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Abstract: Previous research on moving object detection in traffic surveillance video has mostly
adopted a single threshold to eliminate the noise caused by external environmental interference,
resulting in low accuracy and low efficiency of moving object detection. Therefore, we propose a
moving object detection method that considers the difference of image spatial threshold, i.e., a moving
object detection method using adaptive threshold (MOD-AT for short). In particular, based on the
homograph method, we first establish the mapping relationship between the geometric-imaging
characteristics of moving objects in the image space and the minimum circumscribed rectangle
(BLOB) of moving objects in the geographic space to calculate the projected size of moving objects
in the image space, by which we can set an adaptive threshold for each moving object to precisely
remove the noise interference during moving object detection. Further, we propose a moving object
detection algorithm called GMM_BLOB (GMM denotes Gaussian mixture model) to achieve high-
precision detection and noise removal of moving objects. The case-study results show the following:
(1) Compared with the existing object detection algorithm, the median error (MD) of the MOD-AT
algorithm is reduced by 1.2–11.05%, and the mean error (MN) is reduced by 1.5–15.5%, indicating
that the accuracy of the MOD-AT algorithm is higher in single-frame detection; (2) in terms of overall
accuracy, the performance and time efficiency of the MOD-AT algorithm is improved by 7.9–24.3%,
reflecting the higher efficiency of the MOD-AT algorithm; (3) the average accuracy (MP) of the
MOD-AT algorithm is improved by 17.13–44.4%, the average recall (MR) by 7.98–24.38%, and the
average F1-score (MF) by 10.13–33.97%; in general, the MOD-AT algorithm is more accurate, efficient,
and robust.

Keywords: video GIS; moving object detection; threshold differentiation; MOD-AT; BLOB; mapping
relationship; adaptive threshold

1. Introduction

With the rapid growth of information technology, surveillance cameras have been
widely used because of their advantages of real-time performance, low cost, and efficiency.
They have become an indispensable technical means of urban management in terms of
safety. Massive and real-time video data contain abundant spatiotemporal information
and provide essential support for real-time supervision, case investigation, and natural
resource monitoring [1,2]. However, video data have the disadvantages of low value,
redundancy, and noise. Although significant progress has been made in low-level video
understanding, high-precision and high-level video understanding technology is still in
the research stage [3]. Moving objects, such as vehicles and pedestrians in traffic videos,
have high application requirements for traffic supervision departments. The moving object
is the key to video information mining. Setting reasonable thresholds to detect a high-
precision moving object from surveillance video is one of the current hot issues in video
geographic-information-system (GIS) research [4].
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At present, advances have been made in moving object detection, and the application
of specific scenarios is close to the practical level in terms of accuracy and efficiency [5].
However, due to the influence of camera-imaging characteristics, the imaging size of the
moving object is different, and moving object detection results are easily disturbed by the
external environment. As a result, the accuracy of moving object detection is easily affected
by noise. Moreover, the previous denoising methods have low efficiency and accuracy
in detecting moving objects. The reason for this is that the threshold range impacts the
accuracy, efficiency, and noise filtering of moving object detection [6,7]. The traditional
method uses the unified threshold to remove noise in the image space; when the threshold
value is set too high, an object far away from the camera position will be filtered, and when
the threshold value is set too low, noise near the camera position will be retained, so it is
challenging to set an appropriate threshold [8]. Moreover, for the same moving object, its
size is constant at different locations in geographic space. However, due to the influence
of the imaging characteristics of the camera, the imaging size of the same object in the
image space is inconsistent, so it is essential to set different threshold intervals at different
positions. Therefore, it is necessary to set an adaptive threshold according to the imaging
characteristics of the camera in the image space to achieve high-precision detection of
moving objects. To summarize, we propose an adaptive threshold-calculation method
from the perspective of geographic space, taking into account the projection size, imaging
characteristics, and semantic information of the object in geographic space.

The rest of this paper is organized as follows: A literature review of moving object
detection and threshold-setting algorithms is provided in Section 2. The general idea of
a moving object detection method considering the difference of image spatial threshold
is given in Section 3, and an adaptive threshold calculation method and moving object
detection algorithm are derived in detail. In Section 3, the adaptive threshold of surveillance
video is calculated, and the accuracy and efficiency of moving object detection is verified
by single-frame accuracy and overall accuracy. Section 5 summarizes the main conclusions
and discusses planned future work.

2. Related Work

To achieve more efficient and high-precision detection of video moving objects, it is
necessary to set a reasonable threshold to process the candidate objects in the video imaging
space to effectively eliminate the external-environment interference [9–11]. Depending
on the location, height, and posture of the surveillance camera, the thresholds of filtering
noise (such as leaf shaking, light effects, etc.) are different. The accuracy and efficiency
of moving object detection will also vary [12,13]. At present, the moving object detection
problem can be divided into the following three categories from the perspective of threshold
setting [14,15].

1. Moving object detection methods based on traditional single threshold

These methods mainly include the frame difference [16–18], optical flow [19,20], and
background difference methods [21–23], among others. For example, Zuo et al. [24] im-
proved the accuracy of moving object detection based on the background frame difference
method. Luo et al. [25] combined the background difference and frame difference methods
to detect moving objects and remove external-environment interference. Akhter et al. [26]
realized contour detection and feature-point extraction of moving objects through the
optical flow method. Li et al. [27] used the background difference algorithm to obtain the
foreground and background images, and then extracted the moving object in the surveil-
lance video. The above algorithm uses a unified threshold value in the image space to filter
the interference of the external environment, resulting in an unreasonable threshold-value
setting, thereby affecting the accuracy of moving object detection.

2. Moving object detection methods based on pixels or regions

Compared with the region-based moving object detection method, the pixel-based
moving object detection method is fast and straightforward, which is suitable for the
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rapid monitoring of video objects. Its typical methods include the vibe algorithm [28–30],
non-parametric model [31], and Gaussian mixture model (GMM) [32], among others. For
example, Liu et al. [33] proposed the three-frame difference algorithm of the adaptive GMM
to suppress the external environment’s interference effectively. Zuo et al. [34] improved
the accuracy of the moving object detection algorithm based on the improved GMM
(IGMM). The aforementioned algorithm only sets a fixed threshold range according to the
geometric-imaging characteristics of moving objects in image space, and the suitability of
the detection threshold for moving objects is not considered. According to the perspective-
imaging characteristics of the camera, when the object is close to the camera, the area of the
object in the image is larger; otherwise, when the object is far away, the area of the object in
the image is smaller. In fact, the actual size of the object will not change in the geographical
space [35].

3. Moving object detection method based on the segmented threshold

This method attempts to calculate thresholds in different regions of the image space.
For example, Chan et al. [36] proposed linear segmentation of video frames to obtain
weight maps at different locations and calculated the threshold range based on the position
of the object in the video frame. Chang et al. [37] proposed a method of spatial-imaging
area normalization. The area weight of the object in the image space is obtained to filter
part of the moving object detection interference. Lin et al. [38] established a single mapping
relationship between video image space and geographic space and realized interference
filtering from the external environment based on the non-linear-perspective correction
model algorithm (NPCM). However, the above algorithm only considers the linear or
non-linear characteristics of the object on the image and does not consider the projection
distortion of the object size caused by the camera-imaging mechanism. It also ignores the
difference in imaging the geometric characteristics of moving objects in different positions
of the video frame. The threshold setting is not very specific, affecting the accuracy of
moving object detection.

In this paper, we propose a moving object detection method considering the difference
of image spatial threshold (named MOD-AT). First, based on the perspective characteristics
of the camera and the smallest bounding rectangle of the object (dynamic block for short,
or BLOB), a detection algorithm for the denoising threshold range of each pixel position
is designed. On this basis, a moving object detection algorithm (named GMM_BLOB)
was designed, and the corresponding relationship between the BLOB centroid and the
pixel-position threshold range was constructed. Finally, the high-precision detection of
moving objects based on the adaptive threshold was realized. The purpose of this study is
to provide a new perspective for object detection, improve the accuracy and efficiency of
object detection, and provide technical support for the integration of video and GIS.

3. Methodology
3.1. General Idea and Technical Process

A new dynamic object detection method, i.e., MOD-AT (Figure 1), is proposed in this
paper. The method mainly focuses on adaptive threshold calculation based on camera-
imaging characteristics and moving object detection based on the adaptive threshold.
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1. Adaptive threshold calculation based on camera-imaging characteristics

Previous research mostly adopted a single threshold to eliminate the noise caused by
external-environment interference, resulting in low accuracy and low efficiency of moving
object detection. We consider the orientation of moving objects in geographical space to
obtain the adaptive threshold for a moving object. First, we calculate the homography
matrix by selecting the homonymous points between the surveillance video and the online
remote sensing image in the actual scene. Then, based on the homography, we establish
the mapping relationship between the geometric BLOB in the image space and the smallest
bounding rectangle in the geographic space. Finally, we calculate the actual size of the
object based on the mapping relationship, and then obtain both the imaging area of the
BLOB in image space and the range of adaptive threshold according to the projection size
of the object.

2. Moving object detection based on adaptive threshold

In moving object detection, the existing object detection algorithms do not fully con-
sider the perspective-imaging characteristics of the moving objects and the interference of
external environmental noise. We abstract the irregular moving objects in image space as a
set of minimum circumscribed rectangles (BLOBs). Using the above adaptive threshold cal-
culation method, we design a moving object detection algorithm based on GMM_BLOB by
background reconstruction, background-difference calculation, and moving-block (BLOB)
set acquisition. We achieve high accuracy detection and noise removal of moving objects
by adaptive threshold.

3.2. Adaptive Threshold Calculation Based on Camera Perspective Characteristics
3.2.1. Mapping Relation Calculation Based on Homography Method

For the convenience of threshold calculation, it is necessary to establish the mapping
relationship between the actual orientation of the object in geographic space and the
geometric-imaging characteristics in image space. Compared with the traditional mapping
method based on the camera model, the homography method is simpler and does not
require camera-internal and external parameters [39]. Therefore, we use the homography
method to construct the mapping relationship between image space and geographical
space.

First, four or more control points q{q1(x1, y1), q2(x2, y2), . . . , qn(xn, yn)} in the video
are selected, and their pixel coordinates are obtained. Then, in the high-precision remote
sensing image, the corresponding points Q{Q1(X1, Y1), Q2(X2, Y2), . . . , Qn(Xn, Yn)} are
selected to obtain the geographic coordinates. Finally, based on these control points, the
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mapping matrix, H, of the camera video to geospatial mapping is obtained, according to
Equation (1). The inverse matrix of H−1 is the mapping matrix from geographic space to
image space.  X

Y
1

 =

 h11 h12 h13
h21 h22 h22
h31 h32 h33

 x
y
1

 = H

 x
y
1

 (1)

 x
y
1

 = H−1

 X
Y
1

 (2)

where (x, y) is the image coordinate of a point in the image space, (X, Y) is the geographic
coordinates of the corresponding point (x, y) in geographic space, and H−1 is the inverse
3 × 3 matrix solved by the homography matrix, H.

3.2.2. Calculation of Object Projected Size Based on Mapping Relationship

To calculate the projection size of the object in geographical space, it is necessary to know
the external parameters of the camera, i.e., the geographic location C(Xcam, Ycam, Hcam) and
the homography matrix, H. We can calculate the homography matrix, H, as in Section 3.2.1.
However, for moving objects of different heights not in a plane or three-dimensional
space, it is necessary to obtain the camera’s internal parameters further, i.e., internal
parameter matrix, K, rotation matrix, R, and translation matrix, T, as well as high-precision
digital-elevation-model (DTM) and digital-surface-model (DSM) data. Considering that
our existing data cannot obtain the camera’s internal parameters and there are no high-
precision DTM and DSM data of the camera area, we choose the flat video data and focus
on the moving object on the flat surface. We assume that the video resolution is i × j
and that the image coordinates of the corresponding pixel in the row, u (0 5 u 5 i − 1),
and column, v (0 5 v 5 j − 1), are Cuv(x, y, 0). According to the homography matrix,
H, we transform the image-coordinate point, Cuv(x, y, 0), into the geographic coordinate
Ruv(X, Y, 0).

Because of the different distances and orientations of the object from the camera
during the process of the object moving, as a result, the geometric-imaging characteristics
of the object at different pixel points in the image space are constantly changing. Therefore,
it is necessary to obtain the projection length and width of the object’s outer contour in
geographic space based on the object-mapping relationship and then set different threshold
ranges for each pixel position based on the camera-imaging characteristics. As shown
in Figure 2, C(Xcam, Ycam, Hcam) is the center of the camera in geographical space; the
object dimensions are height, Huv, width W l

uv, and length, Tuv. The upper midpoint of
the BLOB is the top point, and its geographic coordinates are Buv(X, Y, Huv). The lower
midpoint of the BLOB is the touch point, and its geographical coordinates are Puv(X, Y, 0).
Rays LT and LJ from the camera position, C(Xcam, Ycam, Hcam), point to Buv(X, Y, Huv)
and Puv(X, Y, 0), respectively. The angles between the ray and the ground are α and β.
The object-ground projection area is a trapezoid, and its height, upper-side and lower-side
lengths are calculated, which correspond to the object-ground projection length, huv, and
ground projection width wu

uv (one for near and one in the distance).
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1. Calculation of the object’s projected length, huv, in ground

According to the principle that the corresponding sides of similar triangles are propor-
tional, we calculate the coordinates of the intersection point between the ray, LT, and the
ground plane, z = 0, according to Equations (3) and (4). Then, the projection length, huv, of
the object on the ground is calculated, as in Equation (5).

x =
Hcam(X− Xcam)

Hcam − Huv
(3)

y =
Hcam(Y−Ycam)

Hcam − Huv
+ Ycam (4)

huv =

√
(x− X)2 + (y−Y)2 (5)

2. Calculation of the object’s projected length, wu
uv , in ground

During the object movement, the orientation of the moving object relative to the
camera will change. On the horizon, however, the different directions of the object relative
to the camera can be approximated as a cylinder. In geographic space, if the height
and width of the cylinder do not change at a certain position, the projected width, wu

uv,
in geographic space will not change. As shown in Figure 3, assuming the geographic
coordinates of the object (Obj) are Ruv(X, Y, 0), the symbol of W l

uv represents the width
of the object projected to the ground. Two rays are drawn from the camera position,

C(Xcam, Ycam, Hcam), to points JL(X− W l
uv
2 , Y, Huv) and JR(X + W l

uv
2 , Y, Huv), respectively.

Then, they intersect the ground plane at Geo3
uv and Geo4

uv, respectively. The linear formulas
are CJL and CJR, as show in (6) and (7), and their intersection points with the ground
plane are Geo3

uv
(
X3, Y3, 0

)
and Geo4

uv
(
X4, Y4, 0

)
, respectively, i.e., Equations (8)–(11), and

the values of Geo3
uv, Geo4

uv, and wu
uv can be derived.

(x− Xcam)/(X− W l
uv

2
+ Tuv − Xcam) = (y−Ycam)/(Y−Ycam) = (z− Hcam)/(Huv − Hcam) (6)

(x− Xcam)/(X +
W l

uv
2

+ Tuv − Xcam) = (y−Ycam)/(Y−Ycam) = (z− Hcam)/(Huv − Hcam) (7)

X3 =
Hcam(X− W l

uv
2

+ Tuv − Xcam)

Hcam − Huv
+ Xcam (8)

X4 =
Hcam(X +

W l
uv

2
+ Tuv − Xcam)

Hcam − Huv
+ Xcam (9)
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Y3 = Y4 =
Hcam(Y−Ycam)

Hcam − Huv
+ Ycam (10)

wu
uv =

W l
uv Hcam

Hcam − Huv
(11)
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3.2.3. Adaptive Threshold Calculation Based on Object-Ground Projection Size

According to the algorithm described in Section 3.2.2, based on the minimum bound-
ing rectangle of the object (Obj) in geographic space, the width, wu

uv, and height, huv, of Obj
in geographic space can be calculated. In the image space, the moving object size in dif-
ferent positions is inconsistent. Therefore, the object size and camera posture information
must be considered to calculate the threshold range of different pixels. When the BLOB
appears at different pixel positions in the video frame, the threshold range can be used to
filter the interference of the external environment; that is, a high-precision moving object
detection method that considers the threshold differentiation in the image space.

The adaptive threshold calculation includes the calculation of the quadrilateral coor-
dinates of the object projected to the ground and the calculation of the area range of the
object in the image plane.

1. Calculation of the quadrilateral coordinates of the object projected to the ground

In geographic space, the coordinate value of the object projected to the ground can
be calculated according to the camera center and object location and size. As shown
in Figure 4, the coordinates of the camera center point are known asC(Xcam, Ycam, Hcam),
the object coordinates areRuv(X, Y, 0), and the dimensions are wu

uv andhuv. The coordi-
nates of the four points projected by the object in geographic space are Geo1

uv
(
X1, Y1, 0

)
,

Geo2
uv
(
X2, Y2, 0

)
, Geo3

uv
(
X3, Y3, 0

)
, andGeo4

uv
(
X4, Y4, 0

)
, respectively. According to the ge-

ometric relationship between the minimum bounding rectangle (wu
uv, huv)of the object and

the center point, C(Xcam, Ycam, Hcam), of the camera, the geographic-coordinate values of
the four coordinate points can be calculated, i.e., Equations (12)–(17).

β = 90− α = 90− acrcos(

√
(X− Xcam)

2 + (Y−Ycam)
2

|Xcam − X| ) (12)

O
(
Ox, Oy

)
= O(X− Hcam cos β, Y + Hcam sin β) (13)

Geo1
uv(X1, Y1) = Geo

(
X− wu

uv
2
∗ sin β, Y− wu

uv
2
∗ cos β

)
(14)
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Geo2
uv(X2, Y2) = Geo(X +

wu
uv
2
∗ sin β, Y +

wu
uv
2
∗ cos β) (15)

Geo3
uv(X3, Y3) = Geo(Ox +

wu
uv
2
∗ sin β, Oy +

wu
uv
2
∗ cos β) (16)

Geo4
uv(X4, Y4) = Geo(Ox −

wu
uv
2
∗ sin β, Oy −

wu
uv
2
∗ cos β) (17)
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2. Calculation of the area range of the object in the image plane

According to the algorithm presented in Section 3.2.1, the inverse matrix, H−1, is
obtained, and the image coordinatesPic1

uv
(
x1, y1, 0

)
, Pic2

uv
(
x2, y2, 0

)
, Pic3

uv
(

x3, y3, 0
)
, and

Pic4
uv
(

x4, y4, 0
)

on the video frame corresponding toGeo1
uv
(
X1, Y1, 0

)
, Geo2

uv
(
X2, Y2, 0

)
,

Geo3
uv
(
X3, Y3, 0

)
, and Geo4

uv
(
X4, Y4, 0

)
, respectively, are solved. According to the coor-

dinates of the four points on the video frame, the minimum area, S′uv, of the external
rectangle of the object on the image, that is, the minimum value, Minuv, of the threshold,
can be calculated, as shown in Equation (18). According to Section 3.2, the object size
remains unchanged at the same position, but the size changes at different positions. In the
experimental setting, the empirical threshold, Maxuv, is obtained after many experiments,
as shown in Equation (19). the image coordinates of the object aremPic1

uv
(
mx1, my1, 0

)
,

mPic2
uv
(
mx2, my2, 0

)
, mPic3

uv
(
mx3, my3, 0

)
and mPic4

uv
(
my4, my4, 0

)
.

As shown in Figure 5, when traversing each point within the field of view, the coordi-
nates of the midpoint, the coordinates of the pixel, and the threshold range compose a set
that can be expressed as Formula (20). This set contains the image coordinates, Cuv(x, y, 0),
the corresponding geographic coordinates, Ruv(X, Y, 0), and the maximum, Maxuv, and
minimum, Minuv, threshold values of the object at the pixel Obj.

Minuv = S′uv = 1/2 = |x1y2 + x2y3 + x3y4 + x4y1 − x2y1 − x3y2 − x1y3 − x1y4 = | (18)

Maxuv =
1

2|mx1my2 + mx2my3 + mx3my4 + mx4my1 −mx2my1 −mx3my2 −mx1my3 −mx1my4t| (19)

Ruv = {(x, y), (X, Y), Minuv, Maxuv} (20)
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3.3. Moving Object Detection Based on Adaptive Threshold
3.3.1. Adaptive Threshold Calculation and Application

The application of adaptive threshold in moving object detection mainly includes three
processes: First, each pixel in the video frame is traversed to obtain its corresponding BLOB
threshold range. Then, based on the center of the moving object BLOB, the relationship
between its area and the pixel threshold range is judged. Finally, in the process of Obji
movement, different threshold ranges are automatically used to filter interference from the
external environment. As shown in Figure 6a, moving objects A, B, C, etc. are distributed
in different locations in geographic space. The quadrilateral in Figure 6b is the region of
these objects on the image plane. When the centroid of the moving object, A, is located at
pixel R5, the relationship between the areas of object A and the range of the corresponding
threshold at R5 is judged. If the area of object A is less than the minimum threshold or
greater than the maximum threshold, it is regarded as noise.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 21 
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3.3.2. Moving Object Detection Based on GMM_BLOB Algorithm

The previous moving object detection algorithm mainly sets the dynamic threshold
based on the depth map or the normalized pixel value without considering the adaptability
of the threshold value in the process of the moving object. The key to object detection is
to build a robust background image. The current background modeling methods are the
GMM [40,41] and the Vibe algorithm [42–46]. Owing to parameter-setting and background-
template updating problems, the vibe algorithm will lead to missed detection, residual
shadow, and ghost phenomena in object detection. However, the traditional GMM method
is slow and significantly affected by illumination. Adding a balance coefficient and merging
redundant Gaussian distribution into the traditional GMM algorithm can improve the real-
time performance and accuracy of the algorithm [47–50]. However, the traditional GMM
algorithm ignores the influence of the external environment, which leads to an increase
in the number of moving object detections. Meanwhile, the traditional object detection
and tracking algorithms are slow, and it is difficult for them to meet the requirements of
real-time surveillance video processing. As mentioned above, the improved object detec-
tion algorithm (GMM_BLOB) is designed. Based on the GMM algorithm, this algorithm
abstracts the dynamic block BLOB of irregular moving objects in image space. It adds
BLOB-threshold-filter conditions to improve the accuracy of moving object detection.

As shown in Figure 7, the foreground image F(x, y, i), and background image, B(x, y, i),
of the video are extracted based on the background-mixture method [48]. On this basis, the
background-subtraction method is used to extract the difference image, R(x, y, i), and the
candidate BLOB sets are further obtained. Owing to the BLOB set containing real moving
objects and noise, it is necessary to further filter the noise in the BLOB set to improve the
accuracy of object detection. According to the method detailed in Section 3.3.1, the imaging
area and threshold range of each BLOB are also changing in the process of moving in
geographic space. The relationship between the area of each BLOB in the candidate object
set and the threshold range of its centroid pixel is determined. When the BLOB area is less
than the minimum value of the threshold and greater than the maximum value, it is used
as noise. Finally, the accurate moving object set, BLOBi(i = 1, 2, . . . , n), is obtained.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 21 
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4. Experimental Test
4.1. Experimental Design

The software environment used in the experiments in this work is VS, C#, Emgu CV,
and Arcengine, and the hardware environment is a GTX-1660Ti GPU and an i7-10750H
CPU with 16 GB of memory. The experimental sites are a playground video (designated
video #1) and a traffic scene video (video #2), as shown in Table 1. The videos are outdoor
scenes, and the image resolution is 1280 × 720. The differences between videos #1 and #2
are the following: (1) the moving object in video #1 contains only people, and video #2
contains people and cars; (2) the camera height of video #1 is higher than that of the video
#2 corresponding camera, and the horizon is wider than that of video #2; and (3) the frame
rate for video #1 is 25 frames per second (fps) and that for video #2 is 30 fps.
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Precision, recall, and F1 score were used as the evaluation indexes to verify the
accuracy of MOD-AT, and their calculation formulas are (21), (22), and (23), respectively.
The test data for four moving object detection algorithms are recorded every 30 frames.
The results of moving object detection were compared from two scales, namely single-
frame accuracy and overall accuracy. At the same time, the mean precision (MP), mean
recall (MR), mean F1-score (MF), variance precision (VP), variance recall (VR), variance F1
score (VF), and mean error number (MN) of the three indexes were used to evaluate the
robustness of the algorithm. The calculation formulas are the following:

precision =
TP

TP + FP
(21)

recall =
TP

TP + FN
(22)

F1− score =
2 ∗ precision ∗ recall

precision + recall
(23)

MN =
n

∑
i=1

|TN − TP|
N

(n = 1, . . . , N) (24)

where TP indicates that the foreground object is correctly identified, FP indicates the
number of video backgrounds recognized as foreground objects, FN represents the number
of foreground objects recognized as background, TN is the actual number of objects in the
experimental scene, and N is the total number of detection frames.

Table 1. The experimental data.

Camera Name X
(m)

Y
(m)

Altitude
(m)

Video Length
(min)

Video
Resolution

(pix)
Location and FOV

video #1 3,781,008.991 12,694,007.489 30 m 20 1280*720
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4.2. Adaptive Threshold Calculation

Using the algorithm presented in Section 3.2, the true threshold of a moving object at
any position can be calculated. A moving object with a height of 1.75 m and a width of
0.8 m in the experimental scene was taken as an example. The threshold ranges of moving
objects in videos #1 and #2 were calculated separately. To obtain the maximum threshold
value in Section 3.2.3, we analyzed the size-change range of the object in videos #1 and #2
at different positions. As in Figure 8a,b, the width and height ranges of the object were
set to [W l

uv, 2W l
uv] and [Huv, 2Huv], respectively, to obtain the corresponding threshold

change ranges. After many experiments, results show that the size of the moving object
changes within the corresponding thresholds of [W l

uv,3/2W l
uv] and [Huv,3/2Huv]. Setting

the threshold range too large or too small will affect the accuracy of moving object detection.
Therefore, we chose 3/2 as the scale factor determined by the maximum threshold.
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Figure 8. Maximum threshold range of videos #1 and #2: Object location and threshold range of (a) video #1 and (b)
video #2. (c) Statistics of the width and height in video #1 are 1.0–2.0 times the threshold range and object-size change,
respectively. (d) Statistics of the width and height in video #2 are 1.0–2.0 times the threshold range and the object-size
change, respectively.

The algorithm detailed in Section 3.2 was used to obtain the threshold maximum and
minimum values of the object (width, wu

uv, and height, huv) at different pixel points. As
shown in Table 2, (1) the projected height of the object is constantly changing in the process
of moving in geographic space, and it is different from the actual height of the object; and
(2) the threshold range of the object in different positions is constantly changing. Therefore,
an adaptive threshold range should be used in the process of object detection.

The minimum peripheral contour of the object corresponding to each pixel of videos
#1 and #2 is mapped to the corresponding position in the geographic space and image
space, respectively. As shown in Figure 9a,b, the projection height and width of the object
in the geographic space are used to realize the mapping from the geographic space to the
image space. As shown in Figure 9c,d, the threshold range of each pixel-position object in
the image space can realize moving object detection based on the adaptive threshold.
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Table 2. Threshold information of videos #1 and #2.

Camera
Name

Row
(j)

Column
(j)

Object
Projection
Width (m)

Object
Projection
Height (m)

Image Space Object
Area (Number of

Pixels)

Threshold
Minimum

(Number of Pixels)

Threshold
Maximum

(Number of Pixels)

video #1

527 21 1.13 5.17 60 60 299
451 111 1.13 3.81 410 410 2013
372 288 1.13 1.73 2185 2185 10,425
248 422 1.13 1.25 4455 4455 20,544
154 476 1.13 1.14 5624 5624 25,680

video #2

338 56 0.85 1.46 56 56 80
276 148 0.85 1.06 108 108 156
158 278 0.85 0.76 184 184 272
54 370 0.85 0.64 208 208 312
16 680 0.85 0.38 490 490 784
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Figure 9. Threshold calculation of videos #1 and #2 in image space: (a) object size projected on the 
geographical space of video #1 and (b) image space threshold of video #1. (c) Object size projected 
on the geographical space of video #2 and (d) image space threshold of video #2. 

Table 2. Threshold information of videos #1 and #2. 
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Figure 9. Threshold calculation of videos #1 and #2 in image space: (a) object size projected on the
geographical space of video #1 and (b) image space threshold of video #1. (c) Object size projected
on the geographical space of video #2 and (d) image space threshold of video #2.

4.3. Single-Frame Accuracy Verification

The object detection results were recorded by videos #1 and #2 every 30 frames, and
2400 records were obtained. At fixed intervals, 40 samples were randomly selected to verify
the accuracy of a single frame. Table 3 shows the object detection results of video #1 at 9:20
and 9:22 and of video #2 at 9:40 and 9:42. This indicates that the TP value of the MOD-AT
algorithm is closer to TN, and that the FP value is smaller than the existing object detection
algorithm. It is proven that the MOD-AT algorithm eliminates most of the noise generated
by the external environment, compared with the current algorithm.

The number of correctly detected objects (TP) is compared with real objects (TN). As
shown in Figure 10a,c, the TP and TN values of the four detection algorithms at different
time points are compared. The result shows that the moving object detection result, TP,
of the MOD-AT algorithm is closer to TN. The box diagram in Figure 10b,d, shows the
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average variability of the four algorithms, GVIBE [39], IGMM [34], NPCM [38], and MOD-
AT, compared with the number of TN detections. These indicators show that

1. The mean value of object detection error (MD) is reduced by 1.2–6.8% for video #1
and by 1.65–11.05% for video #2.

2. The MN of MOD-AT object detection results for videos #1 and #2 decreases by
1.5–10.5% and 1–15.5%, respectively, on the whole; by 3.5–5% and 3–6.5%, respectively,
compared with the IGMM algorithm; by 7–10.5% and 8–15.5%, respectively, compared
with the GVIBE algorithm; and by 1.5–2% and 1–1.5%, respectively, compared with
the NPCM algorithm. As shown in the randomly selected time points in Table 4,
it can be seen that the precision, recall, and F1 score of the MOD-AT algorithm for
single-frame detection are all higher than those of the GVIBE, IGMM, NPCM, and
MOD-AT, indicating that the MOD-AT algorithm has high precision.

Table 3. Object detection results of videos #1 and #2.

Video Time
Video #1 Video #2

9:21 9:22 9:41 9:42

Video frame
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Table 4. Comparison of single-frame indicators between videos #1 and #2.

Method
Time

Video #1 Video #2

Precision Recall F1_Score Precision Recall F1_Score

9:20/9:30 9:40/9:50

GVIBE 46.15/50 55.56/60 58.82/60 47.12/45 66.67/64.29 56/54.55
IGMM 40/57.89 77.78/71.43 68.75/53.85 58.33/60 75/77.78 63.23/63.16
NPCM 70/77.78 84.62/85.71 80/82.53 66.67/71.43 80/83.33 76.04/72.3

MOD-AT 90/89.9 96/87.5 87.50/85.71 90.91/89.66 90.23/90.89 88.89/94.74

4.4. Verification of Overall Accuracy

The overall accuracy of 2400 random records was verified, and then the precision,
re-call, and F1-score were calculated for each frame. The results can be seen from the
radar map distribution in Figure 11. The precision, recall, and F1-score of the MOD-AT
algorithm are greater than those of the GVIBE, IGMM, NPCM, and MOD-AT algorithms.
At the same time, the average value (MP) and variance (VR) of the calculation results
of multiple frames of various indicators were obtained, and the results are shown in
Table 5, as follows. (1) For different video data, the F1-score of the MOD-AT algorithm is
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maintained above 90%, and the results show that MOD-AT algorithm can maintain good
object detection performance for videos with different view and height. (2) Compared with
other object detection algorithms, the MOD-AT algorithm improves MP by 17.13–44.4%,
MR by 7.98–24.38%, and MF by 10.13–33.97%. (3) The MOD-AT algorithm VP, VR, and VF
are lower than those of other object detection algorithms, showing that the precision, recall,
and F1-score of the MOD-AT algorithm are stable and maintain high accuracy. Mean-while,
the MOD-AT algorithm reduced the time consumption per frame by 7.9–24.3%, as shown
in Table 6, indicating an optimized efficiency and performance. To verify the impact of
videos with different frame rates on the algorithm’s performance, the frame rates of videos
#1 and #2 were separately converted to 10, 20, 30, 40, and 50 fps, respectively, and time
efficiency and CPU memory consumption were compared. As can be seen in Figure 12, for
videos with different frame rates, videos #1 and #2 show the following change patterns:
(1) For every 10-fps increase in frame rate, CPU usage increases by 15.4–47.5% and time
efficiency increases by 18.7–43.7%; and (2) for the same frame rate, the more targets each
frame contains, the longer the processing time and the higher the CPU consumption.

Table 5. Comparison of indicators of MOD-AT algorithm.

Method
Video #1 Video #2

MP/VP MR/VR MF/VF MP/VP MR/VR MF/VF

GVIBE 45.64/4.63 68.14/11.87 54.49/6.86 47.91/8.99 66.19/11.67 54.19/8.12
IGMM 42.24/10.1 73.11/6.41 53.14/9.22 54.98/8.92 73.78/9.10 62.75/6.86
NPCM 72.91/8.25 81.77/5.74 76.98/6.81 71.61/6.15 81.17/7.06 76.04/4.03

MOD-AT 90.04/4.29 89.75/4.06 87.11/4.03 91.13/4.32 90.57/3.73 87.52/3.42

Table 6. Comparison of MOD-AT efficiency and performance.

Method
Time Efficiency

(ms/frame−1)
Threshold Setting Adaptive Threshold for

Object DetectionGeospatial Dynamic Threshold Object Type

GVIBE [39] 60.653 No No No No
IGMM [34] 45.951 No No No No
NPCM [38] 40.653 Yes Yes No Yes
MOD-AT 37.439 Yes Yes Yes Yes
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5. Conclusions and Discussion

Aiming at the problem that the previous moving object detection algorithm does not
consider the influence of camera-imaging characteristics, resulting in low target-detection
accuracy, a moving object detection method called MOD-AT that considers the difference
in image spatial threshold was designed in this work. MOD-AT realizes the high-precision
detection of moving objects at different positions on the horizon according to different
thresholds.

Experimental results show that the MOD-AT algorithm has higher accuracy in both
single-frame and overall accuracy evaluation. In the aspect of single-frame accuracy, we
report the following.

1. Compared with the existing object detection algorithm, the median error (MD) of the
MOD-AT algorithm is reduced by 1.2–11.05%.

2. The mean error (MN) of the MOD-AT object detection results is reduced by 1–15.5%,
which shows that the MOD-AT algorithm has high accuracy in single-frame de-
tection. In terms of overall accuracy, (a) the results show that the F1 score of the
MOD-AT algorithm is above 90% for different experimental scenarios, demonstrating
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the stability of the MOD-AT algorithm; and (b) compared with the existing object
detection algorithms, the MOD-AT algorithm improves MP by 17.13–44.4%, MR by
7.98–24.38%, and MF by 10.13–33.97%, which shows that the MOD-AT algorithm has
high precision.

3. The MOD-AT algorithm performance was improved by 7.9–24.3% compared to other
algorithms, reflecting its efficiency.

Of course, this algorithm has several shortcomings. For example, due to the limitation
of video data and the difficulty of obtaining high-precision DTM and DSM data, the
threshold calculation is limited to moving objects on a plane. At the same time, multiple
experiments were carried out on the two videos to determine the maximum threshold
range. More experimental data are needed to verify the universality of the maximum
threshold range. In addition, it is important to note that for more complex monitoring
scenarios, such as group objects, current algorithms need to consider object detection,
semantic segmentation, deep learning, and other methods. In conclusion, how to further
coordinate the efficiency of the current method with the high accuracy of a deep-learning
method is also a problem that needs further study. These problems remain the focus of
planned follow up research.
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