based on the developed
multi-platform analysis. In Section 5, we further discuss the key findings and how utilizing
the presented approach could improve the quality of public health services in unserved
and underserved communities.
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2. Background

While investment in renewable energy is forecasted to increase significantly [10],
there remains a disconnect between the energy access sector and the health care service
providers, such as governments, international NGOs, and Faith Based Organizations.
Multiple approaches have been developed to provide policy level analysis for electricity
access in the health sector. The World Resources Institute has developed an interactive tool
that informs national and international scale policy makers with critical information needed
for laying out a macro scale policy for electrification, named Energy Access Explorer. This
tool integrates publicly available data in an interactive map-based platform for analyzing
the electricity demand of different customers along with supply conditions and expansion
plans. As a result, a holistic approach could be formed for the electrification of any kind of
customer such as HCF [11]. Another tool developed in a partnership of five universities
is the Electricity Growth and Use in Developing Economies (e-GUIDE), which focuses on
macro scale consumption and infrastructure. e-GUIDE integrates satellite imagery and
longitudinal consumption data to predict the demand on a national scale [12].

While solar PV systems along with other renewable sources of energy, such as wind,
have the potential to provide reliable and sustainable energy access to HCF, proper system
design and installation, demand estimation, load management, and effective operation
and maintenance (O&M) are significantly important to ensure the longevity of electricity
supply and sustainability of services. Otherwise, it is likely that renewable energy systems
fail in a short time or provide inadequate electricity for the intended applications. A study
by the World Bank in 2010 found that, without proper investment in O&M, most solar
PV systems are likely to fail after three to five years from installation [13]. Sustainable
Energy for All (SEforAll) has developed a framework to enable decision makers to adopt
a sustainability approach to electricity access initiatives particularly in the domain of
off-grid electrification. The Model Sustainability Framework consists of three pillars of
organizational, technical, and economic. Each pillar has four progressive phases that
integrate sustainability concepts. These four phases start with the inception of ideas and
goals, continues to design the systems and implement the projects, and finally lead to
laying out effective O&M strategies [14].

While the aforementioned methods provide macro scale data that inform regional,
national and international electrification plans, there is a gap for systematic and data-driven
portfolio level models that reflect the realities of each individual HCF systematically. A
systematic approach that integrates the contextual attributes and realities on the ground
at each HCF enables decision makers to allocate resources based on the potential for sus-
tainable and reliable access to electricity, with appropriate O&M protocols, that leads to
improved public health across the portfolio. The key number one insight under technical
sustainability in the framework presented by SE4All recognizes this approach by empha-
sizing the understanding of the needs of each HCF for designing the electricity access
systems [13]. To address this gap, this article presents a tool for an HCF level solution
that utilizes state-of-the-art approaches for robust data collection in data scarce settings,
defines a coherent set of decision criteria and provides a priority list of HCF eligible for
investments in robust stand-alone solar PV systems. The tool presented here estimates
solar PV system size and storage requirements that ensure the reliability and longevity
of electricity access. The integration of the effective storage unit is particularly important
for enabling a renewable based generation system such as Solar PV panels to be a viable
option for reliable electricity access for 24 h instead of only during the generation hours.

The next section presents the methodology used in this study followed by the results
from a case study from 2020 in Uganda. After that, we discuss the power of the presented
approach for regional policy and financial analysis, as well as the implications for public
health planning at a site-level.
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3. Methodology
3.1. Objective

The main objective of this study is to develop a resource allocation plan for investment
in reliable and sustainable access to electricity across a portfolio of HCFs that reflects the
realities of each facility and aims to improve public health by improved application of
electricity dependent healthcare services. While resources are scarce for the electrification
of HCF in low resource communities, the lack of a systematic approach in the allocation
of resources and the proper design and utilization of context-appropriate technologies
often leads to improper system performances. Such improper and unreliable performances
of electricity generation systems in the HCF context are detrimental to the livelihoods of
patients and the delivery of appropriate healthcare services.

The methodology illustrated in the flowchart in Figure 1 describes the systematic
approach developed to deliver the objective of the study. The method conceptualized
in Figure 1 systematically integrates the knowledge from experts in public health and
portfolio level HCF operational managers with the contextual information and field data
that uniquely describe the situation at each HCF. Then, this information informs the
mathematical model of the study to prioritize HCFs based on the decision criteria of the
experts and managers as well as the realities on the ground at each HCF. The outcome is
integrated with policy level knowledge and enables informed policy making for regional
and national public health and electricity access.
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Figure 1. The flowchart of the DREAM method used for systematic energy access planning for HCFs.
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In order to compare HCFs against each other to identify how the realities of each
facility lead to its unique situation compared with other facilities in the portfolio, we have
established a set of criteria referred to as decision factors. Collecting data at each HCF based
on such criteria defines a multi-criteria decision-making problem. The Decision Response
Energy Assessment Management (DREAM) tool presents portfolio-level energy informa-
tion for distributed facilities. At the nexus of social study design for data scarce settings,
renewable energy engineering, multi-criteria decision-making, and investment analysis,
the DREAM tool develops a priority list of HCFs based on the unique characteristics of
each facility.

For this purpose, the tool utilizes TOPSIS. We have discussed the TOPSIS model
in Section 3.1. The data that inform the TOPSIS model include the weighted decision
factors in the ranking analysis and the HCF level data with respect to each decision
factor. Sections 3.2 and 3.3 describe the data collection approach used for each type
of data required for formulating the TOPSIS model for portfolio-level HCF electricity
access planning.

3.2. TOPSIS

The DREAM tool applies the TOPSIS analysis to rank each HCF based on the decision
factors. This technique was first developed by Hwang and Yoon in 1981 and since then
has been applied to a wide variety of multi criteria decision-making problems [15,16].
Despite numerous applications, this study is the first practice in utilizing such techniques
along with portfolio level data to provide a decision support system for electrification in
low-resource settings.

TOPSIS ranks alternatives—in our case health care facilities—based on a set of decision
factors using a mathematical formula that calculates the position of each HCF on a line
that is limited between two theoretical values referred to as the positive ideal solution and
negative worst solution. The distance of each HCF from these two solutions forms the
basis of ranking alternatives from the highest priority to the lowest priority. Therefore, a
problem that involves multiple dimensions—equal to the number of decision factors—is
transformed to a one-dimensional problem.

The decision matrix D illustrated in Equation (1) formulates the TOPSIS model used
in the DREAM tool analysis. In this matrix, rows include HCF, Ai, and columns represent
decision factors (Xj ∈ J). Therefore, xij is the score of each clinic from the collected data for
each decision factor.

There are two types of decision factors. The benefit decision factors are those where
higher scores contribute to an increase in the overall priority of an alternative. For example,
for two identical facilities, the HCF that has a higher number of patient visits per month has
higher priority than the facility with a lower number of patient visits per month. Therefore,
the decision criteria of number of patient visits per month is a benefit factor in the analysis.
The second group of factors is cost factors. A higher score in cost decision factors leads to
an overall decrease in the priority of an alternative. The energy retrofit costs for each HCF
are a cost factor. This means that, for two identical facilities, the one with less capital cost
required for reliable electricity access has the higher priority.

A1 x11 x12 . . . x1j . . . x1n
A2 x21 x22 . . . x2j . . . x2n
...

...
... . . .

... . . .
...

Ai xi1 xi2 . . . xij . . . xin
...

...
... . . .

... . . .
...

 (1)

Once the decision matrix is developed, the normalization of the scores enables the
cross comparison of each attribute with other attributes. The data structure and type of
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variables defines the best method of normalization [17]. For this analysis, we used vector
normalization as:

rij =
xij√

∑m
i=1 x2

ij

f or bene f it f actors (2)

rij =

1
xij√

∑m
i=1

(
1

xij

)2
f or cost f actors. (3)

The normalized scores multiplied by the weight of each decision factor forms matrix
V as described in Equation (4). In this study, we used a ranking survey from eight experts
to rank 11 decision factors from the most important to the least important. Section 4.2
presents the results of this survey as well as the weights calculated for each decision factor.

vij = wj rij. (4)

Based on the difference between the benefit factors (subset J′ from J) and cost factors
(subset J ′′ from J), we define the positive ideal solution (PIS) and Negative worst solution
(NWS). These values serve as the two ends of the range that includes each alternative’s
score in between.

PIS =
{

v+1 , . . . , v+n
}

, where v+j =
{(

maxvij
∣∣ j ∈ J′

)
,
(
minvij

∣∣ j ∈ J ′′
)}

. (5)

NWS =
{

v−1 , . . . , v−n
}

, where v−j =
{(

minvij
∣∣ j ∈ J′

)
,
(
maxvij

∣∣ j ∈ J ′′
)}

. (6)

In the next step, we calculate the separation of each alternative from PIS or NWS using
Equation (7) or Equation (8), respectively.

S+
i =

√√√√ n

∑
j=1

(
v+j − vij

)2
, i = 1, . . . , m (7)

S−i =

√√√√ n

∑
j=1

(
v−j − vij

)2
, i = 1, . . . , m. (8)

Finally, Equation (9) calculates the relative closeness of each alternative to PIS (or
NWS) that serves as the basis for ranking HCF based on the decision factors. Sorting HCF
from the highest to the lowest C∗i value determines the ranking of each facility.

C∗i =
S−i(

S−i + S∗j
) . (9)

3.3. Data
3.3.1. HCF Level Data

Two separate data collections inform the TOPSIS model in the DREAM tool. HCF
level data populate the matrix D in Equation (1) with xij scores. Data collection at the
healthcare facility level in a low-resource context is logistically challenging hence a limiting
factor in statistical inference and model accuracy and performance due to small sample
sizes and a lack of representative samples with respect to possible variations in the popu-
lation. Most of the energy access models, including the state-of-the-art planning tools as
well as ad hoc studies either integrate satellite imagery with governmental or macroscale
data from governments, and/or multilateral organizations (e.g., [11,12]), or use categor-
ical evaluations (e.g., [4,18]). The methodology developed in the DREAM tool enables
researchers to collect HCF level data that capture the realities of each HCF in a relatively
large sample size through the application of cloud-based data collection. As a result, the
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costs of data collection are reduced while the sample size could be expanded to increase
the fidelity of analysis. In addition, results and the data collected in the developed method
of this study could further improve the macro scale policy analysis and national planning
models such as Energy Access Explorer through the systematic integration of HCF level
and contextual data.

The novel approach used in this study utilizes cloud-based data collection platforms
to conduct a survey at each HCF by its own staff. In this study, we collected data from
56 HCFs across Uganda. Information related to the attributes that we collected data for
are presented in Table A2 in the Appendix A. To ensure that the results of the survey
are accurate and reliable for the analysis, we have to address three separate challenges
as illustrated in Figure 2. These challenges include the limited resources available for
in-person technical data collection by the researchers in a data scarce setting, collecting
technical data from enumerators without relevant technical background, and setting up a
data collection platform for enumerators without in-person training and a study platform
setup.

Figure 2. Integrated design of the portfolio-level, decentralized social study for energy assessment.

To address these challenges, we used a participatory design approach between re-
searchers and managers of HCF at the national level. As a result, the final forms developed
capture both the requirements for a systematic energy assessment as well as coherent
questions and instructions for the non-technical HCF staff to conduct the survey. Then,
we used translation-back-translation for validating questions in the local language and
conducted a pilot from eight facilities prior to launching the final data collection campaign.
We developed short videos to train the data collectors to set up the data collection platform
on their smartphones and the data journey in the study, as well as the purpose of the study.
For ease of access to the videos by staff, we uploaded the videos to YouTube and shared
the links with every data collector.

The benefit of adopting such a cloud-based data collection approach is that, through
the integration of smartphones and internet connectivity, researchers reduce the logistical
barriers of collecting in-person data. The difficulties in accessing the location of many HCFs
in low-income countries, such as quality of roads, weather conditions and the availability of
transportation, are among the challenges that exacerbate the data scarcity in low-resource
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communities. Through the implementation of off-grid and cloud-based data collection,
the respondent could utilize their smart phones for data collection and upload the results
once they have internet access, hence removing the logistical challenges and costs of data
collection in low resource communities.

3.3.2. Expert Opinion Elicitation for Decision Factor Weights

The second dataset informing the TOPSIS model is the decision factors and each
decision factor’s influence on the overall priority of HCF for electrification referred to as
the weights of the decision factors. The weights of each decision factor should represent
the importance of that factor for the decision-makers. For this purpose, we developed a
ranking survey and asked the participating decision makers including in-country healthcare
professionals and international program managers overseeing the operations and resource
allocations to rank 11 identified attributes from the most important to the least important
one. In addition, we asked the participants for any other decision factor that they identify
as important and not captured among the 11 attributes presented. Section 4.2. presents the
results of this survey and the weights calculated based on the ranks that decision makers
attributed to each decision factor. The decision factors presented in Section 4.2. populate
the Xj vector in matrix D of Equation (1) and the weights calculated for them inform the wj
vector in Equation (4).

3.3.3. Data Triangulation, Missing Values, and Validation

Since the project’s resources are limited and the context of data collection is within a
data scarce setting, there are limited options for validation of the data through triangulation
and cross references. To address this challenge, we triangulated the data collected at the
HCF level with the inventory list of equipment in each facility provided by operations
management at the national level. Through this triangulation, we validated the HCF
level collected data through cross-referencing the services offered in each clinic, a list of
equipment currently in use, current energy access, and ICT infrastructure. Researchers
addressed the discrepancies identified through direct contact with facility managers.

3.4. Electricity Demand Modeling

The electricity demand at each HCF enables us to estimate the size of solar PV plus the
storage system. Based on the estimated system size, we can estimate the costs associated
with the deployment of such DRE systems for each HCF. This cost estimate is among
the decision factors in the TOPSIS model. This study develops two distinctive demand
scenarios for each HCF. In the current demand scenario, we combined the overall demand
for every major electricity consuming equipment that currently exists in each HCF. The
ideal scenario captures the energy needs if each health service offered in the clinics has
access to the required equipment for its services. Table 1 presents the equipment that
ideally should be available for appropriate services associated with each clinic department.
This table is based on the initial case study we conducted in Uganda. Alternatively, the
ideal scenario could follow the national or international guidelines.

In this case study, we did not collect the rated power of each equipment currently in
use due to data collection limitations discussed in Section 3.3.1. To model the rated power
and the maximum likelihood of using each piece of equipment, we developed Table A1 in
the Appendix A based on the energy audits conducted prior research on electronic device
energy use in hospitals [19]. However, the reported consumption values for much medical
equipment in the US in this source is likely to be significantly different from low-income
countries and low resource settings [20]. To compensate for such contextual differences
in energy consumption, we identified a Chinese and a US manufacturer for each piece
of equipment and averaged the rated power of them for the same size systems to use in
our demand estimation models. In addition, we estimated the maximum hours that each
piece of equipment is likely to operate in consultation with nurses at a representative HCF
in Uganda.
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Table 1. Major electricity consuming equipment that ideally operate in a healthcare facility based on
type of health services.

HCF Department Ideal list of Equipment that Ensure Appropriate Health
Services for Each Department

Outpatient Nebulizer, Electric sterilizer, Oxygen concentrator, Defibrillator,
TV & DVD player.

Maternity
Infant Warmer, Oxygen Concentrators, Electrical autoclave,
Incubator, Hemocue analyzer, Phototherapy machine. CPAP
machine,.

Inpatient Oxygen concentrator, Autoclave sterilizer, Suction machine,
Nebulizer and Hemocue analyzer

Theatre/surgery
Oxygen Concentrator, Suction machine, Head Lamps,
Anesthetic Machine, Patient monitor, Auto claves, Diathermy
machine, baby warmer, Iron, fridge, computer

Blood transfusion Blood Storage fridge

Laboratory

Computer, PIMA CD4 analyzer, Microscopes, Vortexer, Electric
Centrifuge, Rotator, Slide warmer, Refrigerator for reagents.
Chemistry analyzer, Hematology analyzer, Biosafety cabinet,
printer, GenXpert machine

HIV/ART Computer, Television set, DVD player.
NCD Computer, multi-parameter patient monitor, Computer.

Pharmacy–medicine storage Computer, air conditioning unit, vaccine storage fridges

3.5. Cost Estimates for DRE Deployment

One of the main factors that distinguishes the electricity access of HCFs from that
of other service organizations in low resource settings is the reliability and continuity
of services. The reliability of access to electricity in the case of HCFs is, by definition, a
matter of life and death for patients. Therefore, in this study we have focused on costs that
better capture the financial resources required for the longevity of electricity access. To
capture such costs, we have integrated sensor-based monitoring systems into DRE system
components, allocated 5% of project capital costs for long-term operation and maintenance,
and integrated maintenance logs and training procedures for technicians. However, the
exact cost estimation for each clinic is not feasible at this level of analysis. An accurate cost
calculation that is necessary for project implementation planning requires clinic level audits
and competitive biddings by practitioners, as well as considering government/multilateral
subsidies, logistics, supply conditions, and multiple other external factors that are beyond
the scope of this study. Nevertheless, using the approach presented in this study, decision
makers receive a reasonable range for costs associated with deployment of reliable DRE
units at each facility. To ensure that the estimates are reflective of realities, we identified
multiple local and international practitioners and asked them to provide the researchers
with the range of costs for their most recent projects. The quotes we received suggested that
most expensive projects in Uganda (due to either the highest quality technologies or the
most logistically challenging locations to access to) are approximately $11 per Watt, while
the most cost-effective DRE systems are likely to cost $4 per Watt. Therefore, we used three
financial models for the investment needed that are likely to capture the range of costs for
deploying DRE systems from the most expensive ones to the most cost-effective options.

4. Results

This section presents the results of the case study conducted across 56 HCFs in Uganda,
which demonstrate the effectiveness of the developed DREAM tool. The purpose of this
case study is to prioritize the HCFs for the allocation of resources for reliable electricity
access based on a set of decision criteria. Table A2 in the Appendix A presents a summary
of the data we collected in this study.
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4.1. Decision Factor Weights

A short survey by eight decision makers and public health experts based in the United
States and Uganda informed the weights assigned to decision factors in the TOPSIS analysis.
In the survey, we asked each respondent to rank the proposed decision factors from the
most important to the least important attribute. In addition, respondents could add any
other attribute that was not in the proposed decision factors. Results of the survey inform
the cumulative weight assigned to each decision factor as illustrated in Table 2. In this
table, rows represent the final set of decision factors in the TOPSIS analysis and columns
include the ranks that each respondent has assigned to a decision factor. The letters (B) and
(C) for each decision factor present whether the factor is a cost factor or a benefit factor,
as discussed in Section 3.1. Numbers in each cell represent the number of respondents
that assigned a ranking from 1 to 11 to a decision factor. The relative weights presented in
percentage points in the last column inform the TOPSIS analysis.

Table 2. Weights calculated for decision factors based on expert opinion elicitation.

Decision Factor I (Xj) Ranks II (k) Ranks cum. Weights (wj) %

1 2 3 4 5 6 7 8 9 10 11
Number of health services offered (b) 4 2 0 2 0 1 2 0 0 1 0 10.17 12.42%
Currently has no electricity access (b) 1 3 3 0 2 1 0 0 2 0 0 9.83 12.01%

Operates 24 hours (b) 2 2 0 3 3 0 1 0 0 1 0 9.67 11.81%
Number of patients being visited

quarterly (b) 2 0 1 3 0 2 3 1 0 0 0 9.17 11.19%

Number of overnight patient beds (b) 0 3 1 1 3 1 2 0 0 0 1 8.92 10.89%
Remoteness of the location (c) 0 0 3 0 1 2 0 0 1 3 3 6.46 7.89%

Higher number of staff (b) 1 0 0 2 0 0 3 1 1 4 1 6.45 7.89%
Higher number of staff accommodation

rooms (b) 0 1 1 0 0 2 0 4 2 1 2 5.92 7.23%

Diesel generator is the main electricity
source (b) 0 0 0 0 1 2 1 3 2 2 1 5.75 7.02%

Manager mentioned electricity as major
need (b) 0 0 3 0 1 0 0 0 3 2 4 5.46 6.67%

Cost of electrification (c) 0 1 0 0 0 2 0 0 0 5 5 4.08 4.98%
Sum 81.88 100%

I (b) benefit factor, (c) cost factor, II 1 is the most important attribute and 11 is the least important attribute chosen by respondents.

From the survey results, the number of health services offered in HCF is the most
important decision factor. This means that for two facilities, with every other attribute being
identical, the one with more health services offered has a higher priority for electrification
than the one with fewer health services offered. Expert respondents identified the cost of
electrification as the least important decision factor compared to the other attributes. The
reason for this is due to the budgetary constraints, hence the role of the cost of electrification
is an inherent factor for the decision makers. The whole purpose of adopting the strategy
presented in this study is to best allocate such limited budgets to the facilities that have
the highest need. As a result, recognizing it as the least important factor is because of the
overarching role that cost plays in the decision-making and the nature of limited resources
available to allocate to every HCF. This finding is in line with the key assumption of the
study that acknowledging that the costs of the electrification of every facility exceed the
available budget, what other factors should be incorporated in the decision-making process
to achieve an optimum allocation of funds that is likely to lead to the maximum public
health impact. Thus, other factors precede cost in the analysis.

4.2. Key Findings

The Ministry of Health in Uganda categorizes HCF in district-based levels based on
services and approximate capacity for patient visits. This study covered every category
of HCF type at the district-based level including HCIV, HCIII, HCII, and outposts [21].
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Among the surveyed facilities, only 21 (38%) have reliable access to electricity as illustrated
in Figure 3. This finding is in line with [2], which suggested that, globally, an estimated
41% of HCFs in low- and middle-income countries have reliable electricity access. Figure 4
presents the source of reliable electricity access in these facilities.
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There are 35 HCFs (63%) with unreliable or no electricity at all. Among them, 26 facili-
ties have partial access to electricity. The average hours per day with access to electricity in
these facilities is approximately 6 hours with the distribution illustrated in Figure 5. The
source of electricity in these facilities is presented in Figure 6.
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There are multiple reasons for unreliable electricity access, even though many of the
evaluated HCFs are equipped with solar PV systems or diesel generators. Figure 7 presents
the main reasons causing unreliable access to electricity for each type of generation system.
Among the facilities with investments in solar PV systems, two main factors that lead to
unreliable access to electricity are inadequate system capacity to meet the demand, and
battery system failures. All of the battery systems installed in the surveyed facilities are
lead-acid based batteries. The lifetime of such batteries, by design, often varies between
300 charge cycles to 500 charge cycles [22]. Charge cycle refers to a cycle in which a battery
is fully charged and then discharged. In many cases, the storage systems are designed to
complete one charge cycle in 24 h so that the batteries charge during solar PV generation
hours and discharge during evening and overnight. Therefore, such batteries are likely to
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last up to two years by design. This finding suggests that proper O&M plans are pertinent
for the continuous operation of DRE systems, without which even the most appropriately
sized systems are prone to failure after a year or two of operation.
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Based on the issues encountered in surveyed facilities and presented in Figure 7,
implementing a robust O&M plan that involves regular system monitoring and inspections
is likely to address more than half of the root causes of unreliable electricity access through
off-grid solar PV systems. About 40% of the remaining risks associated with unreliable
electricity access are attributable to improper system sizing, and improper installations.
While discussing proper technical system design is beyond the scope of this article, a report
by the UN Foundation and SEforAll presents an approach that could lead to designing
such systems to be reliable and sustainable [14].

4.3. Prioritization of HCF Based on TOPSIS Analysis

The data collected at the HCF level provide contextual insight regarding energy
requirements and operations at each facility. These data inform the TOPSIS analysis with
the scores populating matrix D of Equation (1) in Section 3.1. Table 3 illustrates the results
for the top nine HCFs in the ranking and the last nine facilities for comparison. Based on
the extent that each decision factor influences the overall score of each facility with respect
to the positive ideal solution and negative worst solution, the HCFs are ranked from the
highest priority at the top to the lowest priority at the bottom.
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Table 3. Results of TOPSIS analysis and portfolio level energy assessment.

Proper Nouns Proper Nouns Proper Nouns Proper Nouns

Healthcare
Facility Rank S+

i S−i C*
i

Current Source
(U: Unreliable, R:

Reliable)

Energy
Demand

(kWh/day)

System Size
(Watts)

Capital Cost
($7/Watt)

Energy
Demand

(kWh/day)

System Size
(Watts)

Capital Cost
($7/Watt)

HCF1-HC III 1 0.094 0.159 0.371 Diesel + solar PV (R) 5 310 2173 165 10,974 76,919
HCF2-HC III 2 0.091 0.152 0.376 Grid + Diesel (R) 81 5634 39,490 248 14,391 100,869
HCF3-HC III 3 0.101 0.146 0.407 Diesel (U) 23 2262 15,855 82 5870 41,144
HCF4-HC III 4 0.109 0.158 0.408 Grid + Diesel (R) 185 15,279 107,094 248 14,391 100,869
HCF5-HC III 5 0.105 0.146 0.418 Diesel + solar PV(R) 17 942 6603 165 10,974 76,919
HCF6-HC III 6 0.108 0.146 0.424 Diesel (U) 16 798 5593 138 9526 66,770
HCF7-HC III 7 0.112 0.145 0.434 Solar PV (U) 25 977 6848 165 10,974 76,919
HCF8-HC III 8 0.112 0.145 0.436 Diesel (U) 9 750 5257 165 10,974 76,919
HCF9-HC IV 9 0.113 0.146 0.438 Diesel + solar PV (U) 8 591 4142 248 14,391 100,869

HCF48-Outpost 48 0.182 0.049 0.785 No electricity 2 125 876 52 3524 24,700
HCF49-HC II 49 0.183 0.049 0.787 Diesel + solar PV (U) 2 100 701 52 3524 24,700

HCF50-Outpost 50 0.183 0.049 0.788 No electricity 2 125 876 52 3524 24,700
HCF51-Outpost 51 0.183 0.049 0.788 No electricity 2 125 876 52 3524 24,700

HCF52-HC II 52 0.183 0.049 0.788 Grid + solar PV (R) 1 30 210 62 4175 29,263
HCF53-Outpost 53 0.184 0.048 0.790 No electricity 2 125 876 52 3524 24,700
HCF54-Outpost 54 0.186 0.047 0.796 No electricity 2 125 876 52 3524 24,700
HCF55-Outpost 55 0.181 0.043 0.805 Solar PV (R) 13 692 4850 139 8793 61,632
HCF56-Outpost 56 0.184 0.043 0.809 Solar PV (R) 2 125 876 56 3689 25,857



ISPRS Int. J. Geo-Inf. 2021, 10, 750 15 of 20

The second column, Rank, presents the rank of each HCF. The first two high priority
facilities are already electrified and have reliable electricity access based on a mix of grid,
diesel generators, and solar PV system. Therefore, the highest priority to focus on for
practical purposes is the third facility in the table that, despite its priority score, has
unreliable access to electricity.

The analysis includes a cost estimate for deploying an off-grid solar PV system to each
facility based on two demand scenarios. The main assumption of the current scenario is
that the electricity should be sufficient for the currently available equipment in the facility.
The ideal scenario assumes that the electricity access should be sufficient to enable the
utilization of every piece of medical equipment that is necessary for the services offered by
the facility. For example, there are HCFs in the study that have a maternity ward. However,
not every facility with a maternity ward has incubators or infant warmers. The differences
between current and ideal scenarios alter the system size, daily energy demand, and capital
cost of deploying stand-alone PV systems as reflected in Table 3.

The approach developed in this project enables public health policy analysis and
planning for energy access in HCFs located in low resource settings. Using the portfolio
level data collected in this research, policy makers could evaluate the regional distribution
of certain health services. For instance, if there are resource limitations, policy makers
could use this tool to identify the facilities that would maximize public health outcomes
if they were to receive reliable electricity to power certain health services or equipment.
This method could prioritize services, such as vaccine refrigeration, to enable vaccination
plans especially in times of epidemic and to strengthen pandemic response coordination
or public health initiatives that target certain health practices with a high priority in the
region, such as maternal services. The methodology used in this study provides insights
necessary for these decisions at a site level, such as cost estimates, logistical challenges and
public outreach.

5. Conclusions

In this study, we applied a multi-criteria decision-making approach to prioritize the
electrification of HCFs located in low resource areas. For this purpose, we designed a data
collection approach to collect facility level data related to operations and energy demand
using cloud-based data collection platforms. We used the TOPSIS technique to rank the
studied facilities from the highest to lowest priority for electricity access based on thirteen
different decision criteria identified by decision makers.

There are two novel contributions presented in this approach. First, a method is
developed to collect clinic level technical data from the facility’s staff that lead to an
informed decision support process that is cost-effective and reliable. The presented data
collection method removes the logistical challenge of sending an enumerator with relevant
technical background to each facility for a feasibility study. Through adopting this approach,
a significantly larger number of HCFs could be surveyed remotely. Additionally, in this
approach, the people with long-term experience and exposure to each facility’s operations
and conditions fill out the forms and collect the data instead of a visiting enumerator. As a
result, the collected data present a holistic view of the operations facilitating evidence-based
decision-making and robust policy analysis.

Based on the dataset developed at a regional scale through the method presented
in this study, decision makers can strategize resource allocation for electrification of the
facilities so that the public health impact of such resource allocations are maximized. While
in an ideal scenario reliable access to electricity at every facility contributes to the best
public health outcome, in reality, the resources are limited and there are always competing
priorities for decision makers.

Therefore, the main objective of this study is defined as a prioritization of HCF
based on the decision criteria defined by decision makers to allocate resources for reliable
electricity access to the facilities with the most need first. For this purpose, we used the
TOPSIS analysis based on the collected data.
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The results of this study provide insights related to the risks associated with solar PV
systems, a grid’s unreliability, and costs and climate change impacts of diesel generators.
One key outcome of the study is that failures in the existing solar PV systems are approxi-
mately up to 60% due to a lack of proper O&M strategy with 40% attributable to improper
system design and installation. This finding, along with the other data collected at the
facility level, enables decision makers to adopt a holistic approach through standardization,
policy recommendations, and effective resource allocation that could lead to higher reliabil-
ity of electricity access at the HCF in low resource contexts. One of the key attributes that
play an important role in the reliability and sustainability of access to electricity is demand
side management. While this study aims at addressing the challenges in the effective
allocation of resources from the supply side, one should pay attention to user behavior,
behavior change communication and demand side management for a holistic electricity
access analysis (e.g., [23]).

An additional opportunity that this approach enables is leveraging different funding
streams to deploy PV + storage systems through clustering the electricity access services
based on size, displacement of diesel, income generating services, location, or ownership.
Such clustering is likely to facilitate large-scale interventions and investments for multi-
lateral organizations as well as governments or the private sector. The outcome of such
clustering that is based on the unique potentials and the context of operation of each HCF
has two main advantages compared to existing approaches. First, the DRE systems are
designed based on the requirements at each facility instead of a one-fit-all solution. Second,
through a bottom-up and data-driven approach, the scaled-up investment is likely to serve
as a seed for further development initiatives in a sub-national or national scale based on
such services. For example, training technicians to ensure the reliability of electricity access
in HCFs at a regional scale is likely to lead to the creation of more jobs and more instal-
lations of DRE inspired by the successful operations that stakeholders observe from the
DRE systems operating at HCF. Such clustering not only improves the health infrastructure
for a larger scale of operations, but also improves the response to health crises as well as
outbreaks that could have national or global consequences.

For future works, the results of this study and the presented methodology could
be integrated with national scale analysis to inform national policies. In addition, the
methodology presented here enables clustering HCFs into categories that reflect the con-
textual conditions of healthcare operations in low resource settings, enabling multilateral
organizations and public health entities to shape a realistic approach to a coordinated effort
for the electrification of HCFs across the globe.

Author Contributions: Conceptualization, Mohammad H. Pakravan and Andrea C. Johnson; method-
ology, Mohammad H. Pakravan; formal analysis, Mohammad H. Pakravan; resources, Andrea C.
Johnson; data curation, Mohammad H. Pakravan; writing—original draft preparation, Mohammad H.
Pakravan; writing—review and editing, Andrea C. Johnson; visualization, Mohammad H. Pakravan;
supervision, Andrea C. Johnson; project administration, Andrea C. Johnson; funding acquisition,
Andrea C. Johnson. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shine Campaign, grant number G-20-12189 and the
Distributed Power Fund, general support funds.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Medical Teams International and are available from the authors with the permission of Medical
Teams International.



ISPRS Int. J. Geo-Inf. 2021, 10, 750 17 of 20

Acknowledgments: The authors of this research would like to thank Medical Teams International
(MTI), The Power Partnership, the Shine Campaign, and the Distributed Power Fund for their
support with facilitating the development of the DREAM tool and the case study. We acknowledge
the contribution of MTI’s Uganda operation and staff, every HCF staff involved in the data collection,
regional monitoring and evaluation team, and national management team. Without their professional
and kind support, this work could not have achieved its outcomes.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Rated power and maximum hours of use for major equipment applicable in district-based healthcare facilities.

Equipment Name Average Rated Power Maximum Likely Hours of Daily
Operation

Daily Maximum Energy
Consumption

Nebulizer 105 9 945

Oxygen concentrator 426 9 3834

Defibrillator 130 24 3120

TV & DVD player 100 24 2400

Baby Warmer 792 12 19,008

Electrical autoclave 1650 6 14,850

Incubator 1035 24 24,840

Phototherapy machine 180 9 1620

CPAP machine 360 24 8640

Suction machine 283 6 2547

Anesthetic Machine 1440 9 12,960

Patient monitor 160 24 3840

Diathermy machine 500 9 4500

Flat Iron 800 2 1600

Fridge 186 24 4464

Computer 65 24 1560

PIMA CD4 analyzer 30 9 270

Microscope 310 8 2790

Vortexer 70 6 630

Electric Centrifuge 230 6 2070

Rotator 32 6 288

Slide warmer 273 9 2457

Hematology analyzer 283 9 2547

Chemistry analyzer 275 9 2475

Biosafety cabinet 400 9 3600

Color printer 50 4 200

Copy machine 300 4 1200

X-ray * 5000 6 30,000

Blood Pressure Machine 30 24 720

Roller mixer 70 9 630

Blood cell counter 225 2 450

AC 400 12 4800

Operation table lamp 154 9 1540

* Not recommended for solar PV based power generation.
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Table A2. Summary of the data collected at HCF level.

Attribute Measure Response Summary

Name of the clinic Count 56

Services/preventive Count 54

Services/maternity Count 35

Services/inpatient Count 26

Services/emergency surgery Count 4

Services/blood transfusion Count 5

Services/lab Count 53

Services/nutrition Count 51

Services/pharmacy Count 39

Services/pediatric Count 14

Services/isolation Count 30

Services/ANC Count 53

Services/OPD Count 53

Services/general Count 20

Services/mortuary Count 4

Services/ART-HIV Count 38

Services/immunization Count 4

Is respondent in charge of the clinic Dummy Yes 51-No 4

Does the clinic have electricity access Dummy Yes 45-No 10

Is the electricity access reliable Categorical Yes 21-No 14-Sometimes 10-Missing 11

How many hours per day electricity is reliable Numeric Average 6.5-Max 18-Min 1-Median 6

Main source of electricity Categorical Solar 9-Diesel 10-Grid 6-Missing 31

Secondary source of electricity Categorical Solar 19-Diesel 14-Grid 0-Missing 23

What is the main challenge of solar Categorical
Capacity issues 7-Battery issues

9-Maintenance 3-Installation issues
1-Inverter issues 4

What is the main challenge of grid Categorical Bills 2-Blackouts 4

What is the main challenge of diesel Categorical maintenance 13-fuel supply 15-fuel cost
1-capacity 1

Utility bill (UGX) Numeric Average 891,666-Median 700,000-Max
2,000,000-Min 350,000

Cost of diesel fuel Numeric Average 187,815-Median 80,000-Max
480,000-Min 37,000

Is the water treated? Dummy Yes 52-No 3

Is there any cell signal? Dummy Yes 50-No 4

Is there MTI provided laptop? Dummy Yes 24-No 30

Is there any staff capable of working with IT
equipment Dummy Yes 54-No 0

Number of beds Numeric Max 130-Min 0-Average 18.40-Median 12

24 Hour operation? Dummy Yes 38-No 16

Number of support staff Numeric Max 42-Min 2-Average 10.65-Median 10

Number of technical staff Numeric Max 69-Min 2-Average 17.46-Median 13
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Table A2. Cont.

Attribute Measure Response Summary

Total number of staff (technical+support) Numeric Max 111-Min 5-Average 27.8-Median 21

Number of staff staying at the clinic over night Numeric Max 70-Min 0-Average 11.51-Median 6.5

Number of patients in average Numeric Max 34,693-Min 929-Average
5396.32-Median 4180.5

Number of separate buildings Numeric Max 23-Min 1-Average 4.76-Median 3

Number of staff accommodation rooms Numeric Max 50-Min 0-Average 11.03-Median 8

Clinic’s major needs Open ended
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