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Abstract: Commutative encryption and watermarking (CEW) is an emerging method that combines
encryption technology with digital watermarking technology. It has the dual capability of secure
transmission and copyright protection. However, the existing CEW methods for vector maps have
good robustness in resisting geometric attacks but poor resistance to vertex attacks (e.g., addition,
deletion, etc.). To solve this problem, here we propose a novel invariant-based CEW algorithm
for vector maps, which consists of permutation-based encryption scheme and coordinates-based
watermarking scheme. In the encryption scheme, the encryption key is generated via the Gaussian
distribution method combined with the SHA-512 hash method; then, the double random position
permutation strategy is applied to the vector map encryption. In watermarking embedding scheme,
the original watermark image is scrambled via logistic chaotic encryption before embedding, and the
coordinates of all the vertices are normalized. Then, the scrambled watermark image is embedded
into the normalized coordinates. Results show that: proposed method is more robust to conventional
attacks (e.g., vertex addition and deletion, reordering and data format conversion) and geometric
attacks (e.g., scaling and translation). In addition, compared with the existing CEW methods for
vector maps, the proposed method has higher security and stronger robustness against vertex attacks.

Keywords: commutative encryption and watermarking; vector map; secure transmission;
copyright protection

1. Introduction

Vector maps are one of the most important geospatial data [1,2], which play a vital
role in economic development and national security [3,4]. Currently, vector maps have
been widely used in navigation, cadastral management, urban planning and many other
fields [5]. However, the development of information-sharing technology makes it easier to
be leaked and illegally copied in the process of storage, transmission and application. To
address the growing urgent issues of data security, a series of laws, rules and regulations
have been issued [6]. For example, the “Surveying and Mapping Law of the People’s
Republic of China” was revised in 2017 to strengthen the protection of geospatial data (e.g.,
vector maps) [7]. Correspondingly, the security protection algorithm for vector maps needs
to be developed.

Many technologies have been developed to ensure the secure transmission and copy-
right security of vector maps (e.g., encryption technology and digital watermarking tech-
nology). Encryption is an effective method to protect data from being illegal intercepted
and tampered with, and it can provide secure protection for vector maps in the process of
storage and transmission [8]. For example, Wang et al. [9] encrypted vector maps using the
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double random position permutation method combined with a four-dimensional quadratic
autonomous hyperchaotic system. This method can achieve the secure transmission of
vector maps but cannot provide copyright protection. Digital watermarking can protect the
data copyright via embedding a watermark with copyright information into the data [10].
In [11], the watermark information is embedded into the directions of polyline objects
to protect the copyright of vector maps. However, this method takes no account of the
secure transmission of vector maps which is not like encryption technology. Therefore, it is
necessary to combine encryption technology and digital watermarking technology for the
secure transmission and copyright security of vector maps [12,13].

Existing research has found that commutative encryption and watermarking (CEW) is
a viable method to combine encryption technology and watermarking technology [14,15].
The CEW utilizes the respective advantages of encryption technology and digital wa-
termarking technology to provide multiple security protection in various application
scenarios [16]. For a CEW algorithm, the key is how to avoid the mutual interference
between encryption and watermarking, and to achieve commutativity [17]. Some CEW
algorithms have been proposed to achieve the secure transmission and copyright protec-
tion of multimedia data (e.g., image data, video data and audio data). These algorithms
are mainly divided into three categories: partial encryption based CEW, homomorphic
encryption based CEW and invariant based CEW [18].

(1) Partial encryption based CEW refers to the method that the data is divided into
two different datasets to manipulate the encryption and watermarking respectively. Can-
cellaro [19] used the tree structured Harr transform to divide the image into two parts.
Then, the watermark was embedded into the low-level coefficients and the high-level
coefficients were encrypted simultaneously. Jiang [20] divided the protected image into
an encryption domain and a watermarking domain by orthogonal transformation, which
ensures the mutual independence between encryption and watermarking. However, the
disadvantage of such schemes is that it does not effectively balance encryption security
and watermark robustness.

(2) Homomorphic encryption based CEW refers to the method that the commutativity
is accomplished by taking advantage of homomorphism. For example, Li et al. [21] de-
signed a CEW model by the use of the additive homomorphism of Paillier algorithm,
which can encrypt the overall image. However, such schemes can only support the
simple homomorphic watermarking operation, which have a higher security but a low
watermark robustness.

(3) Invariant based CEW fulfills the commutativity by embedding the watermark
information into a certain feature space that has no impact on encryption operation. Such
methods usually use scrambling encryption to encrypt the data, and the watermark infor-
mation is embedded via shifting histogram [22] or modifying the pixel value [23]. This type
of method not only encrypts the overall data, but also balances the security of encryption
and the robustness of watermarking. However, the existing methods are applicable to raster
data but cannot be applied to vector maps due to the differences in data representation
and storage structure. As mentioned above, it is obvious that the invariant based CEW is
superior to the other two schemes in terms of balancing encryption security and watermark
robustness. Based on this, Ren et al. [24] analyzed the organization structure and storage
structure of vector maps and proposed a CEW method by deriving two invariants: the sum
of inner angles and the storage direction of two adjacent objects. This method has high
robustness against geometric attacks. However, the watermark embedding positions can
be affected by the number of vertices of each object, so this method has little resistance to
the vertex addition and deletion.

To sum up, the above CEW methods still have the following shortcomings: (1) few
algorithms can be applied directly to vector maps, and (2) few algorithms for vector
maps are resistant to vertex attacks. Hence, this paper proposes a novel invariant based
CEW method for vector maps to solve the above problems. To construct a CEW scheme
for vector maps, the organization structure and storage structure of the vector maps are



ISPRS Int. J. Geo-Inf. 2021, 10, 718 3 of 18

taken fully into account. In addition, in light of few algorithms for vector maps that are
resistant to vertex attacks, we build on the permutation encryption, and combine it with
the watermarking scheme to achieve better robustness to vertex attacks.

The remainder of this paper is organized as follows. Section 2 details vector maps
data, permutation encryption of vector maps, the principle of the logistic chaotic map and
the normalization process of vector maps. Section 3 introduced the basic idea and the
process of the algorithm proposed in this paper. Section 4 verifies the effectiveness and
versatility of proposed algorithm by implementing several experiments. Finally, Section 5
concludes the paper and gives directions for further work.

2. Related Works
2.1. Vector Map Data

A vector map consists of a number of data layers, and each layer consists of attribute
data and geometry data [25,26], as shown in Figure 1a. The attribute data presents the
storage information such as ID, Text and Name. The geometry data (e.g., points, polylines
and polygons) is used to determine the geolocation information of vector maps, as shown
in Figure 1b. Points are the most fundamental element of geometry data, polylines are
made up of a series of vertices, and polygons are composed of closed polylines. Points are
usually used to describe simple objects like the position of parking lot, while polylines and
polygons represent the complex objects, such as roads, rivers, buildings and lakes.
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Figure 1. The model and components of the GIS vector map. (a) Model of the GIS vector map, (b) data components of the
GIS vector map.

The organizational form of vector map is represented by Formula (1), (2) and (3), and
the number of vertices is represented by NV .

L = {Pi|i ∈ [1, |L|]} (1)

Pi =
{

vi,j
∣∣j ∈ [1, |Pi|]

}
(2)

vi,j =
(
xi,j, yi,j

)
(3)

where L represents the data layers of the vector map, |L| is the number of layers, Pi denotes
the ith object of vector map, |Pi| is the number of vertices on the ith object, xi,j and yi,j are
the x-coordinate and y-coordinate of each vertex, respectively.

2.2. Double Random Position Permutation Encryption of Vector Maps

Permutation encryption is an encryption method that breaks the original spatial order
and the correlation between adjacent objects [8,27]. Permutation encryption of vector maps
refers to adjusting the order of vertices according to certain rules to achieve the scrambling
effect. Due to the scrambling of point objects can only reorder the spatial data storage but
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has no effect on the data structure, and thus polyline objects and polygon objects are the
main permutation targets in vector maps. There are two methods to scramble the vertices:
permutation within objects (Figure 2b) and permutation between objects (Figure 2c). It can
be found from Figure 2b that permutation within objects achieves only local permutations
within the same object though the organization structure of each object is disrupted. As
can be seen from Figure 2c that the global permutations between objects is achieved, which
increases the complexity of encryption results. Hence, the permutation between objects
has a better scrambling effect.
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Double random position permutation (DRPP) is a viable permutation encryption
method. Figure 3 shows the DRPP scrambling process of vector maps. To ensure the
security of scrambling, two different key sequences are used to increase the difficulty of
decryption. The key sequence K1 is used to map the coordinates of vector maps at first,
and then it is mapped to the other random location by the key sequence K2.
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2.3. Logistic Chaotic Map

A logistic chaotic map is simple and widely used in performing image encryption
with less computation [28]. The definition of 1D logistic chaotic map is as follows:

xn+1 = µxn(1− xn), n = 0, 1, 2, (4)
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To improve the security of encryption, a 2D logistic chaotic map [29] with a better
chaotic property than 1D logistic chaotic map was proposed. It can be defined through the
following equations:{

xn+1 = µα1xn(1− xn) + γyn
yn+1 = µα2yn(1− yn) + γxn

, (x, y ∈ (0, 1)) (5)

when µ = 4, 0.65 ≤ α1, α2 ≤ 0.9 and 0 < γ < 1 are set, the 2D logistic chaotic map reaches
a chaotic state if x, y ∈ (0, 1).

2.4. Normalization of Vector Maps

The min-max normalization method [30] refers to linearly maps the original data
to (0, 1). Assume that xi is an original value, xmin and xmax are the minimum x and
maximum x of original values, respectively, and Nxi is the normalized value. The min-max
normalization method is defined using Formula (6).

Nxi =
xi − xmin

xmin − xmax
(6)

Correspondingly, the normalized values can be renormalized by Formula (7) to recover
the original coordinates.

xi = xmin + (xmax − xmin) · Nxi (7)

3. Proposed CEW Method for Vector Maps
3.1. Basic Idea

The permutation-based encryption scheme has no effect on vertex coordinates, which
means a permutation-based encryption scheme can be combined with a coordinates-based
watermarking scheme to construct a CEW scheme. Therefore, the proposed algorithm
consists of two parts, i.e., permutation-based encryption scheme and coordinates-based wa-
termarking scheme. The detailed process of the proposed algorithm is shown in Figure 4.
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3.2. Permutation-Based Encryption Scheme

In the encryption scheme, the SHA-512 hash method and Gaussian distribution are
used to generate the encryption key, then all vertices are scrambled via DRPP. The detailed
encryption process is as follows. It should be pointed out that the following content
only gives the encryption method of the X-coordinate, and the operation process of the
Y-coordinate is the same as that of the X-coordinate.



ISPRS Int. J. Geo-Inf. 2021, 10, 718 6 of 18

(1). Generation of the encryption key

Step 1: According to DRPP, two initial keys Uk and Hk are obtained by performing
the SHA-512 hash method on the key input by users and the file information of the vector
map respectively.

Step 2: To enhance the security of two initial keys, two sets of Gaussian random
numbers Gu and Gh are calculated to scramble initial keys Uk and Hk. Then, two encryption
key sequences KE1 and KE2 of vector maps can be obtained. The detailed operation is
as follows:

Gu =
{

gui,j

∣∣∣0 < i < |L|, 0 < j ≤ |Pi|
}

, Gh =
{

ghi,j

∣∣∣0 < i < |L|, 0 < j ≤ |Pi|
}

(8)

gui,j =
i× j
|Pi|
× 1√

2π
e−

u2
2 , ghi,j

=
i× j
|Pi|
× 1√

2π
e−

h2
2

)
(9)

KE1 =
n1 × u

Gu
, KE2 =

n2 × h
Gh

(10)

where u and h are the values the initial keys Uk and Hk, respectively; n1 and n2 are the
length of the initial keys Uk and Hk, respectively.

Step 3: Two index sequences Sort_KE1 and Sort_KE2 are obtained via sorting two
encryption keys KE1 and KE2 in ascending order respectively.

(2). Encryption of vector maps

Step 1: Read the storage order of all vertices from the vector map and form a one-
dimensional sequence.

Step 2: Reorder all vertices according to the key Sort_KE1 , and the reordered vertices
are stored into Cxi according to Formula (11).

Cxi = xi
(
Sort_KE1(i)

)
, i ∈ [1, NV ] (11)

Step 3: According to Formula (12), Cxi is mapped to a random position of Sxi by using
the other key Sort_KE2 , and the Sxi is the encryption result of xi.

Sxi = Cxi
(
Sort_KE2(i)

)
, i ∈ [1, NV ]

)
(12)

Step 4: After all vertices are scrambled, the encrypted vector map is obtained.

(3). Decryption of vector maps

The decryption process is an inverse process of encryption. Two key sequences
are generated based on the key input by users and the information of vector map file,
and the encrypted x-coordinates are obtained from the encrypted vector maps. Then,
the encrypted x-coordinate sequence and the key sequences are transformed into one-
dimensional sequence. Finally, the decrypted vector maps are obtained based on the
principle of DRPP.

3.3. Coordinates-Based Watermarking Scheme

The coordinates of the vector maps are not changed in the above permutation en-
cryption process, which makes it possible to achieve the commutativity between the
watermarking process and the encryption process in this paper. Thus, a coordinate-based
watermarking scheme is proposed to achieve the commutativity in this section. Firstly,
the 2D logistic chaotic map is used to shuffle the original watermark image, and all vertex
coordinates are normalized; then the shuffled watermark is embedded into the normalized
coordinates according to the mapping relation between each coordinate and each bit of the
watermark. The detailed watermark embedding and extraction process are as follows.

(1). Generation of the watermarking information
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Firstly, a binary watermark image with copyright is selected. Then, the watermark
image is shuffled by using the 2D logistic chaotic encryption algorithm, aiming to reduce
the correlation between pixels and enhancing the security of the watermark. Finally, the
shuffled watermark is mapped into a one-dimensional sequence W = {wi|wi = 0, 1},
where 0 ≤ i < NW , and NW is the length of the one-dimensional watermark sequence.

(2). Watermark embedding

Step 1: Read the coordinates of all vertices to form a one-dimensional coordinate
sequence, and then normalize all coordinates.

Step 2: To ensure each bit of the watermark can be embedded into at least one coor-
dinate value, each vertex is taken as an embedding position, and a mapping relationship
between each coordinate and each bit of the watermark is established by Formula (13).

index = (Nxi × 10n)modNW , i ∈ [1, NV ] (13)

where n denotes the magnification of normalized coordinate; index is the watermark bit to
be embedded.

Step 3: The shuffled watermark is embedded into the normalized coordinates Nxi
using the quantization method, and the watermarked coordinates Wxi are calculated by
Formula (14).

Wxi =


Nxi − R

2 , i f W(index) = 0 and Nximod R > R/2
Nxi +

R
2 , i f W(index) = 1 and Nximod R ≤ R/2

Nxi, else
(14)

where i ∈ [1, NV ], and R is the quantization step.
Step 4: The watermarked coordinates are renormalized to derive an integral and

watermarked vector map.
In the above watermark embedding process, the watermark bit to be embedded is

determined by the mapping relationship between the coordinates and the watermark bits.
Therefore, every bit of the watermark can be multiply embedded into the normalized
coordinates. In other words, each bit of the watermark can be embedded into at least
one coordinate value. Based on this, the embedded watermark bit can still be determined
by other coordinates even if some vertices are added or deleted. This ensures the em-
bedded watermark is not easily destroyed when the watermarked maps are subject to
vertex attacks.

(3). Watermark extraction

The process of watermark extraction is the inverse process of watermark embedding.
The detailed steps are listed as follows.

Step 1: The watermarked coordinates are obtained and normalized. Moreover, the
embedding position is identified by the relationship between the watermarked coordinates
and the watermark bits.

Step 2: A one-dimensional sequence W ′ is defined with an initial value 0 and length
NW . The value of W ′ is determined by formula (15).

W ′(index) =
{

W ′(index) + 1, i f Wxi mod R > R/2
W ′(index)− 1, i f Wxi mod R ≤ R/2

(15)

where i ∈ [1, NV ], index and R have the same meaning as the watermark embedding process.
Step 3: In accordance with Formula (16), the watermark W ′ is rewritten using the

majority rule.

W ′(index) =
{

1, i f W ′(index) > 0
0, i f W ′(index) ≤ 0

(16)

Step 4: The one-dimensional sequence W ′ is reconstructed as a two-dimensional
watermark image based on the size of the original watermark image.
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4. Experiments and Results

Several experiments were conducted to verify the effectiveness and versatility of the
proposed algorithm. All experiments were implemented under Windows 10 64-bit PC
with Intel(R) Core(TM) i5-10500, 3.10GHz CPU and 8GB RAM, running in the Python
3.7 platform. In the experiments, we downloaded the shapefile data of different sizes, re-
gions and object types from OpenStreetMap (http://download.geofabrik.de/, accessed on
10 January 2021) as original GIS vector maps, and selected a binary image with 32 × 64 pixels
as the watermark image. Figure 5a–c shows the original GIS vector maps, and the de-
tailed information of these vector maps is listed in Table 1. Figure 6a,b shows the original
watermark and the shuffled watermark. It is important to note that α1 = 0.89, α2 = 0.9,
γ = 1 are used as initial values of the 2D logistic chaotic map in the process of the
watermark scrambling.
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4.1. Visualization Experiments

The original vector maps are performed CEW operation using the proposed algorithm.
The experimental results are shown in Figures 7 and 8. Figure 7 displays the commutative
encryption-watermarked (CEWed) maps, Figure 7a–c display the encrypted-watermarked
(E-Wed) maps obtained by performing encryption operation at first and watermarking
operation afterwards. Figure 7d–f show the watermarked-encrypted (W-Eed) maps, which
are obtained by performing watermarking operation at first and then encryption operation.
Figure 8a–c are the decrypted-watermarked (D-Wed) maps obtained by decrypting the
CEWed maps, respectively. As shown in Figures 7 and 8, the information of the original

http://download.geofabrik.de/
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maps cannot be found from the CEWed maps, and there is no difference between the
D-Wed map and the original map visually.
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4.2. Commutativity Experiments

Commutativity refers to the mutual independence between the encryption and the
watermarking algorithm, which is the key of a CEW algorithm. The commutativity requires
that the operation order of encryption and watermark embedding has no impact on the
final results, and the embedded watermark can be extracted before or after decryption.

To verify the commutativity between encryption and watermark embedding, Root-
mean-square error (RMSE) is introduced to evaluate the difference between the E-Wed map
and the W-Eed map. RMSE is calculated by Formula (17).

RMSE =

√√√√ 1
N

N

∑
i=1

((
x′i − xi

)2
+
(
y′i − yi

)2
)

(17)

where (xi, yi) and
(

x′i , y′i
)

are the coordinates of two maps, respectively; N is the number
of vertices. The value of RMSE is closer to 0, the error between the two maps is smaller.
Table 2 displays the RMSE between the E-Wed maps and the W-Eed maps. Moreover,
railways map is taken as an example, and the coordinates of some vertices in the E-Wed
railways map and the W-Eed railways map are listed in Table 3. It can be found from
Tables 2 and 3 that all vertices in both maps are identical, and their RMSEs are 0, which
shows the E-Wed maps has the same content as the W-Eed maps. This is a good indication
that the encryption operation and watermark embedding operation are commutative.

Table 2. The difference between the E-Wed map and the W-Eed map.

Comparison Result Buildings Railways Waterways

Number of consistent vertices 11029 67123 186920
Number of inconsistent vertices 0 0 0

RMSE 0 0 0

Table 3. The coordinates of the E-Wed railways map compared with the W-Eed railways map.

The Coordinates of the E-Wed Railways Map The Coordinates of the W-Eed Railways Map

(112.24909600028025, 34.69927299974921) (112.24909600028025, 34.69927299974921)
(113.81205260004754, 34.242683800217264) (113.81205260004754, 34.242683800217264)
(115.71832759963911, 31.882133599885776) (115.71832759963911, 31.882133599885776)

. . . . . .
(112.29290890012567, 33.053237600434954) (112.29290890012567, 33.053237600434954)
(114.10714130013093, 32.103603399777114) (114.10714130013093, 32.103603399777114)
(114.04892300039626, 35.42289510022874) (114.04892300039626, 35.42289510022874)

To verify the commutativity between decryption and watermark extraction, nor-
malized correlation coefficient (NC) is introduced to measure the difference between
the original watermark and the extracted watermark. The definition of NC is shown in
Formula (18).

NC =
1

M× N

M

∑
i=1

N

∑
j=1

XNOR
(

wi,j, w′i,j
)

(18)

where wi,j and w′i,j denote the original watermark image and the extracted watermark image
respectively, M× N is the size of the watermark image, and XNOR(•) is the operator of
exclusive NOR. In this experiment, we extracted the watermark from the CEWed maps and
the D-Wed maps respectively, and the NC values are displayed in Table 4. It is apparent that
the NC values are always 1, which shows that the decryption operation and the watermark
extraction operation are commutative.
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Table 4. The NC value of the extracted watermark.

Type Map NC

CEWed map
Buildings 1
Railways 1

Waterways 1

D-Wed map
Buildings 1
Railways 1

Waterways 1

4.3. Encryption Security Analysis

(1). Key Space

The key space is an important evaluation indicator of key security. The key space
should be large enough to resist exhaustive attacks, and the size of the key space should
be greater than the standard requirement (i.e., 2100) [24]. The keys of proposed algorithm
consist of the following two keys: the 512 bits hash value generated by user’s input key
and the map file respectively. Therefore, the key length of proposed algorithm is 1024 bits,
i.e., the size of key space is 21024, which is greater than 2100. This shows that the proposed
algorithm has strong resistance to exhaustive attacks.

(2). Key Sensitivity

Key sensitivity refers to the fact that the encrypted data will be changed dramatically
and the decryption data cannot be obtained correctly when the key is modified even with
minimal changes [31]. The cypher data must be highly sensitive to the key.

To analyze the effect of key change on encryption results, the initial key k1
and the modified key k2 are used to encrypt the maps, respectively. The initial
keys are k1 = (Uk = 1234567890, Hk = abcde f ghijklmn), and the modified keys are
k2 = (Uk = 1234567891, Hk = abcde f ghijklmn). Figure 9 shows the results of overlaying
the encrypted maps with k1 and the encrypted maps with k2. It can be found that the
encrypted maps with the modified keys are obviously different from the encrypted maps
with the initial keys. Besides, to analyze the effect of different keys on the decryption
results, we encrypted the original vector maps using k1 and decrypted the maps using
k2. Figure 10 shows the maps obtained by decrypting with k2, and the correct decryption
results have been given in Figure 8a–c. It is apparent that the encrypted maps cannot be
decrypted correctly even if the decryption key is slightly different from the encryption key.
This shows that even a slight change of key can significantly affect the decryption result.
Therefore, the proposed algorithm has strong key sensitivity.

4.4. Watermark Security Analysis

(1). Imperceptibility

Imperceptibility refers to the fact that the watermark information has no impact
on the precision of the original vector maps, and it depends on the magnification of
normalized coordinates (i.e., n) and the quantization step (i.e., R). In this experiment, the
average distortion (AveD) and the maximum distortion (MaxD) are chosen to assess the
imperceptibility of the watermarked maps. The AveD and MaxD are defined as follows:

AveD =
1
N

N

∑
i=1

√(
x′i − xi

)2
+
(
y′i − yi

)2 (19)

MaxD = max
(√(

x′i − xi
)2

+
(
y′i − yi

)2
)

(20)

where N is the number of vertices, max(•) is the maximum function, (xi, yi) and
(

x′i , y′i
)

are the coordinates of the original map and the watermarked map, respectively. In general,
the accuracy of vector maps should not be lower than the minimum accuracy (10−4 m) [11].
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Table 5 displays the relationship between AveD, MaxD, NC and n when R = 8× 10−8, and
Table 6 lists the relationship between AveD, MaxD, NC and R when n = 8. It can be found
from Table 5 that the NC values are 1 when n ranges from 4 to 8, and the AveD is the lowest
when n = 8. Besides, as can be seen from Table 6, the NC values are always 1 when the
value of R is between 8× 10−15 and 3× 10−8. Thus, to balance the imperceptibility of the
watermark and the data precision, we embedded the watermark information into the 8th
decimal of the normalized coordinates (i.e., n = 8), and the quantification step is set to
5 × 10−10 (i.e., R = 5× 10−10).
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Table 5. The relationship between AveD, MaxD, NC and n (R = 8× 10−8 ).

n AveD MaxD NC

2 1.8977 × 10−9 3.1703 × 10−9 0.8359
3 1.8972 × 10−9 3.1703 × 10−9 0.9038
4 1.8963 × 10−9 3.1703 × 10−9 1
5 1.8960 × 10−9 3.1703 × 10−9 1
6 1.8974 × 10−9 3.1703 × 10−9 1
7 1.9007 × 10−9 3.1703 × 10−9 1
8 1.8943 × 10−9 3.1703 × 10−9 1
9 1.8850 × 10−9 3.1703 × 10−9 0.9995

Table 6. The relationship between AveD, MaxD, NC and R (n = 8).

R AveD MaxD NC

9 × 10−16 4.6048 × 10−17 3.5527 × 10−15 0.51514
1 × 10−15 2.1373 × 10−14 3.5527 × 10−14 0.52002
2 × 10−15 2.1232 × 10−14 3.5527 × 10−14 1
3 × 10−10 7.1163 × 10−10 1.1889 × 10−9 1
5 × 10−10 1.1903 × 10−9 1.9814 × 10−9 1
9 × 10−9 2.1455 × 10−8 3.5667 × 10−8 1
1 × 10−8 2.3858 × 10−8 3.9628 × 10−8 1
2 × 10−8 4.7059 × 10−8 7.9257 × 10−8 0.8979
3 × 10−8 7.1305 × 10−8 1.1889 × 10−7 0.8750

(2). Watermark Robustness

Watermark robustness refers to the ability to reconstruct watermark information from
the attacked vector maps. According to the practical application of the vector maps, the
watermarked maps should be resistant to conventional attacks (e.g., vertex addition and
deletion, reordering and data format conversion, etc.) and geometric attacks (e.g., rotation,
scaling and translation, etc.). In this experiment, NC is used to verify the watermark
robustness. In general, the NC value is closer to 1, the difference between the extracted
watermark and the original watermark is smaller.

In the experiment of vertex attacks, vertex addition and deletion are performed on
the watermarked maps, respectively. To ensure the reliability of the results, vertices are
randomly added and deleted at certain ratios. we added the vertex from 10% to 100%,
deleted the vertex from 10% to 60%, and the NC value are displayed in Tables 7 and 8. It
can be clearly seen that the embedded watermark can still be extracted successfully, and
the NC values are still higher than the threshold of 0.8 even if the vertices are increased by
1× or 60% vertices are deleted. This shows that the proposed algorithm is highly resistant
to vertex addition attack and vertex deletion attack.

Table 7. The robustness results of vertex addition attack.

Vertex Addition Ratio (%)
NC

Buildings Railways Waterways

10 0.9921 1.0 1.0
20 0.9767 1.0 1.0
40 0.9541 1.0 1.0
60 0.9482 1.0 1.0
80 0.9014 1.0 1.0

100 0.8984 0.9902 1.0
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Table 8. The robustness results of vertex deletion attack.

Vertex Deletion Ratio (%)
NC

Buildings Railways Waterways

10 0.9878 1.0 1.0
20 0.9677 1.0 1.0
30 0.9541 1.0 1.0
40 0.9434 1.0 1.0
50 0.9346 0.9981 1.0
60 0.8945 0.9812 1.0

Geometric attack is a common operation for vector map data. In the experiment,
rotation, scaling and translation operation were performed on the watermarked maps. To
ensure the reliability of the results, the watermarked maps were scaled from 0.2 to 6.0,
translated from 10 to 100 m and rotated from 45◦ to 315◦. The NC results are listed in
Tables 9–11, respectively. The NC values show the proposed algorithm has good robustness
in resisting scaling and translation attacks, whereas it is not resistant to rotation attack.

Table 9. The robustness results of scaling attack.

Attack Type Attack Strength
NC

Buildings Railways Waterways

Scaling

0.2 1.0 1.0 1.0
0.4 1.0 1.0 1.0
0.6 1.0 1.0 1.0
0.8 1.0 1.0 1.0
2.0 1.0 1.0 1.0
4.0 1.0 1.0 1.0
6.0 1.0 1.0 1.0

Table 10. The robustness results of translation attack.

Attack Type Attack Strength
NC

Buildings Railways Waterways

Translation

10 1.0 1.0 1.0
20 1.0 1.0 1.0
30 1.0 1.0 1.0
40 1.0 1.0 1.0
50 1.0 1.0 1.0
60 1.0 1.0 1.0
70 1.0 1.0 1.0
80 1.0 1.0 1.0
90 1.0 1.0 1.0

100 1.0 1.0 1.0

Table 11. The robustness results of rotation attack.

Attack Type Attack Strength
NC

Buildings Railways Waterways

Translation

45 0.5332 0.5215 0.4932
90 0.4937 0.4824 0.5308

135 0.5254 0.5107 0.4907
180 0.5146 0.5137 0.5063
225 0.5254 0.5005 0.5049
270 0.5366 0.5303 0.5093
315 0.5229 0.5234 0.5171
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To guarantee that the vector maps can be used in different GIS platforms, the proposed
algorithm must be robust in resisting format conversion attack. In this experiment, the
watermark information is embedded into the vector maps in the shapefile format, and
then the watermarked maps are transformed into dwg format, e00 format or gdb format.
It is worth noting that the vector maps need to be converted to shapefile format before
extracting the watermark. Table 12 reflects the results of watermark extraction, it is obvious
that the watermark can be extracted successfully and that the NC values are always 1,
which shows that the extracted watermark is not affected by data format conversion.

Table 12. The robustness results of format conversion attack.

Data Format
NC

Buildings Railways Waterways

dwg 1.0 1.0 1.0
e00 1.0 1.0 1.0
gdb 1.0 1.0 1.0

Reordering refers to rearrange the storage order of vector map data. The watermark
embedding and extraction operations are implemented based on the coordinates of the
vector maps, which is not affected by the storage order. In other words, the watermark
embedding positions will not change if embedding occurs after the reordering of the
vertices, and the embedded watermark can be correctly extracted by the original embedding
positions. To further illustrate the reliability of the above theory, the storage order of objects
was randomly disrupted and reordered in the watermarked maps. Results found that
the NC values between the extracted watermark and the original watermark are always
1, which confirms that the reordering of objects has no effect on the extraction of the
watermark information.

(3). Robustness comparisons

To further highlight the better performance of our method, the Railways map was
used to implement the comparison with the existing methods [2,13,24]. We compared their
robustness in vertex attacks, geometric attacks and data format conversion attack. Figure 11
displays the comparison results. Figure 11a–b reflect that the proposed algorithm is more ro-
bust in resisting vertex addition attack and vertex deletion attack. As shown in Figure 11c–f,
the proposed algorithm has the same robustness as the existing methods [2,13,24] in re-
sisting data format conversion, scaling and translation attacks, whereas its robustness in
resisting rotation attack is not as good as the existing methods [2,13,24].

The above results show that the proposed algorithm is resistant to vertex attacks,
scaling and translation attacks, data format conversion attack. However, the normalized
coordinates are invariant to translation and scaling, but not to rotation. As a result, the
proposed algorithm has no resistance to rotation attack.
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5. Conclusions

A novel invariant-based CEW algorithm is proposed in this paper, aiming at providing
the dual capability of secure transmission and copyright protection for vector maps. The
permutation-based encryption scheme does not change the coordinates of vector maps,
which is combined with the coordinates-based watermarking scheme to implement the
commutativity between encryption operation and watermarking operation. Based on the
proposed algorithm, the operation order of encryption and watermark embedding has no
impact on the final results, and the embedded watermark can be extracted before or after
decryption. The contributions of this paper are as follows:

(1). Proposed algorithm provides multiple protection for vector maps by the combina-
tion of encryption technology and watermarking technology compared to existing
encryption algorithm and watermarking algorithm.

(2). Compared with the existing CEW methods for vector maps, proposed method has
stronger robustness in resisting vertex attacks by using multiple embedding strategy
for watermark. In addition, proposed method is resistant to geometric attacks (e.g.,
scaling and translation) and other conventional attacks (e.g., reordering and data
format conversion).

(3). Compared with the existing CEW methods for vector maps, the introduction of double
random position permutation strategy completely avoids one-to-one mapping during
vector map scrambling and greatly enhances encryption security.

Proposed algorithm has a poor encryption effect on point objects, because the permu-
tation of point objects can only change the storage order, which has no impact on the data
structure. Therefore, the CEW algorithm for the point objects of vector maps will be our
work in future research.
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