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Abstract: Room segmentation is a basic task for the semantic enrichment of point clouds. Recent
studies have mainly projected single-floor point clouds to binary images to realize two-dimensional
room segmentation. However, these methods have difficulty solving semantic segmentation problems
in complex 3D indoor environments, including cross-floor spaces and rooms inside rooms; this is
the bottleneck of indoor 3D modeling for non-Manhattan worlds. To make full use of the abundant
geometric and spatial structure information in 3D space, a novel 3D room segmentation method
that realizes room segmentation directly in 3D space is proposed in this study. The method utilizes
volumetric representation based on a VDB data structure and packs an indoor space with a set
of compact spheres to form rooms as separated connected components. Experimental results on
different types of indoor point cloud datasets demonstrate the efficiency of the proposed method.

Keywords: room segmentation; point clouds; volumetric; sphere packing; indoor space

1. Introduction

The continuous progress of laser scanning technology provides an effective means for
the measurement and perception of architectural information. High-density laser-based
3D point clouds captured by stationary terrestrial laser scanners (TLS) [1] or indoor mobile
laser scanners (IMLS) [2,3] can provide detailed architectural and geometric information.
Laser point clouds are usually unstructured and lack semantic information, while automatic
3D indoor modeling is difficult [4]. Traditional methods for building a detail-rich building
information model (BIM) require some basic techniques, including (1) geometric building
object modeling, (2) semantic modeling, and (3) topological relationship modeling.

Many studies have been devoted to the development of automated indoor modeling
methods [4-8] in the fields of architecture, engineering, and construction (AEC). As a
necessary initial step, room segmentation can provide semantic room information as the
basic unit of indoor space, which is the premise of further indoor scene understanding,
object recognition, and urban computing [9,10]. At the same time, room segmentation is
an important research topic in the field of robotics and is the basis for robot task planning
and navigation [11]. The purpose of the room segmentation task is to automatically and
robustly partition indoor 3D point clouds into rooms. The current methods mainly project
single-floor point clouds to two-dimensional occupancy probability images to realize two-
dimensional room segmentation [12,13]. However, these methods have difficulty solving
semantic segmentation problems in complex 3D indoor environments, including cross-floor
spaces [14] and rooms inside rooms [15]; this is the bottleneck of indoor 3D modeling for
non-Manhattan worlds.

Some researchers [16] have applied trajectory information to the semantic classification
of indoor spaces. By combining trajectories with point cloud data, they realized the
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subdivision of indoor spaces into floors, stairs, porches, and rooms. This type of method
can conduct room segmentation for point clouds in three-dimensional space. However,
this approach relies on the loop-closing strategy during the data acquisition process to
form trajectory clusters in the rooms. When a room contains more than one door and the
distances between the trajectory points passing through two doors are large, such methods
may fail. Therefore, trajectory-based room segmentation methods also require auxiliary
information from the associated point cloud to generate more reliable classification results.

It is obvious that realizing room segmentation directly in 3D space has many advan-
tages. For example, 3D space can provide more abundant geometric and spatial structure
information and can meet a wider range of application requirements, including those of
semantic segmentation for complex indoor environments containing cross-floor spaces and
nested rooms [17]. To achieve 3D room segmentation, it is necessary to fully consider the
geometric and indoor spatial structure information contained in the given point cloud to
obtain more reliable classification results. There are many difficulties in extending a room
segmentation algorithm from a 2D grid to a 3D grid [18], including the rapid growth of the
memory space and long calculation times.

In this study, we propose a novel 3D room segmentation method that is inspired by
the idea that rooms are connected by their interiors and are departed through narrow
passages (i.e., doors). This method utilizes volumetric representation based on a VDB (a
sparse volumetric data structure with dynamic topology and is a variant of B+ tree) data
structure and packs indoor spaces with sets of compact spheres to form rooms as separated
connected components.

The remainder of this paper is organized as follows. The works related to this study are
reviewed in Section 2. Section 3 describes the details of the proposed 3D room segmentation
method. Experiments and discussions are presented in Sections 4 and 5, respectively. The
conclusions are drawn in Section 6.

2. Related Works

Room segmentation based on 3D laser point clouds has been researched in many
fields, such as computer vision, robotics, and AEC. It is difficult to comprehensively review
the research work in all aspects of these related fields. This study briefly reviews the aspects
closely related to this study, including room segmentation and sphere packing.

2.1. Room Segmentation

Room segmentation has been considered by researchers for decades. The commonly
used room segmentation algorithms for 2D occupancy probability images include the
morphology-based method [19,20], distance transform-based method [21,22], Voronoi-
based method [23], and feature-based method [24].

The traditional morphology-based method uses an opening operator (i.e., erosion
followed by dilation) to partition an input fuzzy grid map into regions. The premise is that
rooms are separated by narrow passages (i.e., doors). Starting from a seed point inside
each region, the watershed method then identifies which pixels belong to the same room.
The distance transform-based method calculates the distance between each pixel and its
nearest occupied point. The local maxima of the distance transforms always lie in the
middle of a room. After the extraction of local maxima, each cell is then traced upward to
its local maximum, which is generally around the room's center; any cells that travel to a
shared local maximum throughout the gradient are grouped together into one room. In
practice, distance transform-based segmentation and morphological segmentation have
certain similarities; the segmentation results obtained for some maps are fairly comparable,
and their computational costs are similar. The morphological segmentation often obtains
high recall in empty indoor space [12]. The above methods are widely used for single-floor
room segmentation. However, the connectivity of indoor space with furniture cannot be
effectively expressed using a 2D occupancy probability image. Besides, these methods often
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lead to over-segmentation with arbitrarily segmented boundaries. A detailed comparison
of existing works can be found in [12,20].

Armeni et al. [25] assume that the rooms are aligned to the Manhattan world frame
and parse 3D point clouds of buildings into rooms. The building elements including walls,
doors, and objects are further classified. In the AEC field, room segmentation is often
transformed into a cluster problem. By initializing projecting point clouds in the XOY
plane, room segmentation can be transformed into a clustering problem, and the k-medoids
algorithm can be utilized to cluster subsampled pixels [26]. Assuming that every room
has at least one scan position, Mura et al. [8] automatically selected the number of room
clusters by grouping the viewpoint cells according to their visibility overlaps. This method
overcomes the limitations of the 2.5D assumption and allows for the modeling of slanted
wall structures. Ochmann et al. [6] ran visibility tests between point patches on surfaces
using ray casting and built a visibility graph. The regions of the point cloud with high
mutual visibility formed clusters corresponding to the rooms of the building.

Some researchers have further improved upon the traditional methods, and methods
utilizing circle packing have emerged. For example, the MAORIS method [27] convolves
the input map's distance image with a circular kernel. The pixels with the same value are
then grouped into ripple-like patterns in which pixel values change rapidly. Then, room
segmentation is achieved by identifying ripple-like patterns and combining neighboring
regions with comparable values.

The above methods are mainly based on the projection of a single-floor point cloud to
a two-dimensional evidence grid image and the projection of a three-dimensional point
cloud to a binary image to realize room segmentation based on a two-dimensional plane
grid map, thus meeting the imposed room segmentation requirements based on each
floor. However, these methods have difficulty solving room segmentation problems with
cross-floor spaces and nested rooms. The restrictive priors such as the 2.5D assumption
employed in the above methods can only faithfully model environments with vertical walls
and horizontal floors and ceilings. The semantic segmentation of a complex 3D indoor
environment, including cross-floor spaces and nested rooms, is the bottleneck of indoor 3D
modeling for non-Manhattan worlds.

By utilizing the fact that two places are linked by doors, trajectory information can
be employed to semantically enhance indoor environments. Trajectory information is
combined with point cloud data and used to decompose an indoor space into stories,
rooms, staircases, and doorways [2]. However, this method relies on the loop-closing
strategy during the data acquisition process to form the trajectory clusters in the rooms.
When a room contains more than one door and the distances between the trajectory points
passing through the two doors are large, this method may fail. Therefore, the trajectory-
based room segmentation method also requires obtaining auxiliary information from the
associated point cloud to obtain more reliable classification results.

2.2. Sphere Packing

The sphere packing problem was first proposed by Kelper in 1961 [28]. The sphere
packing problem is a classical problem in mathematics. It is also widely used in many
branches of science, engineering, and even in daily life [29]. The problem is generally
described as an arrangement of non-overlapping spheres within a container space. In some
studies, this problem is generalized to the packing of spheres with unequal diameters [30].
In two dimensions, the problem becomes circle packing, and in higher dimensions, it
becomes hypersphere packing. Packing issues may be divided into two categories based
on the utilized packing structures: ordered packing and disorderly packing [31]. When
considering the differences between space containers, the problem becomes the packing of
either regular objects or irregular objects [32,33].

The sphere packing problem in indoor spaces is similar to the problem of sphere
packing for arbitrary objects. Wu [34] formulated a min-max sphere packing method to
pack predefined 3D regions. The objective is to minimize the number of spheres while
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maximizing the covered volume. The result is a set of spheres with different radii. The
research was restricted to integer radii, and the studied problem was proven to be an
NP-completeness problem. Weller [33] proposed a sphere packing method for arbitrary
object mesh models. The arbitrary object was voxelized first, and the value of each voxel
was set to be the distance to the closest triangle on the surface of the object. The voxel with
the largest distance was selected as the center of the sphere. The procedure was repeated
until dense sphere packing was achieved for the object.

Another problem closely related to sphere packing is sphere covering [35]. A sphere
covering is an arrangement of spheres that completely covers a space. In some applications,
overlap is not only permitted but also inevitable. In this situation, the goal is to find a
configuration that reduces the overall density (i.e., the total volume of the spheres divided
by the volume of the space). The sphere packing problem is generalized and allows
each sphere to have a limited amount of overlap with other spheres [35]. The sphere
packing algorithm is still hard to use in computer graphics. On the one hand, computer
graphics typically involve the visualization of a scene, such as the surfaces of objects,
rather than what is inside or behind them. On the other hand, algorithms for computing
sphere packing results are computationally expensive, and current research is often limited
to simple geometric objects, such as cones, cubes, tetrahedrons, spheres, ellipsoids, and
cylinders [29,31]. Sphere packing for indoor spaces is more difficult because their geometric
forms are more complex, and their scales are larger. After all, the sphere packing problem
is still an open problem, and it is still necessary to further explore its application scope.

To the best of our knowledge, this study is the first to apply sphere packing to indoor
space representation and room segmentation. The sphere packing problem becomes even
harder for indoor spaces. Because an indoor space is highly complex and has a large scale,
solving the problems of memory and efficiency is quite important.

3. Materials and Methods

In this study, an indoor space is classified as either a free space (open space) or
an occupied space. A free space is a navigable space, and an occupied space is a non-
navigable space. Rooms are connected by narrow passages (doors and junctions). A
corridor connecting more than one room is considered a special room in our research.
Two types of 3D point clouds are utilized as the inputs of our three-dimensional room
segmentation method. One is a point cloud captured by TLS, P = {v, P }Ij:l. Each frame
of the scanned point cloud is associated with a viewpoint v.. The world coordinate system
is used to determine the {x;, y;, zi } coordinates of point p; € P~. The other cloud is a point
cloud captured by IMLS, P = {p;, (pi}iil. Each scanned point is associated with pose
information.

The flowchart of the proposed 3D room segmentation method is depicted in Figure 1.
The main steps of the proposed method are summarized in Algorithm 1. The method
contains five main steps.

(1) 3D occupancy probability map calculation: The 3D occupancy probability of the
obtained laser scanning point cloud is calculated, and the probability value is stored
in the VDB-based 3D grid data structure, which is an efficient and sparse volume data
structure.

(2) Three-dimensional Euclidean distance transform (EDT): An EDT is performed to
calculate the distance from each voxel to its nearest occupied point.

(3) Inner sphere packing: The distance map obtained after executing the EDT is seg-
mented according to the given distance threshold, and the inner sphere is used to
pack the space where the distance value is greater than the given threshold.

(4) Initial room seed region generation: A topological graph is constructed according
to the adjacency relationships between the filled interior spheres, and the connected
subgraphs of the topological graph are segmented. The initial room seed regions are
obtained by superposing the space occupied by each interior sphere in the connected
subgraphs.
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(5) Wavefront growth: The final 3D room segmentation result is obtained by using the
wavefront growth algorithm.

\:ir\

3D occupancy probability )
_. map calculation Labeled rooms

- - - - - - b —— -

A

A

Three-dimensional EDT

Wavefront growth

Inner sphere Initial room seed | |
packing region generation

- - - - - - - '

Figure 1. Flowchart of the proposed 3D room segmentation method.

3.1. VDB Data Structure and 3D Occupancy Probability Map

In this study, volumetric representation is used to model occupied space and free space
(Figure 2). A 3D occupancy probability grid map is generated to represent the certainty
with which a voxel is occupied by obstacles. The dense regular grid data format is straight-
forward and convenient for volume rendering, fluid simulation, and fracture simulation.
However, it has at least one significant flaw: the memory footprint is directly proportional
to the size of the embedding space. If numerous instances are required or the 3D data are
animated and the grid domain constantly changes, even highly dense and regular grids,
both of which are common in simulations, can induce memory constraints [36].

Room 2
Room 2
fiee space
Room 1

laser

[ I

occupied space
(a) (b)

Figure 2. Illustration of an indoor space: (a) two rooms are separated by a door; (b) the voxels in yellow are free spaces, and
the voxels in blue are occupied spaces.

To solve this problem, we use a VDB data structure [36] to store the 3D occupancy map.
The VDB data structure builds on B+ trees and is memory efficient. It supports fast, constant-
time random access, insertion, and deletion. The VDB data structure has unbounded signed
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index domains and supports arbitrary grid topologies. It was developed for both dynamic
topologies and dynamic values that are typical of time-dependent numerical simulations
and animated volumes.

The ray casting method is used to generate 3D occupancy grid maps. The viewpoint
of each scan is used to calculate the certainty of each voxel. To simulate the scanning
process, a beam model is utilized. As shown in Figure 2, free space is the space between a
perspective and an obstacle. When a beam leaves the laser scanner and hits an obstacle,
it comes to a complete halt. The voxel size s,y should be properly chosen to make a
tradeoff between memory and efficiency. Bresenham's line algorithm [37] is used to decide
which voxels in a 3D grid should be chosen to approximate a straight line between two
points.

3.2. 3D Euclidean Distance Transform

The distance grid map M represents the distance from each grid voxel to the closest
obstacle. Given a grid map M, let p and q be the coordinates of any two voxels in grid M,
and the Euclidean distance (ED) between these two voxels can be mathematically expressed
as follows.

. . 2

D(p) = minf(p,q) = min (p —q) ©
where p and g are the index coordinates of the grid map voxels in M. The distance between
p and ¢ is measured by the function f(p, q). For each free voxel p, the 3D EDT algorithm
calculates the distance f(p, q) and finds the closest occupied voxel q. The EDT is essentially
a search-based optimization framework for solving the problem defined in Equation (1).

In this study, the VDB-EDT algorithm [38] is used to provide high-quality and more
complete mapping results while consuming less memory and processing time than other
methods. The VDB-EDT algorithm is an efficient and robust framework for occupancy
grid mapping and EDT. The VDB data structure is also used to represent the distance field
hierarchically. Because the VDB adopts efficient memory management, it can access voxels
randomly with (O(1)) time complexity, which makes it very suitable for large-scale 3D EDT
problems.

The VDB-EDT algorithm maintains a priority queue. An obstacle with added and
removed states is put into the queue for initialization. The algorithm iteratively updates
the voxel’s distance to its closest obstacle, thus forming two distance propagation processes
called raising waves and lowering waves. A raising wave occurs when an obstacle is
removed, and the set of grid cells with index s as the nearest obstacle needs to be reset
to generate a process similar to a raising wave. A lowering wave occurs when adding
obstacles. It checks 26 neighboring voxels around the current voxel and updates the
distance values of these voxels to produce a process similar to a descending wave (Figure 3).

3.3. Inner Sphere Packing for Indoor Spaces

In this section, we introduce our packing method for inner spheres with different
radii. The objective of sphere packing for an indoor space is to minimize the number of
spheres while maximizing the covered volume. This problem is difficult to solve, and an
approximate method is adopted in this study to make a tradeoff between accuracy and
efficiency. The problem is equivalent to generating a subset of the sphere positions in the
indoor space Q). The placed sphere S; is centered at position p(x;, y;, z;) with radius r;.

§(i,j) = \/(Xz‘ —x)*+ (vi - Y;)z +(z—2)" — (ri+7) @

If the two packing spheres are disjoint, g(i,j) > 0. If the two spheres are tangential,
g(i,j) = 0. If the sphere pair overlaps, g(i,j) < 0. Instead of directly using the g(i, f)
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function to judge overlap, we adopt an overlapping degree indicator Soyer1ap to describe
the overlap between two spheres (Figure 4). The overlapping degree is defined as:

Ti+1’]'*d

min (1’1‘, 1’])

®)

6overlap =

Algorithm 1. Three-Dimensional Room Segmentation.

Input: P: a set of unorganized point clouds;
Syoxel: the voxel size of the grid map

Ad: distance threshold for distance map segmentation;
Soverlap: Overlap ratio threshold for two spheres;
T: minimum room volume threshold

Initialize:

Moccupied ¢ @ // 3D occupied map

Megt < @; // EDT map

Mgeedq < @ //initial room seed regions

Miapel < 9; // room segmentation with labels
(1) Moceupied = 3D_OccupiedMap (P, syoxel);

(2) Megt = VDB_EDT (Myccupied); // EDT

(3) R = SpherePacking (Megt, Ad, Soverlap);

(4) Mgeeq = InitialSeedRoom (Meqy, R, T);

(5) Mapel = WavefrontGrowing(Mgeeq );

(6) return M pel

01 |4 |9 |16 |25 |34 0 1 V|9 [ 16|25 | 3 0 1 4l 9 (16 |25 | 34 0 1 + |9 |16 |25 | 34
1 2 5 10 |17 |20 5 1 2 5 w1 20 | 25 1 5 10 17 0 | 25 1 2 5 4 5 20 | 25
1 5 8 9 10 13 18 4 5 8 9 10 13 18 4 3 2 1 2 13 18 1 3 2 1 2 5 18
9 8 5 4 5 g 1 9 8 5 L] 5 8 1 9 8 1 T 1 8 1 9 4 1 T 1 4 13
10 5 2 1 2 3 10 10 5 2 1 2 3 10 10 5 2 1 2 5 10 10 5 2 1 2 5 10
9 4 1 1 4 9 9 1 1 1 ] 9 9 4 1 1 4 9 9 4 S 4 5 4 9
10 |5 2 1 2 s 10 0| s 1 2 5|10 10 ] s 2 1 2 s |10 10 |'§ 2 1 2 S 10
(2) (b) © (d)
0 1 4 9 16 | 25 | 34 0 1 i 9 10 5 | 34 0 1 4 9 10 | 13 | 34 0 1 1 9 10 [ 13 |18
1 5 4 5 8 s 1 5 4 5 8 5 1 2 5 4 5 8 13 1 2 5 4 5 8 13
4 5 2 1 2 s 18 4 s 2 1 2 s 10 1 5 2 1 2 5 10 4 5 2 1 2 3 10
9 4 1 0 1 4 1 9 4 1 0 1 4 9 9 4 1 0 1 4 9 9 4 1 0 1 1 9
10 5 2 1 2 ] 10 10 5 2 1 2 5 10 10 | 5 2 1 2 5 10 10 [ § 2 1 2 5 10
9 8 5 1 5 8 9 9 8 5 4 5 8 9 13 8 5 4 5 8 13 13 8 3 4 5 8 13
10 5 2 1 2 b5 10 10 5 10 9 10 9 10 10 13 10 9 10 | 13 10 18 | 13 10 9 10 13 18
(e) ® (2 (h)

Figure 3. The VDB-EDT algorithm is performed to calculate the distance from each voxel to its nearest occupied point. The

colours gray and blue correspond to occupied, empty values, respectively. The pink and green cells represent lowering and

raising waves, respectively. (a) The initial map contains two occupied points; (b) the map contains a new occupied point

and a newly cleared point; (c-h) the map contains the lowering and raising wavefronts with the highest current priorities.

Algorithm 2 describes the main steps of the sphere packing algorithm. After executing
the 3D EDT, a distance transform grid map is obtained. The distance value from each
voxel to its nearest obstacle point is stored. First, the voxel with the largest distance
transformation value is selected as the center of the sphere, and the largest nearest neighbor
distance is selected as the radius to fill the sphere. Let the voxel center be P,,,,44, and let its
nearest neighbor distance be Dmax = max {D}. Then, the first packing sphere is defined as
51 = (O, R) = (Pmax; Dmax)'
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Figure 4. The relationship between two spheres shown in 2D. (a) The two spheres are tangential; (b) the two spheres

overlap.

Next, the voxel center with the largest nearest neighbor distance from the outer voxel
set containing all filled balls is selected as the new center of the filled sphere, and the new
inner sphere is filled. To reduce the overlap between the inner spheres, the efficiency of the
sphere packing algorithm is improved by using a parallel sorting algorithm. The algorithm
iterates until all voxels are covered by spheres, and the final result is a set of inner spheres
S = {S1,S2, - -Sn}. As the overlap value is important for the sphere packing algorithm,
the parameter should make a tradeoff between accuracy and efficiency.

3.4. Initial Room Seed Region Generation

Inner sphere packing is an effective method to determine the boundary and internal
shape of an irregular indoor 3D space. The packed inner spheres can closely contact the
interior boundary surface of irregular indoor space. As rooms are connected by narrow
passages (doors and junctions), the local maxima of DTs always lie in the center of a
room (Figure 5). If the spheres are directly packed into the indoor space, the indoor space
becomes a large, connected component. By conducting a threshold segmentation process,
the distance grid map is partitioned into several distinct connected components, which
are treated as the initial seed room regions in this study. The inner sphere packing process
does not directly use a DT map but rather a segmented DT map with a distance threshold
(Figure 6), which generates the initial room seed regions. The goal of this step is to pack the
kernel of the indoor space with a set of spheres, thus determining the distinct connected
components with initial room labels. The sphere packing results with different overlap
ratios are shown in Figure 7.

First, a topologically undirected graph GV, E is initialized, which takes the center
points of all internal spheres as the nodes V of the graph. At the same time, a KD tree is
constructed for the coordinates of all nodes. Then, the center point of each inner sphere
is traversed, and its nearest neighboring spherical nodes that satisfy a radius threshold
of 2Dmax are searched. If the nearest neighbor sphere p; and current sphere p; fulfill
d(pi, pj) <ri+rj, thatis, the inner spheres overlap, a new edge e(p;, pj) is added to the
topological graph G. This process iterates until all the center points of the inner spheres
are traversed. The connected components C = C;,Cy,...,C, of an undirected graph are
computed using a depth-first search (DFS)-based approach [39]. A connected component
of G is a set of vertices that are all reachable from each other. Finally, the voxels of the grid
map located in the spheres of each connected component are assigned initial room labels.
The spheres of the components whose volumes are smaller than T are ignored by the initial
seed regions.

2]. Volume (CZ-I]-"W““> < Z]. Volume (c;”"gm) <7t 4)
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Algorithm 2. Sphere Packing.

Input: Mgpr: a distance transform grid map;

Ad: distance threshold for distance map segmentation;
Soverlap: OVerlap ratio threshold for two spheres;
Initialize:

Mr < @; // distance transform grid map after threshold segmentation
P« @; // cells with distances within the threshold

R < @; // vector for sphere packing

(1) Mt = Threshold(Mgpr, Ad ,); // segmentation using threshold
(2) P = getFreeCells(Mr); // get distance cells

(3) P = parallel_sort(P);

(4) s = sp = getMaxDistanceCell(P);

(5) R =RUs; // add a sphere to the vector

(6) while (s.Radius > syqyel)

(7) b = getBoundingBox (s);

(8) foreachcellcinb

(9)  flag = inSphere(s, c);

(10) if (flag)

11 P.erase(c.pos);

(12) end for

(13) P = parallel_sort(P);

(14) s = getMaxDistanceCell(P);

(15) if (Overlap(s, R) > doverlap)

(16) P.erase(s.pos);

(17) elseif

(18) R =RUs; // add a sphere to the vector

(19) end if

(20) end while

(21) return R

I

ITT T TTTTTTTT

T I I

T
I

(a) (b) (©)

TTTTT

Figure 5. Segmentation results of a distance map obtained using different thresholds; the local maxima of DTs always lie
in the center of a room. (a) Initial DT map; (b) segmentation result of the distance map obtained using small threshold;
(c) segmentation result of the distance map obtained using a threshold equivalent to the door width.

0. 505964
Distance Distance

Figure 6. Visualizations of the EDT and a distance map obtained using a threshold.
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Ad=0.0, 8pperiap<1.0 Ad=0.0, 8pyeriap<0.8 Ad=0.0, 8pyeriap<0.5
Ad=015, Sisriay 310 Ad=0.5, 8,periap<0.8 Kd=0.5, Baiay 0.5

Figure 7. Sphere packing results obtained with different thresholds and overlap ratios for DT map segmentation.

3.5. Wavefront Growth

Starting at a seed voxel inside each seed room region, the wavefront growth algorithm
is used to determine the unlabeled voxels that belong to the same room. The algorithm is a
breadth-first searching method [40]. The label of the current voxel is determined according
to the 26 nearest neighbors around it. If one of the twenty-six nearest neighbors is assigned
an initial room label, the current voxel is assigned to the same room label. Finally, the seed
area of the initial room is extended to the unlabeled free space, and a three-dimensional
room segmentation result is obtained.

4. Results

To validate the feasibility of the proposed method, many different types of indoor
point cloud data are selected for experiments. Detailed descriptions of the datasets are
shown in Table 1. The A1l and A2 datasets are derived from the Floored Panorama RGB-D
Dataset [26]. The datasets were acquired with a camera and a depth sensor mounted on a
motorized tripod. Four real-world datasets named B1, B2, B3, and B4 used in our experi-
ment are derived from the University of Zurich (UZH) Rooms detection datasets [8]. They
correspond to the “Cottage”, “Penthouse”, “Maisonnette” and “House” datasets, which
were scanned using a Faro Focus 3D laser range scanner. C1 and C2 depict the datasets
“Case study 2” and “Case study 6” from the International Society for Photogrammetry and
Remote Sensing (ISPRS) Benchmark on Indoor Modeling [41]. The datasets were captured
by IMLS (i.e., Zeb-Revo). These datasets consist of point clouds, corresponding trajectory
information, and timestamps. The datasets are preprocessed by aligning the coordinate
points and trajectories with timestamps. The exterior points that obviously do not belong
to the building are removed.

We implement the algorithm using the C++ language. The dependencies include
OpenVDB [42], the point cloud library (PCL) [43] and the boost graph library (BGL) [44].
The experiment is conducted on a Dell PC with a 2.60 Hz Intel Core i7-10750H CPU
and 16 GB of RAM. The dataset and source code for this study are available online at
https://github.com/yhexie/ AxVSPRoomSeg3D.git (accessed on 1 May 2021).
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Table 1. Detailed descriptions of the experimental datasets.

2.5D Assumption

Test F Size Point Single Multi- Slanted
Sites rames W x D x H (m) oints Floor Story Orthogonal Non-Orthogonal Curved Walls
Walls (MW) Walls Walls
Al 16 19.7 x 14.3 x 3.4 4.8 x 10° v O v @] O O
A2 33 17.7 x 18.8 x 3.1 10.0 x 10° v @) v O O @)
B1 7 9.0 x 8.0 x 3.2 12.4 x 10° Vv O Vv O @) Vv
B2 7 7.9 x 12.0 x 2.8 19.0 x 10° Vv O Vv @) @) v
B3 8 7.7 x 13.8 x 6.2 21.9 x 10° @) Vv Vv @) O Vv
B4 19 140 x 11.0 x 99  51.6 x 10° e) Vv Vv e) ) v
c1 - 418 x165x 85  21.8 x 10° O v v O o o)
C2 - 20.7 x 33.8 x 47  22.0 x 10° vV @) 4 V4 Vv @)
Table 2. Parameters and descriptions of the proposed method for different datasets.
Parameters Descriptions
Svoxel The voxel size of a grid map.
Ad Distance threshold for distance map segmentation, the reference value is half a door width.
Soverlap The overlap ratio between two spheres.
T The minimum volume of a seed room region.
Parameters Al A2 B1 B2
Svoxel 0.08 m 0.08 m 0.08 m 0.08 m
Ad 0.7 m 0.7 m 0.7 m 0.7 m
Soverlap 0.8 0.8 0.8 0.8
T 0.3m3 0.3m3 0.3m3 0.3 m3
Parameters B3 B4 C1 C2
Svoxel 0.08 m 0.1m 0.1m 0.1m
Ad 0.8 m 09 m 1.0m 12m
Soverlap 0.8 0.8 0.8 0.8
T 0.3 m? 0.3 m? 0.3 m? 0.3 m3

The parameter descriptions and input parameters of the proposed method are listed
in Table 2. The proposed method runs in an automatic way and does not require any user
intervention except for parameter selection. As the room space labels are hard to obtain,
especially for the furniture, we use 3D watertight mesh models as background information.
If a detection room overlaps with a background room by more than 85%, the detected room
is treated as a true positive (TP) room. If a room is not correctly identified, it is a false
negative (FN). A non-room segment that is misclassified is counted as a false positive (FP).
Only one-to-one correspondence is considered in our evaluation. The indicators precision
and recall [13] are used to evaluate the classification results.

As shown in Table 3, “point cloud” indicates the original architectural point clouds.
The results presented in the table demonstrate that the proposed method successfully
models the entire dataset. The room segmentation results obtained with the real-world
datasets are shown in different colors.

Datasets Al and A2 employ the restrictive 2.5D assumption and the indoor environ-
ments contain vertical walls and horizontal floors and ceilings. Voxel sizes of 0.05 are
adopted for these two datasets, resulting in grid maps of 252 x 184 x 47 voxels for the
first dataset and 226 x 242 x 44 voxels for the second. In total, 5 TP rooms are detected
for dataset Al, and a total of 10 TP rooms are detected for dataset A2. Both datasets yield
100% recall and precision. The execution times are 25.382 s and 85.377 s for Al and A2,
respectively.
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Table 3. Indicators and room segmentation results of the proposed method for real-world datasets.

Test Sites

Indicators Point Clouds Room Segmentation Result

Grid Map Size: 252 x 184 x 47
Background Rooms: 5
TP/FN/FP:5/0/0

Recall: 100%

Precision: 100%

Time: 25.382 s

Al

Grid Map Size: 226 x 242 x 44
Background Rooms: 10
TP/FN/FP:10/0/0

Recall: 100%

Precision: 100%

Time: 85.377 s

A2

Grid Map Size: 117 x 99 x 45
Background Rooms: 7
TP/FN/FP:7/0/0

Recall: 100%

Precision: 100%

Time: 4.561 s

B1

Grid Map Size: 99 x 156 x 41
Background Rooms: 4
TP/FN/FP:4/0/0

Recall: 100%

Precision: 100%

Time: 8.331 s

B2

Grid Map Size: 100 x 171 x 82
Background Rooms: 5
TP/FN/FP:5/0/0

Recall: 100%

Precision: 100%

Time: 16.756 s

B3

Grid Map Size: 145 x 115 x 104
Background Rooms: 12
TP/FN/FP:12/0/1

Recall: 100%

Precision: 92.3%

Time: 157.873 s

B4

We further show the room segmentation results for datasets B1 and B2. These datasets
contain laser-scanned point clouds of single-floor building interiors with slanted walls. The
discretized grid maps contain 117 x 99 x 45 voxels for dataset B1 and 99 x 156 x 41 voxels
for dataset B2. Seven and four rooms are detected for Bl and B2, respectively. The
experiments on these datasets prove the effectiveness of 3D room segmentation for indoor
environments that contain wall structures with arbitrary orientations. The experimental
results on these two datasets also produce 100% recall and precision using the proposed
method.

The B3 and B4 datasets contain laser-scanned point clouds of multistore building
interiors with slanted walls. B3 represents more complex environments with multiple
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stories. The discretized grid map contains 100 x 171 x 82 voxels for dataset B3, and five
TP rooms are detected in this dataset. The recall and precision are 100%. B4 is a synthetic
dataset corresponding to a three-story house containing many rooms and interior details.
For B4, the discretized grid map contains 145 x 115 x 104 voxels, and 12 TP rooms are
detected. The recall and precision are 100% and 92.3%, respectively. The experimental
results demonstrate the ability of the proposed method to address complex building
interiors with arbitrary wall arrangements in a multistorey environment.

The C1 dataset contains laser-scanned point clouds of multistorey building interiors.
The studied building contains 2 floors with 24 background rooms, and the 2 floors are
connected by a staircase. The discretized grid map contains 424 x 169 x 90 voxels for
this dataset, and six TP rooms are detected. The C2 dataset contains a non-Manhattan
world building that contains 18 background rooms on one floor. The indoor environment
is highly cluttered, mostly due to the presence of various artifacts. It has wall struc-
tures with arbitrary orientations and curved walls. The discretized grid map contains
212 x 343 x 52 voxels, and 16 TP rooms are detected in this dataset. The experimental
results on C1 and C2 are shown in Table 4. The execution times are 461.625 s and 66.667 s
for C1 and C2, respectively.

Table 4. Indicators and room segmentation results of the proposed method for real-world datasets.

Test Sites

Indicators Point Clouds Room Segmentation Result

Grid Map Size: 424 x 169 x 90
Background Rooms: 24
TP/FN/FP:20/4/3

Recall: 87.0%

Precision: 83.3%

Time: 461.625 s

C1

Grid Map Size: 212 x 343 x 52
Background Rooms: 18
TP/FN/FP:16/2/2

Recall: 88.9%

Precision: 88.9%

Time: 66.667 s

C2

5. Discussion

The method proposed in this study can realize 3D room segmentation, but in some
cases, over—segmentation and under-segmentation occur. The main reasons for this are
as follows. (1) When the corridor width is close to the door width, the long corridor
is filtered out during the DT map threshold segmentation process, so the long corridor
cannot be generated as an initial seed room. If a small value is set for the threshold Ad,
under-segmentation occurs, especially in a long corridor. In addition, two small rooms are
segmented into adjacent rooms on the experiment of dataset C1. (2) Due to the existence of
dynamic objects in indoor free spaces, heavy occlusion occurs during the laser scan process.
Noise and dynamic objects (like pedestrians or small vehicles) in free space have great
impacts on the EDT, and small regions are generated. The 3D points in the real datasets
are corrupted by mirrors, windows, reflective objects, and calibration errors. Noise points
and points on the surfaces of furniture and other structures may also break the connections
between rooms.

The roles of viewpoints and trajectories are mainly to distinguish between indoor and
outdoor areas during the occupancy probability calculation. During the 3D occupied map
calculation step, the outdoor area is marked as an unknown space. Therefore, for point
clouds without viewpoint and trajectory information, this method can be used as long as
the indoor and outdoor areas are reasonably distinguishable.
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Benefiting from the special index and caching mechanism, VDB exhibits high random
access speed. The current algorithm needs many traversals and repeated sorting operations,
so the efficiency of the current algorithm changes significantly as indoor space range, voxel
size, and indoor complexity increase. We find that the sphere packing process occupies
more than 85% of the execution time. There is still much room for our method to improve.

As shown in Figure 8, if safety doors are present, the stair area is divided into a
separate area. If there is no safety door, the stair area and floors are connected as a whole.
A postprocessing step is essential in that the information obtained from separate rooms
after 3D room segmentation is used to extract floor information. The floor and cross-floor
spaces can be further divided according to the associated elevation histogram.

(@) v ) ©)

Figure 8. The sphere packing and segmentation results for stairs; the stair area and floors are
connected as a whole. (a) Original point cloud of the stair region; (b) sphere packing result; (c) room
segmentation result for the case in which the stair area and floors are connected as a whole.

6. Conclusions

This paper presents a novel 3D room segmentation method. Three-dimensional EDT
is performed based on the VDB data structure, and inner spheres are used to pack the
indoor free spaces to obtain the initial room seed regions. Room segmentation is realized
directly in 3D space, and the developed method utilizes the abundant geometric and spatial
structure information in 3D space. The method can be used to solve semantic segmentation
problems in complex 3D indoor environments, including cross-floor spaces and nested
rooms. This study can improve the application scope of room segmentation and provide a
new solution for the segmentation of rooms in a non-Manhattan world.

However, the sphere packing method takes up the majority of the total execution time,
which provides room for our algorithm to improve and points the way for future study.
Further work will also include the application of the proposed method to the semantic
enhancement of indoor 3D modeling.
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