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Abstract: Building typification is of theoretical interest and practical significance in map general-
ization. It aims to transform an initial set of buildings to a subset, while maintaining the essential
distribution characteristics and important individual buildings. This study focuses on buildings lo-
cated in residential suburban or rural areas and generalizes them to medium or small scale, for which
the typification process can be viewed as point-similar object selection that generates exemplars in
local building clusters. From this view, we propose a novel building typification approach using
affinity propagation exemplar-based clustering. Based on a sparse graph constructed on the input
building set, the proposed approach considers all buildings as potential cluster exemplars and keeps
passing messages between those objects; thus, high-quality representative objects (i.e., exemplars) of
the initial building set can be obtained and further outputted as the typified result. Experiments with
real-life building data show that the proposed method is superior to the two existing representative
methods in maintaining the overall distribution characteristics. Meanwhile, the importance of each
individual building and the constraints of the road network can be embedded flexibly in this method,
which gives some advantages in terms of preserving important buildings and the local structural
distribution along the road, etc.

Keywords: building typification; exemplar-based clustering; affinity propagation; distribution
characteristic

1. Introduction

As one of the major geographical objects on a map, buildings have attracted much at-
tention in cartographic generalization [1,2]. When the scale of the map becomes smaller, the
gap between adjacent buildings or between buildings and other related objects (e.g., roads)
may be less than the cognition tolerance, potentially resulting in massive spatial overlaps
and visual clutter. To reduce these spatial conflicts on a smaller-scale representation, car-
tographers have designed a series of generalization operators, including aggregation [3,4],
displacement [5–7], typification [8–10], etc. Among them, the typification operator aims to
replace a larger number of buildings with a subset, which is necessary when buildings are
in conflict that cannot be resolved by displacement or their density is not high enough to
aggregate them. According to the number of buildings considered during the operation,
typification handles many-to-many relationships, while other operators mainly deal with
one-to-one or many-to-one relationships. Therefore, typification involves more complex
situations and remains pressing in the development of automated building generalization.

Generally, building typification includes two aspects: quantity change and structural
representation. The quantity change refers to the reduction ratio of the number of buildings
from the initial to the target set. The ratio can be determined using the ‘Radical Law’ [11]
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and its extended versions [12] based on the scales of the source and target maps. Two
types of cartographic constraints, at least, must be considered for the implementation of
structural representation: (1) preserving as much of the essential spatial structural features
implied in the original building set, e.g., distribution density, orientation, and specific
patterns, as possible; and (2) efficiently transmitting the semantic information of buildings.
For example, buildings with large size or special functions (e.g., school or hospital) should
be arranged to have a high possibility of being retained at the target scale. To satisfy these
constraints, previous studies proposed several typification approaches, which are broadly
classified into two categories: local approaches and global approaches.

Local typification approaches are generally used for the abstraction of building groups
with regular patterns. For example, Gong and Wu [13] proposed a typification approach
for linear patterns in urban building generalization. Initially, building groups with linear
patterns were detected using constrained Delaunay triangulation (DT) and Gestalt visual
perception; then, the detected building groups were typified through a progressive and
iterative process consisting of elimination, exaggeration, and displacement. Another repre-
sentative work was conducted by Wang and Burghard [14], who designed a stroke-based
approach to detect and typify linear building groups. They also investigated typification
for building groups with grid patterns [15], which appear frequently on urban maps. Their
approach first constructed a mesh of the original buildings based on the proximity graph
and further determined the positions and shapes of the newly created buildings with the
support of the mesh.

Global typification approaches input all buildings in the whole region and identify
structural characteristics from a global perspective. For example, Regnauld [9] proposed a
global typification approach based on the “divide and conquer” principle. This approach
employed the Minimum Spanning Tree (MST) to group the original buildings under the
guidance of Gestalt theory. Then, each building group was rebuilt with fewer buildings by
preserving its own characteristics and its relative position with respect to the neighboring
groups. Another popular strategy is based on the mesh-simplification technique. In the
work of Burghardt and Cecconi [12], DT was employed to build a mesh over the point set
that represents the centers of buildings. The typification operation is realized as a two-step
process: positioning and representation. In the positioning step, mesh vertices that consist
of the shortest edge are iteratively replaced by a new vertex, until the number of vertices
meets a threshold value. The representation step creates a representative building for
each retained vertex based on the original buildings it represents. In addition, Sester [16]
presented an interesting global typification model using Self-Organizing Maps (SOM),
which approximates the density in the input space. Wang et al. [17] designed a typification
approach by introducing an improved genetic algorithm. The main motivation for their
approach was to incorporate different types of constraints related to building typification.

Although some achievements have been made, the typification results produced
by the existing methods still fall some way short of human cognitive quantification in
terms of maintaining the overall structural features and considering the importance of
individual objects. New ideas and models for building typification need to be explored
unremittingly. Motivated by this, we propose a novel global typification approach using
affinity propagation clustering. We focus on typifying the buildings located in suburban or
rural areas from a global perspective and generalizing them to medium or small scale (i.e.,
scale of 1:25k or smaller). Considering that suburban and rural buildings are dispersed
and relatively small, the typification transformation is viewed as a point-similar object
selection method that searches for typified representation in the exemplars of local building
clusters. Therefore, our method includes two phases, i.e., exemplar-based clustering and
exemplar representation. The exemplar-based clustering task is conducted using the
Affinity Propagation (AP) algorithm [18], which has been widely used in domains such
as gene expression [19], face images [20], and text segmentation [21]. The AP clustering
approach simultaneously considers all buildings as potential cluster exemplars and passes
messages repeatedly between different buildings based on the similarity of position, which
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enables us to obtain high-quality representative objects (i.e., exemplars) of the original
buildings in the spatial distribution. Meanwhile, by adjusting the preference related to
each building in the AP clustering, important buildings are more likely to be chosen
as exemplars and further retained at the target scale. In the representation phase, each
identified exemplar building is reconstructed as the typified building according to the
characteristics (i.e., size, shape, orientation, and semantic) of buildings in the cluster.

The remainder of this paper is structured as follows. Section 2 presents details of
the AP clustering-based approach for building typification. In Section 3, a comprehensive
comparison between the proposed approach and other global typification methods is
carried out through an experimental study. Section 4 concludes this study and looks
forward to future work.

2. Methodology

As mentioned earlier, the building typification approach includes two phases of
exemplar-based clustering and exemplar representation. The details of each component
are described as follows.

2.1. Exemplar-Based Building Clustering Using the AP Algorithm
2.1.1. Construction of the Similarity Matrix

The original AP algorithm works on a fully connected graph and receives a matrix
indicating the similarity between each pair of objects as the input. It has a high computing
resource requirement for a large number of objects. For the buildings represented on the
map, clustering operations are likely to occur on nearby building objects. This means that
the deletion of edges that connect buildings far apart has little effect on the final clustering
result. In addition, the road network is considered as the constraints for building clustering.
Buildings located on different sides of a road are often not grouped together. Inspired by
the above observations, this study replaces the fully connected graph with a sparse graph
(as depicted in Figure 1), and the similarity matrix is constructed as follows.
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Figure 1. Graph construction for input buildings: (a) original buildings, (b) fully connected graph,
(c) graph after removing the edges that intersect the roads, and (d) four-nearest neighboring graph.

Let S = [sij]m×m denote the similarity matrix of a set of original buildings B = {b1, b2, . . . , bm}
(m > 1), where sij (0 < i < m, 0 < j < m) represents the similarity between buildings i and
j. We initially build a fully connected graph G = (V, E), where vertex vi ∈ V represents
building bi and edge eij ∈ E describes the connection between buildings bi and bj (bi, bj ∈ B).
Next, all edges of graph G that intersect with roads are removed, and for each vertex in
graph G, only edges that connected with its k-nearest neighbors are retained. For example,
in the illustrated graph in Figure 1, k is set to 4. Finally, if edge eij exists, the similarity sij
(i 6= j) is assigned to the Euclidean distance dis(vi, vj) between the centroids of bi and bj.
Otherwise, it is assigned to −∞, meaning that the corresponding two buildings are far
away and cannot possibly be part of the same cluster.
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2.1.2. Setting of the Preference Parameter

In the diagonal of S, elements sii (i = 1, 2, . . . , m) are the input values called the
preference. As an important control parameter in the AP algorithm, the influence of
preference values on the final clustering result is reflected in two aspects: (I) the larger the
preference value with respect to building bi (i.e., sii), the higher the possibility that bi is to
be chosen as an exemplar; (II) the larger the average value of all preferences, the larger the
number of generated clusters.

Preference is usually set to a uniform value, indicating that all input objects are
regarded equally as potential exemplars. In the case of building typification, however,
buildings that are geometrically or semantically significant should be arranged with large
preference values. This gives these buildings greater opportunity to be identified as exem-
plars and further retained on the generalized representation. To satisfy such requirements,
a new mechanism for preference initialization was proposed. For each building bi, the
preference value sii is computed as

sii = (1 − li)·δ (1)

where δ is a base preference value the same for all buildings, and li (0 ≤ li ≤ 1) is the
importance value of bi. Those two parameters have different effects on the final clustering
result. Parameter δ mainly controls the number of clusters, that is, the number of generated
clusters increases with it. Parameter li influences the determination of clustering exemplars
in local areas. The larger the value of li, the more likely the building bi is to be selected
as an exemplar. In practice, the value of li can be flexibly set by users according to their
generalization needs.

2.1.3. Message Propagation

As depicted in Figure 2, two kinds of messages are exchanged between connected
buildings to search for appropriate clusters and their exemplars. One message is repre-
sented as the responsibility matrix R = [rik]m×m, in which rik is sent from building bi to
candidate exemplar building bk. The value of rik reflects the accumulated evidence for how
suited bk is to serving as the exemplar for bi while considering other potential exemplars
for bi. Another type of message is represented as the availability matrix A = [aik]m×m, in
which aik is sent from candidate exemplar bk to bi. The value of aik reflects the degree of how
appropriate it would be for bi to choose bk as its exemplar while considering the support
from other buildings that bk should be an exemplar.
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The clustering process is executed as a competition that updates responsibilities and
availabilities iteratively. In each iteration, the matrices R and A are updated with the results
of the previous round. The rules for updating are defined as follows:

r(t)ik = (1 − λ)·
(

sik − max
k′s.t.k′ 6=k

{
a(t−1)

ik′ + sik′
})

+ λ·r(t − 1)
ik (2)
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a(t)ik = (1 − λ)·
(

min

{
0, r(t−1)

kk + ∑
i′ 6=i,k

max
{

0, r(t)i′k

}})
+ λ·a(t−1)

ik , ∀ i 6= k (3)

a(t)ik = (1 − λ)·
(

∑
i′ 6=i,k

max
{

0, r(t)i′k

})
+ λ·a(t − 1)

ik (4)

where t denotes the number of iterations and λ is the damping factor that ranges from
0 to 1. The responsibilities and the availabilities are updated repeatedly to search for a set of
exemplars that maximizes the sum of similarities between each building and its exemplar.

The iterative update process is stopped when the exemplar sets are no longer changed
over consecutive iterations or the predefined maximum number of iterations is reached.
Then, clusters and their exemplar clustering results can be outputted based on R and A.
For each building bi, we search for k that maximizes aik + rik. If k is equal to i, bi is labeled as
an exemplar; otherwise, bk is identified as the exemplar for bi. Finally, the clustering results
are derived according to the obtained exemplars and their members.

2.1.4. Output Generation

Since each building cluster is replaced by its exemplar on the generalized represen-
tation, the size of output clusters should be consistent with the theoretical number of
buildings for the requested scale. As an unsupervised clustering algorithm, however, the
number of clusters is implicitly affected by parameter δ. An iterative strategy was adopted
to overcome this gap. Specifically, a factor µ (0 < µ < 1) is introduced to adjust the value of
δ gradually so that the number of output clusters approaches the desired number and the
difference is controlled within a certain range. The complete AP clustering-based building
clustering approach is described below.

The AP-based building clustering Algorithm 1.

Algorithm 1

Input: Original buildings B = {b1, b2, . . . , bm} (m > 1) and their importance values L = {l1, l2, . . . , lm},
the base preference value δ, the theoretical number of clusters n0, the adjustment factor µ, the
damping factor λ, and the maximum number of iterations tmax.
Output: Clusters C = {C1, C2, . . . , Cn} and their exemplars Z = {Z1, Z2, . . . , Zn}.

1. Construct the similarity matrix S with k-nearest neighbors and road constraints.
2. Set the preference values in the matrix S using L and δ, initialize round time of AP

clustering x as 1, and initialize iteration time t as 1. Set two thresholds n1 = 4, n2 = 10 for the
difference between the actual output and theoretical number of clusters.

3. Execute the xth round of AP clustering:

3.1 Initialize the responsibility matrix R = [rik]m×m and the availability matrix
A = [aik]m×m with 0;

3.2. Update R and A according to formulas (2)~(4) until exemplars become unchanged or
iteration times reaches tmax;

3.3 Identify clusters Cx = {C1, C2, . . . , Cnx} and their exemplars Zx = {Z1, Z2, . . . , Znx},
where nx indicates the number of clusters.

4. If |nx − n0| ≤ n1 , output Cx and Zx as the final clustering results; else, perform Step 4.1.

4.1 If (nx−1 − n0) ∗ (nx − n0) > 0, perform Step 4.2; else, perform Step 4.3.
4.2 If nx > n0, δ = (1 + µ ) × δ; else, δ = (1 − µ ) × δ; update S, x = x + 1, go to Step 3.
4.3 If |nx−1 − n0|<n2 or |nx − n0|<n2 , perform Step 4.4; else, perform Step 4.2.
4.4 If |nx−1 − n0|<n2 , output Cx−1 and Zx−1 as the final clustering results; else, output

Cx and Zx as the final clustering results.

2.2. Representation of Exemplar Buildings

Regarding the position, it is reasonable to represent each building cluster as its ex-
emplar that is chosen as the cluster center. However, other geometric attributes of each
exemplar building, including size, shape, and orientation, need to be adjusted according to
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the characteristics of the whole building group, as well as the changes in the scale. In addi-
tion, the importance of the exemplar building in each cluster should be considered in the
determination of the typified representation. Therefore, two types of building cluster are
identified with respective typified representations generated in different ways to highlight
the importance of the exemplar building in each cluster, as depicted in Figure 3.
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Type I: The exemplar of this cluster is an important building.
For this type of cluster, the position of the exemplar building remains unchanged and

its shape is characterized by a building simplification algorithm [2] to maintain the main
geometrical characteristics on the target scale. In this process, the simplified representation
for the typified exemplar building should satisfy the constraint that the shortest edge meets
the threshold (e.g., 0.3 mm) on the target scale. Note that in this type of cluster, a few
important buildings may not be chosen as an exemplar. The AP algorithm is robust in
selecting exemplars that are highly reflective of the spatial distribution. Therefore, only the
importance of the exemplar is emphasized in the typified representation.

Type II: The exemplar of this cluster is not an important building.
For this type of cluster, a new building located in the centroid of the cluster is created

based on the characteristics of the whole building group. Let C denote a type II cluster
that contains buildings {b1, b2, . . . , bm} (m > 1), and let bk (1 ≤ k ≤ m) be the exemplar of
cluster C. The attributes of the new building bnew are determined as follows:

• Shape: The shape of the new typified building is represented as a rectangle, since
buildings located in residential suburban or rural areas are simplified significantly
when the scale becomes smaller than 10k. Furthermore, the elongation of the newly
created rectangle is inherited from the Minimum Bounding Rectangle (MBR) of the
building with the largest area in the cluster.

• Size: The size of the new building is determined as the average area of all buildings in
the cluster. That is, the created rectangle is arranged with area ∑m

1 Area(b i)/m, where
Area(b i) denotes the area of building bi.

• Orientation: The orientation of the new typified building also coincides with the
average orientation of all buildings in the cluster. In this study, the orientation of a
building is defined as the deviation angle between the x-axis and the long side of its
MBR. Therefore, the orientation of the new rectangle, denoted as θ(new), is computed
as θ(new) =∑m

1 θ(b i)/m. Here, θ(b i) represents the orientation of building bi.

Note that the newly created building may be smaller than threshold Smin (e.g.,
0.6 mm × 0.4 mm), which is the size of the smallest building represented on maps. To
satisfy this requirement, any new building below the threshold is amplified.
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3. Results

In this section, a series of experiments with real-life building data were conducted to
validate the proposed method and discuss its advantages and limitations as compared to
the existing building typification methods.

3.1. Experimental Data and Parameter Setting

The present study investigated a set of buildings in a residential suburban area of
Staig, Baden-Württember, Germany, captured from a topographic map. The study area
is approximately 1.2 × 0.8 km2 and contains 383 buildings, as shown in Figure 4. The
maximum and average areas of buildings in the dataset are 4852.0 m2 and 381.9 m2,
respectively.
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As rendered in red in Figure 4, buildings that are prominent in size or convey specific
semantics, such as a hospital or school building, were labeled as important objects. The
importance values of these buildings were set to 1 in the initialization of the preference
parameter, so that as many as possible would be retained during typification. The rest of
the buildings were assigned importance values of 0, and parameter δ was set to the median
of the pairwise similarities. The damping factor λ was set to 0.7 by the trial-and-error
approach to alleviate the possible oscillations. The maximum number of iterations t-max
and the preference adjustment step µ were set to 300 and 0.01, respectively, according to
the preliminary results.

For the number of buildings retained after typification, a reasonable solution is to
apply the extended radical law [12] to calculate the retention ratio for a given target scale.
However, this process requires a smaller scale generalization result as a reference. For
simplicity, we chose three fixed retention ratios, i.e., 70%, 50%, and 30%, to verify the
proposed method.

For comparison, we implemented an unconstrained AP clustering-based algorithm,
that is, the semantic meanings of buildings and the road network were not considered.
In addition, the Mesh typification method [15] and the SOM typification method [16] were
also implemented. As mentioned earlier, they are both global typification methods. In the
SOM typification, each building was regarded as a neuron containing two features: the x
and y coordinates of the building’s centroid.
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3.2. Experimental Results and Analyses
3.2.1. Experimental Results

Figure 5 presents the typification results produced by the proposed method and the
three comparison methods. Table 1 lists the number of buildings and important buildings
retained in each result.
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ratios of 70%, 50%, and 30% respectively; (j–l) the SOM method with retention ratios of 70%, 50%, and 30% respectively.
Gray polygons denote the original buildings, and black polygons denote the typified buildings.
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Table 1. Numbers of buildings and important buildings retained in the results produced by the four
methods. The values in parentheses indicate the numbers of buildings expected to be retained, with
all important buildings expected to be retained in any retention ratio.

Number of Retained Buildings Number of Retained Important
Buildings

70%
Retention

50%
Retention

30%
Retention

70%
Retention

50%
Retention

30%
Retention

AP method 263(268) 184(191) 112(114) 17(17) 17(17) 17(17)

Unconstrained
AP method 266(268) 194(191) 111(114) 14(17) 10(17) 8(17)

Mesh method 268(268) 191(191) 114(114) 17(17) 10(17) 7(17)

SOM method 253(268) 181(191) 113(114) 17(17) 10(17) 7(17)

The four methods effectively screened out a part of buildings given the proportions
of retained buildings and achieved visual simplification. Table 1 shows that the number
of buildings retained by the Mesh method was consistent with expectations, while the
number of buildings retained by the other three methods deviated from expectations. This
is because the number of clusters cannot be specified for the two AP methods. An iterative
approach was used in this study to control the number of outputs, and the difference from
the expected was guaranteed to be within 10. For the SOM methods, the reason is that
some neurons in the output layer were too weak to be activated, resulting in no building
being assigned to the class represented by that neuron and the output result being less
than expected. This process is difficult to control, so the SOM method cannot guarantee a
difference from the expected value.

It is clear from Table 1 that the constrained AP method performed better than the
Mesh and SOM methods in the preservation of important buildings. This is because the
mechanism allows us to set the preference values flexibly, which enables a building with
a larger importance value to have greater opportunity to be identified as an exemplar in
a local cluster and, further, to be retained in the reduction of scale. On the other hand,
the Mesh and SOM methods assume that the input buildings are equally important; thus,
they have the same possibility to be retained in the target representation. This observation
can also be verified by the comparison with the unconstrained AP method, that is, the
performance of the AP method was only close to that of the Mesh and SOM methods in
terms of the preservation of important buildings when the semantic meaning of buildings
was not considered.

A close inspection of Figure 5 shows that the density distribution of building clusters
coincides with the distribution of the original buildings. That is, in dense areas, more
buildings were deleted, but the density of retained buildings was still higher than that of
other areas. In the compared methods, however, buildings in dense areas were deleted
relatively less. For example, when retaining 70% of the input buildings, the buildings in the
upper area of the typification results produced by the SOM method were largely preserved
(marked by the red rectangle in Figure 5j), which caused visual confusion on the small
target scale.

Due to the constraints of the road network, buildings located on both sides of the
roads were not grouped together in the AP method. However, this was not achievable
in the Mesh and SOM methods. For example, when retaining 50% of the input buildings,
different degrees of road conflicts occurred in the results produced by the Mesh and SOM
methods, as well as those by the unconstrained AP method (Figure 6b–d). This does
not satisfy the specifications of cartographic generalization and is the key criterion for
users to evaluate the generalization result. Further, it may lead to the destruction of local
distribution characteristics. For example, in the typification result produced by the AP
method (Figure 6a), buildings are uniformly distributed on both sides of the road in a
linear pattern, which is consistent with the original distribution pattern. However, the
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buildings are distributed in a curvilinear pattern in the results of the Mesh and SOM
methods (Figure 6c,d), which destroys the original trend characteristics.
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3.2.2. Preservation of the Overall Distribution Characteristics

To better compare the performance of different approaches, we used a density map to
quantify the preservation of the overall distribution characteristics. The whole region of
data was divided into grid cells with the same size of 10 × 10. Then, a statistical evaluation
indicator describing the density of the ith grid cell was computed by

RDi =
Di

∑100
1 Dj

(5)

where Di represents the number of buildings located in the ith grid cell. Figure 7 provides a
closer visualization of the typification results that retain 70%, 50%, and 30% of the buildings
using the four methods.

In the comparison, the AP method maintained the density distribution well for differ-
ent proportions of retained buildings. However, both the Mesh and SOM methods caused
relatively large change in the density distribution. For example, when retaining 30% of
the buildings, the density of the upper areas was reduced significantly in the typification
results of the Mesh method. When retaining 70% of the buildings, the density of the
upper right areas in the SOM typification results was higher than that in the lower left,
which is obviously different from the original density distribution. Without considering
the constraints, the density distribution was maintained well when 70% of buildings were
retained. However, when only 50% or 30% of buildings were retained, the density changes
were more significant than those of the results with constraints. This proves that the
consideration of constraints is crucial in the AP clustering-based method.

Furthermore, we propose a Relative Density Difference Index (RDDI) to quantitatively
describe the density changes before and after typification, which is defined as

RDDI =∑100
1 (RD i

′−RDi
)2 (6)

where RDi
′ and RDi are the densities of the ith grid cell before and after typification,

respectively. The density difference increases with RDDI. Table 2 lists the RDDIs of the four
methods with retention ratios of 70%, 50%, and 30%.
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Figure 7. Visual comparison of spatial structure preservation: (a) density distribution of original buildings; (b–e) density
distributions of the typified buildings by the AP method, the unconstrained AP method, the Mesh method, and the SOM
method, respectively, with 70% retention ratio; (f) density distribution of original buildings; (g–j) density distributions
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respectively, with 50% retention ratio; (k) density distribution of original buildings; (l–o) density distributions of the typified
buildings the AP method, the unconstrained AP method, the Mesh method, and the SOM method, respectively, with
30% retention ratio.

Table 2. RDDI values of the typification results produced by the four methods.

Method 70% Retention 50% Retention 30% Retention

AP method 1.391 1.950 3.172

Unconstrained AP method 1.309 3.028 4.388

Mesh method 1.489 2.190 5.875

SOM method 3.471 2.733 4.513

Table 2 shows that the RDDI of the four methods decreased as the ratio of retained
building increased, meaning that the overall density change was improved. It was also
observed that at each ratio, the RDDI of the typification results produced by the AP method
was less than that by the Mesh and SOM methods. This comparison proves the superiority
of the AP method over the two contrast methods. The RDDI of the typification result of
the AP method was slightly lower than that of the unconstrained AP method when 70% of
buildings were retained. However, when retaining 50% or 30% of buildings, the values
were higher than that of the unconstrained AP method. This result is consistent with the
previous analysis.

3.2.3. Parametric Sensitivity Analysis

In addition to evaluating the typification results, the analysis of relevant parameters
also measures the effectiveness of the proposed method from the algorithmic level. The
most important parameter of the AP algorithm is the damping factor λ, which controls
whether the algorithm converges. We took the retention ratio of 50% as an example and set
the maximum number of updates on the information matrix in the AP clustering to 500.
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Figure 8 shows the update times required for the model to perform the AP clustering as
the damping factor varied.
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It was observed that the AP algorithm converged after 100 to 200 iterations of the
information matrix as the damping factor ranged from 0.5 to 0.9. When the damping
factor was less than 0.5, large weights of the matrix in the previous round resulted in
slow convergence. Therefore, the AP algorithm had not converged when the update time
reached the maximum. When the damping factor was larger than 0.9, the clustering results
fluctuated and did not easily converge. As a result, it is necessary to select an appropriate
damping factor so that the AP clustering converges quickly and steadily.

3.3. Discussion on the Advantages and Limitations of the Proposed Approach

This paper proposes a building typification approach that uses an unsupervised
message passing algorithm to select appropriate exemplars. It is data-driven and has
several advantages in theory and practice. First, the proposed method effectively maintains
the original spatial distribution characteristics of the buildings after typification, which
benefits from the competition mechanism and message propagation in the AP clustering
algorithm. In contrast, the SOM method may retain redundant buildings in dense areas,
while the Mesh method may lose some key features. Second, the proposed method allows
us to customize the importance of individual buildings. The algorithm embeds semantic
information effectively in addition to spatial characteristics, giving users the flexibility to
develop diversified typification solutions according to practical needs. Third, the proposed
method avoids spatial conflicts by properly dealing with the relationship between the
buildings and other geographic features such as roads. The other two methods focus only
on the buildings without dealing with the conflicts between other features. This violates
the cartographic specifications and is likely to destroy the local structural patterns.

The proposed AP clustering-based method also has some shortcomings. First, in terms
of quantity change, the AP clustering controls the number of retained buildings through
iteration. The output number of exemplars may be slightly different from that expected.
Additionally, the experiment revealed that properly selecting the damping factor is key in
applying the method. If the damping factor is too large or too small, the clustering may
not converge, so the parameters may need to be adjusted several times in practice.

4. Conclusions

In this study, we developed a global typification method based on affinity propagation
exemplar-based clustering, which provides a novel algorithm from a global perspective
to solve the scale transformation of buildings with many-to-many relationships in carto-
graphic generalization. Our experiments showed that the proposed method has certain
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advantages over the other two global typification methods, namely, the Mesh and SOM
methods, in retaining important individual buildings and preserving overall density char-
acteristics and local structural patterns. However, there are still deficiencies in terms of the
quantity control and parameter dependence.

This study focused on the typification of buildings in suburban or rural areas at a
small or medium target scale. In future work, more efforts will be devoted to building
generalization in other scenarios, as well as the selection of networking objects such as
roads and rivers.
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