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Abstract: Due to the increasingly complex objects and massive information involved in spatial
statistics analysis, least squares support vector regression (LS-SVR) with a good stability and high
calculation speed is widely applied in regression problems of geospatial objects. According to Tobler’s
First Law of Geography, near things are more related than distant things. However, very few studies
have focused on the spatial dependence between geospatial objects via SVR. To comprehensively
consider the spatial and attribute characteristics of geospatial objects, a geospatial LS-SVR model
for geospatial data regression prediction is proposed in this paper. The 0–1 type and numeric-type
spatial weight matrices are introduced as dependence measures between geospatial objects and
fused into a single regression function of the LS-SVR model. Comparisons of the results obtained
with the proposed and conventional models and other traditional models indicate that fusion of the
spatial weight matrix can improve the prediction accuracy. The proposed model is more suitable for
geospatial data regression prediction and enhances the ability of geospatial phenomena to explain
geospatial data.

Keywords: spatial weight matrix; spatial prediction; least squares support vector regression (LS-SVR)

1. Introduction

Spatial statistics analysis refers to the description and analysis of spatial phenomena
from the perspective of geography. As a research object of spatial statistics analysis, spatial
lattice data are data retrieved from spatially random processes in which the number of col-
lected sites is countable [1]. It has a geographical location and is a digital description of the
spatial and attribute characteristics of geospatial objects. The data may not obey a normal
distribution, and there may exist complex nonlinear relationships among the variables.

Due to the complex structure of spatial lattice data, traditional linear statistical meth-
ods do not accurately resolve practical geographical problems such as linear regression of
geographical data and partial least squares estimators. Therefore, intelligent computing
techniques have been gradually developed to address spatial analysis problems. Support
vector regression (SVR) is a popular supervised machine learning algorithm based on the
support vector machine (SVM). The theoretical foundation of the SVR model is statistical
learning theory, in which inference rules not only consider the generalization performance
but also pursue an optimal solution given limited samples [2]. The SVR model relies on a
nonlinear function to map input data into a high-dimensional feature space, and a linear
classification is then computed in the mapped feature space, which facilitates relatively
simple mathematical calculations [3] and provides the ability to learn nonlinear relation-
ships between the variables [4]. Due to its good performance in regard to statistical analysis
problems with a small sample size, nonlinearity, high dimensions or local optimum values,
this method is widely applied in missing data imputation [5,6], random error analysis [7,8],

ISPRS Int. J. Geo-Inf. 2021, 10, 714. https://doi.org/10.3390/ijgi10110714 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-9684-1722
https://orcid.org/0000-0002-7710-3935
https://doi.org/10.3390/ijgi10110714
https://doi.org/10.3390/ijgi10110714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10110714
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10110714?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2021, 10, 714 2 of 19

remote sensing image inversion [9,10] and prediction of traffic flow conditions [11,12], soil
properties [13,14], and temperature [15] and other spatial data mining problems [16].

As an improvement of the standard SVM model, the least squares support vector
regression (LS-SVR) [17] model substitutes Vapnik’s ε-insensitive loss function with a
sum-squared error (SSE) cost function, replaces the inequality constraints of the standard
SVR model with equality constraints and solves the optimization problem by constructing
linear equations. Due to the application of equality constraints, the solution process is
transformed from a quadratic programming problem into a system of linear equations
obtained by the Karush–Kuhn–Tucker (KKT) condition, which greatly reduces the solution
difficulty. The LS-SVR model has been improved for different application fields by dividing
spatiotemporal factors into different groups [18], allocating various weights to different
data [19] and combining the model with optimization algorithms such as the genetic
algorithm (GA) [5,7,20], particle swarm optimization (PSO) [6,21–24] and artificial bee
colony (ABC) [25] to achieve automatic optimal parameter selection. This improvement of
the LS-SVR model adopts new ways in variable integration or parameter selection, but no
improvement is made according to the essential characteristics of spatial lattice data.

Tobler’s First Law of Geography states that all attribute values on a geographic surface
are related, but closer objects are more strongly related than are more distant ones [26].
Spatial dependence, also referred to as spatial autocorrelation, denotes the variance at a
small scale. This suggests that nearby sites tend to possess similar characteristics and thus
exhibit spatial continuity. Machine learning methods fused with spatial autocorrelation
can improve the model performance [27]. The traditional LS-SVR model does not provide
the inherent capability of handling geospatial data. The spatio-temporal SVR model has
been invented by some researchers and tried to be used in the prediction of temperature,
traffic flow or other geospatial data with temporal information [28–30]. With the addition
of spatial information, the model performs better [31]. Therefore, it is necessary to consider
spatial information when implementing the LS-SVR model.

The spatial weight matrix is the formal expression of the spatial dependence between
observations [32]. The spatial weight matrix can be divided into two categories: the 0–1
type and numeric-type spatial weight matrices. In the 0–1 type matrix, the element value is
either 0 or 1 according to a specified measurement criterion, such as the spatial contiguity
or spatial threshold distance [33]. The numeric-type spatial weight matrix, in which the
element value is a numeric value, can be created based on the spatial distance, shared-
boundary length, area of the geographical object and any combination [34,35]. Certain
complex spatial weight matrices are constructed based on the geographic statistical infor-
mation between geospatial objects [36,37] or based on the social and economic distances
under a certain problem [38].

In this study, we proposed the geospatial LS-SVR model, which is an LS-SVR model
integrating the spatial dependence among geospatial objects, to perform regression predic-
tion of geospatial data. Two different types of spatial weight matrices were fused into the
regression function of the LS-SVR model to measure the strength of the interaction between
geospatial objects. We considered three datasets to evaluate the accuracy of the proposed
geospatial LS-SVR model and conventional LS-SVR model. It was confirmed that fusing
considering spatial autocorrelation could improve the prediction accuracy. The proposed
model could not only retain the good generalization performance of the SVR model but
could also reflect the essential characteristics of geospatial objects.

2. Methodology
2.1. Problem Description

Since the spatial weight matrix is only applicable to lattice data, we only consider
lattice data with a countable site index. Point feature datasets should be converted into
polygon feature datasets. Suppose there are N geospatial objects in geographical region
S, i.e., S = {s1, s2, . . . , sN}. Given a geospatial object si, its location or center location is
(pi, qi), and its M-dimensional attribute vector is Attr(si) = [ai1, ai2, . . . , aiM]. When a
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particular attribute of si (i = 1, 2, . . . , N) depends on its other d (d < M) attributes, the
former is referred to as the dependent variable, denoted as yi, and the latter are referred to
as the explanatory variables, denoted as xi = [aik, . . .], where k ∈ {1, 2, . . . , M}.

Given an observation dataset {(xi, yi )}N
i=1 comprising N geospatial objects {si}, where

xi ∈ Rd and yi ∈ R. The general form of regression model is a regression function
y = f (x) that reflects the dependency between y and x, where x = [x1, x2, . . . , xN ]

T and
y = [y1, y2, . . . , yN ]

T . This function can be linear function or nonlinear function. In regard
to regression modeling of geographical data, according to Tobler’s first law of geography,
all attribute values on a geographic surface are related. That is, if geospatial object si
and geospatial object sj are adjacent or close, the variation in the dependent variable yi
of geospatial object si not only depends on the variation in the explanatory variables
xi of si but also depends on the variation of geospatial object sj. Therefore, the general
geographical regression form based on spatial autocorrelation can be expressed as:

yi ≈ f
(
xi, xj, yj

)
, i = 1, 2, . . . , N and j ∈ [1, 2, . . . , N], (1)

where xi and yi are the attributes of si, and xj and yj are the attributes of sj.
The spatial dependence between any two geospatial objects si and sj can be quan-

titatively measured by the spatial weight matrix WN×N. Concretely, for si, the spatial
dependence between other objects sj (j = 1, 2, . . . , N and j 6= i) and si is reflected by ele-
ment wij of W. The larger the value of wij is, the stronger the spatial dependence between
si and sj is. wij = 0 suggests that there exists no spatial autocorrelation between si and sj.
Therefore, wij can be introduced into Equation (1) as a weighting factor, which reflects the
magnitude of the influence of xj of sj on the dependent variable yi of si, and Equation (1)
can be further expressed as:

yi ≈ f
(

xi, wijxj, wijyj
)
, (2)

The geospatial LS-SVR model relies on a similar form of Wx to fuse spatial auto-
correlation into the regression function ωT ϕ(x) + b of the SVR model, which not only
maintains the excellent features of the SVM model but also reflects the spatial dependence
of geographical data.

2.2. Spatial Weight Matrix

In the study area S = {si}N
i=1, the spatial weight matrix W is an N × N matrix, and

element wij (i = 1, 2, . . . , N, f or j = 1, 2, . . . , N and j 6= i) expresses and measures the
spatial relationship between si and sj. wij = wji indicates that the spatial relationship from
sj to si is the same as the spatial relationship from si to sj, and wij 6= wji indicates that the
spatial relationship between sj → si and si → sj differs. The general form of the spatial
weight matrix W is:

W =


w11 w12 · · · w1N
w21 w22 · · · w2N

...
... · · ·

...
wN1 wN2 · · · wNN

, (3)

In this paper, we examined two types of spatial weight matrices, namely, the 0–1 type
and numeric-type spatial weight matrices.

Regarding the 0–1 type spatial weight matrix, the first-order queen contiguity matrix
was adopted in this paper. This matrix applies both common edges and vertices to define
contiguous objects. wij = 1 indicates that there is a common edge or vertex between si
and sj, while wij = 0 indicates that there is no common edge or vertex between si and sj
(Figure 1).
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Figure 1. First-order queen contiguity relationship between the spatial units.

The numeric-type spatial weight matrix considered in this paper is the numeric
threshold distance adjacency matrix. This suggests that the geospatial objects within
the specified threshold distance are adjacent, whereas geospatial objects at a distance
exceeding the threshold distance are not adjacent. The weight wij from sj to si is wij ={

1
dij

, dij < dT

0, dij ≥ dT
, where dT is the threshold distance.

Considering the influences of all sj on si, the spatial weight matrix W should be row
standardized. The weighting factors wij of all sj on si should be standardized to guarantee

that their sum equals 1, i.e., wij/

(
N
∑

j=1,j 6=i
wij

)
, for j = 1, 2, . . . , N and j 6= i.

2.3. Geospatial LS-SVR Model Based on Spatial Autocorrelation

The conventional LS-SVR model can be regarded as a nonlinear regression function:

f (x) = ωT ϕ(x) + b, (4)

where ω is the weight coefficient vector (column vector), ϕ(x) is the mapping function from
the input space to the high-dimensional feature space, and b is the bias term.

The corresponding optimization problem of Equation (4) is:

min
ω,b, e
J (ω, b, e) =

1
2

ωTω +
1
2

γ
N

∑
i=1

e2
i =

1
2
‖ω‖2 +

1
2

γ
N

∑
i=1

e2
i , subject to yi = ωT ϕ(xi) + b + ei for i = 1, 2, · · · , N, (5)

where γ is the regularization parameter and ei ∈ R is the ith error term.
After introducing Lagrange multipliers αi, based on Mercer’s condition, we can obtain

the final form of the LS-SVR model for nonlinear regression:

f (x) = ωT ϕ(x) + b =
N

∑
i=1

αi〈ϕ(xi), ϕ(x)〉+ b =
N

∑
i=1

αiK(xi, x) + b, (6)

where K(xi, x) is the kernel function, and αi and b are regression parameters. The kernel
function can be a linear kernel, polynomial kernel, Gaussian kernel, Laplacian kernel,
sigmoid kernel, etc.
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Similar to the conventional LS-SVR model, the proposed LS-SVR model based on
spatial autocorrelation (denoted as the geospatial LS-SVR model or Geo LS-SVR model)
can also be regarded as a nonlinear regression function. However, spatial autocorrelation is
fused into the regression function ωT ϕ(x) + b of the conventional LS-SVR model to ensure
that regression modeling of geospatial object si considers not only its own explanatory
factors ϕ(xi) but also the explanatory factors wiϕ ϕ(x) of related objects, where wi denotes
the ith row of spatial weight matrix W. The Geo LS-SVR model can be expressed as:

f (x) = ωT(I + W)ϕ(x) + b, (7)

where (I + W)Tω is equivalent to the weight vector ω in Equation (4) of the conventional
LS-SVR model [39], I is the identity matrix of N * N.

It should be noted that in SVM theory, the SVR model actually converts a given
nonlinear regression problem in the input space into a linear regression problem in the
feature space. In terms of the regression problem of geographical data, the input space
is the attribute space of geospatial objects S = {si}N

i=1. After the nonlinear regression
model yi ≈ f

(
xi, wijxj, wijyj

)
of the input space is mapped to the linear regression model

(Equation (7)) of the feature space via a kernel function, the spatial characteristics, such
as the topological structure and spatial location, of geospatial objects in geographic space
remain unchanged, i.e., the spatial relationship remains invariant. Therefore, this mapping
transformation does not affect the expression of the spatial weight matrix.

Figure 2 shows the relation among the input space, feature space and geographic space.

Figure 2. Relationship among the input, feature and geographic spaces.

Regarding the Geo LS-SVR model, the corresponding optimization problem of Equa-
tion (7) is:

min
ω,b, e
J (ω, b, e) =

1
2
‖(I + W)Tω‖2 +

1
2

γ
N

∑
i=1

e2
i ,subject to yi = ωT(I + W)ϕ(xi) + b + ei for i = 1, 2, · · · , N. (8)

After introducing Lagrange multipliers subject to αi ∈ R, the Lagrangian function of
Equation (8) is:

L(ω, b, e, α) = J (ω, b, e)−
N

∑
i=1

αi

(
ωT(I + W)ϕ(xi) + b + ei − yi

)
=

1
2
‖(I + W)Tω‖2 +

1
2

γ
N

∑
i=1

e2
i −

N

∑
i=1

αi

(
ωT(I + W)ϕ(xi) + b + ei − yi

)
, (9)

where α = [αi, α2, · · · , αN ]
T and I is the identity matrix.
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The conditions for optimality are given by:
δL
δω = 0→ (I + W)(I + W)Tω− (I + W)

N
∑

i=1
αi ϕ(xi) = 0

δL
δb = 0→ −∑N

i=1 αi = 0
δL
δei

= 0→ αi = γei f or i = 1, 2, · · · , N
δL
δαi

= 0→ ωT(I + W)ϕ(xi) + b + ei − yi = 0 f or i = 1, 2, · · · , N

. (10)

From the above linear equations, ω and ei can be obtained as:

ω =
(
(I + W)(I + W)T

)−1
(I + W)

N

∑
i=1

αi ϕ(xi), (11)

ωT =
N

∑
i=1

αi ϕ(xi)
T(I + W)T

(
(I + W)(I + W)T

)−1
. (12)

ei =
1
γ

αi for i = 1, 2, · · · , N. (13)

After elimination of ω and ei, the remaining linear equations are: ∑N
i=1 αi = 0

∑N
i=1 αi ϕ(xi)

T(I + W)T
(
(I + W)(I + W)T

)−1
(I + W)ϕ(xi) + b + ei = yi

. (14)

Based on Mercer’s condition, the kernel function can be defined as:

Ωij = ϕ(xi)
T ϕ
(
xj
)
= K

(
xi, xj

)
for i, j = 1, · · · , N. (15)

Let B = (I + W)T
(
(I + W)(I + W)T

)−1
(I + W), we can define the following:

BΩ = B·


K(x1, x1) K(x1, x2) · · · K(x1, xN)
K(x2, x1) K(x2, x2) · · · K(x2, xN)

...
...

...
...

K(xN , x1) K(xN , x2) · · · K(xN , xN)

. (16)

Therefore, the above remaining linear equations can be expressed in matrix form as:[
0 1T

1 BΩ I
γ

][
b
α

]
=

[
0
y

]
, (17)

where α = [αi, α2, · · · , αN ]
T , 1 = [1, 1, · · · , 1]T , and y = [y1, y2, . . . , yN ]

T .
Let A = BΩ + I

γ , and the solutions of the remaining linear equations are:

b = 1TA−1y

1TA−11
,

α = A−1(y− b1
)
.

(18)

The final form of the Geo LS-SVR model is:

f (x) = (I + W)T
(
(I + W)(I + W)T

)−1
(I + W)

N

∑
i=1

αiK(xi, x) + b, (19)

where αi and b are regression parameters.
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3. Results
3.1. Dataset Description and Spatial Dependence Analysis

We adopt three datasets to evaluate the Geo LV-SVR model, including a Boston
housing dataset [40], real estate transactions dataset [41] and election dataset [42].

The Boston housing dataset includes house price data derived from the U.S. Census
Service concerning housing in the area of Boston, MA, in the mid-1970s, which is often
considered to conduct experiments involving machine learning methods on regression
problems. Thirteen attributes, such as the average number of rooms per dwelling, crime
rate and index of accessibility to radial highways, are considered to predict the median
values of owner-occupied homes (in USD 1000) along N = 506 census tracts in Boston.

The real estate transactions dataset contains information on 985 sales in the Greater
Sacramento area over a period of five consecutive days. The house price is related to the
number of bedrooms and bathrooms, floor space and geographical location of the house.
However, as often occurs with missing data problems in real data applications, 18% of
home sales exhibit at least one missing feature. To ensure the model training accuracy, we
only retain data without any missing features, for a total value of N = 806.

In the election dataset, the population ratios of homeownership, income and individu-
als with college degrees in N = 3107 counties are considered to predict the vote casting rate
during the 1980 USA presidential election.

The Boston housing and real estate transactions datasets are both point feature datasets,
and the spatial adjacency matrix cannot be calculated. Therefore, we generate Tyson
polygons from point features to convert these features into polygon features. The data
distribution of the three datasets is shown in Figure 3. The dependent and explanatory
variables involved in these three datasets are listed in Table 1.

Spatial autocorrelation analysis of the abovementioned three datasets should be
performed before we apply the Geo LS-SVR model to ensure spatial independence of the
geospatial objects. Global Moran’s I can measure spatial autocorrelation based on both
location data and feature values as follows:

I =
N ∑N

i=1 ∑N
j=1 wij(yi − y)

(
yj − y

)
∑N

i=1 ∑N
j=1 wij ∑N

i=1(yi − y)2 , (20)

where N is the number of geospatial objects, yi is the value of attribute y for the i-th object, y
is the mean of the attribute value of y, and wij denotes the i-th row and j-th column element
of spatial weight matrix W. The value range of Moran’s I index is (−1,1). A Moran’s I value
greater than 0 indicates a positive spatial autocorrelation among the geospatial objects. In
contrast, a Moran’s I value less than 0 indicates a negative autocorrelation. The greater the
absolute value is, the stronger the spatial autocorrelation.

A significance level test is required after calculation of Moran’s I values. Generally,
the standardized z statistic is considered to assess the reliability of the conclusion that
there exists spatial autocorrelation between geospatial objects [43]. The p value of the
hypothesis test is calculated and compared to the significance level α. Usually, we assume
a significance level of α = 0.05, which suggests that there occurs a significant spatial
autocorrelation if |z| ≥ 1.96. Positive and significant z-values indicate that there exists a
positive spatial autocorrelation, and geospatial objects tend to be clustered. A negative
and significant z-value indicates that there occurs a negative spatial autocorrelation and
that geospatial objects tend to be dispersed. When the z-value is zero, the distribution is
random and independent.
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Figure 3. Data distribution of the Boston housing, real estate transactions and election datasets.

Global Moran’s I values for the above three datasets with a first-order queen adjacency
matrix were calculated: global Moran’s I for dependent variable medv in the Boston
housing dataset was 0.584. The z-score calculated based on the random null hypothesis
was 21.892. Similarly, regarding dependent variable price in the real estate transactions
dataset, Global Moran’s I reached 0.551, and z reached 28.805. In terms of dependent
variable vote casting ratio in the election dataset, the following values were obtained:
Global Moran’s I = 0.608, and z = 58.086. The p values of these three datasets were all
less than 0.0001. These indicators suggested that the spatial distribution of the dependent
variables of these three datasets exhibits a significant clustering pattern, and the probability
of randomly generating this clustering pattern is lower than 1%.
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Table 1. Variable information on the three datasets.

Boston Housing Dataset (N = 506) Real Estate Transactions Dataset (N = 806) Election Dataset (N = 3107)

Variable Type Variable Name Variable Meaning Variable Name Variable
Meaning Variable Name Variable Meaning

Dependent variable medv Median value of owner-occupied
homes in USD 1000 price Home sales price in

USD 10,000 Vote casting ratio
Population-wide cast

votes/population over age
19 eligible to vote

Explanatory variable

Crim Per capita crime rate by town

beds Number of bedrooms College degree ratio
Population with college

degrees/population over
age 19 eligible to vote

Zn Proportion of residential land zoned for
lots larger than 25,000 sq. ft

indus Proportion of nonretail business
acreage per town

Chas Charles River dummy variable (=1 if
the tract bounds the river; 0 otherwise)

Nox Nitric oxide concentration (parts per
10 million)

Rm Average number of rooms per dwelling

baths Number of bathrooms Homeownership ratio Homeownership/population
over age 19 eligible to voteAge Proportion of owner-occupied units

built prior to 1940

Dis Weighted distances to five Boston
employment centers

Rad Index of accessibility to radial highways

Tax Full-value property-tax rate per
USD 10,000

sq_ft Square footage Per capita income Income/population over age
19 eligible to votePtratio Pupil-teacher ratio by town

B
1000 (Bk-0.63)ˆ2, where Bk is the

proportion of African Americans by
town

Lstat Percentage of the population with a
lower status



ISPRS Int. J. Geo-Inf. 2021, 10, 714 10 of 19

In addition, we also calculated local Moran’s I indicator values (Equation (21)) [44] for
the dependent variables of the three datasets, and a scatter diagram is shown in Figure 4.
The scatter points in the three figures are concentrated in the first and third quadrants,
which indicates that high–high and low–low clustering patterns are common distributions
for most of the geospatial objects. For a geospatial object with a high dependent variable
value, the surrounding geospatial objects also exhibit a high dependent variable value.
Conversely, for a geospatial object with a low dependent variable value, the surrounding
geospatial objects also exhibit a low dependent variable value. There occur significant
spatial dependencies between the geospatial objects and surrounding geospatial objects.
Information regarding the surrounding objects is beneficial to predict dependent variable
values of the geospatial objects. Therefore, it could be considered that the Geo LS-SVR
model fused with the spatial weight matrix may be more suitable for nonlinear analysis of
these three datasets.

Ii =
N2(yi − y)∑n

j 6=i wij(yi − y)

∑N
i=1 ∑N

j=1 wij ∑(yi − y)2 (21)

Figure 4. Moran’s I scatter diagram of the dependent variables of these three datasets: (a) Boston housing dataset; (b) real
estate transactions dataset; (c) election dataset.

3.2. Experimental Results and Evaluation

In this section, we conducted experiments on the two spatial weight construction
methods of the Geo LS-SVR model and compared them to the traditional LS-SVR model.
In addition, the numeric-type Geo LS-SVR model was compared to other common models
to evaluate the effect of the proposed model.

3.2.1. Model Evaluation Index

The mean absolute error (MAE), root mean square error (RMSE) and coefficient of
determination (R2) were adopted in this experiment to evaluate the prediction performance.
Regarding the spatial regression problem, the true value is y = {y1, y2, · · · , yN} and the
predicted value is ŷ = {ŷ1, ŷ2, · · · , ŷN}. Hence, the above metrics can be calculated as:

MAE =
1
N

N

∑
i=1
|yi − ŷi|, (22)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2, (23)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 . (24)
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Both MAE and RMSE can reflect the error between the real and predicted values,
where MAE reflects the true error in the whole test set and RMSE is more affected by
outliers. The smaller the MAE and RMSE values are, the higher the prediction accuracy.
R2 reflects how well the model fits the true values. R2 indicates the explanatory ability of
different models, with a value range of [−∞, 1]. R2 = 0 suggests that the model provides
the same effect as does a model only calculating the average explanatory variable value as
the predicted value. R2 = 1 indicates that the model perfectly fits the true values, and each
predicted value is the same as the true value. The closer R2 is to 1, the better the model
fitting effect to the data. Its dimensions remain unchanged with changes in the datasets
and models and can be used to evaluate the performance of different models considering
various datasets.

3.2.2. 0–1 Type Fusion Process and Result Analysis

In contrast to the conventional LS-SVR model, the Geo LS-SVR model with 0–1 type
fusion (denoted as the 0–1 type Geo LS-SVR model) must integrate the spatial adjacency
relationships among the geospatial objects. To maintain invariance of the adjacency rela-
tionships when randomly dividing the training/test and sampling sets, spatial K-fold cross
validation [45] was adopted. K subsamples with an equal number of geospatial objects
were roughly divided from the dataset. K training and testing operations were carried
out. At each time point, one subsample was used for prediction, and the remaining K-1
subsamples were used for training. On this basis, the data points of training set which is
close to the test set are removed to ensure that the training dataset only contains data points
that are far away from the test dataset. Generally, K is set to 5 to obtain the proper ratio
of training to test samples. For example, five subsamples were divided from the election
dataset (Figure 5), and the division method for the other two datasets was similar.

Figure 5. Subsample distribution diagram of the election dataset.

In this experiment, the first-order queen adjacency matrix mentioned in Section 3.2.1
was selected as the spatial weight matrix fusion method, which is a 0–1 type fusion method.
To ensure fairness of the evaluation experiment, a Gaussian kernel was adopted as the
kernel function of the SVR model in the training process of these four models.

The prediction results for the Boston housing, real estate transactions and election
datasets are shown in Figures 6–8, respectively. To intuitively reveal the effects of these
models, the prediction results were arranged according to their true values in descending
order. Model evaluation index values for these three datasets were calculated (Table 2).
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Figure 6. Boston housing dataset prediction results obtained with the models fused with the 0–1 type spatial weight matrix:
(a) conventional LS-SVR model; (b) Geo LS-SVR model.

Figure 7. Real estate transactions dataset prediction results obtained with the models fused with the 0–1 type spatial weight
matrix: (a) conventional LS-SVR model; (b) Geo LS-SVR model.

Figure 8. Election dataset prediction results obtained with the models fused with the 0–1 type spatial weight matrix:
(a) conventional LS-SVR model; (b) Geo LS-SVR model.



ISPRS Int. J. Geo-Inf. 2021, 10, 714 13 of 19

Table 2. Evaluation index value comparison between the conventional LS-SVR and 0–1 type Geo LS-SVR models.

Evaluation Index Model Boston Housing
Dataset

Real Estate
Transactions Dataset Election Dataset

MAE
Conventional LS-SVR 3.2196 6.1166 0.0653

Geo LS-SVR 1.7617 5.7292 0.0576

RMSE
Conventional LS-SVR 4.9076 8.4198 0.0837

Geo LS-SVR 2.5676 7.9413 0.0735

R2 Conventional LS-SVR 0.7138 0.5220 0.3982
Geo LS-SVR 0.9216 0.5748 0.5383

The results of these three indicators reveal that the performance of the Geo LS-SVR
model is superior to that of the conventional LS-SVR model for all three datasets. Compar-
ing these three datasets, the performance of the Geo LS-SVR model on the Boston housing
and election datasets is greatly improved. The MAE index value is reduced by 45.28% and
55.44%, respectively, the RMSE index value is reduced by 47.68% and 56.75%, respectively,
and the R2 index value is increased by 29.11% and 35.11%, respectively. However, the
real estate transactions dataset is difficult to predict because the real estate transactional
data are not processed, and there is a large difference between the values of the variables.
Neither the conventional LS-SVR model nor the Geo LS-SVR model performs well. The
RMSE index value is approximately 8 (i.e., the average gap between the predicted and real
values of the housing price is approximately USD 8000), and the value is small for higher
prices but large for lower prices.

3.2.3. Numerical Distance Type Fusion Process and Result Analysis

The application of the numeric threshold distance adjacency matrix mentioned in Sec-
tion 3.2.2 as the numeric-type spatial weight matrix requires us to determine an appropriate
threshold distance to reflect the real changes in spatial phenomena before the experiments.
Incremental spatial autocorrelation analysis refers to the calculation of the global spatial
autocorrelation for a series of increasing distances and measurement of the intensity of
spatial clustering for each distance based on the z-score returned [46]. The z-score generally
peaks, which reflects those distances where the spatial processes promoting clustering are
the most pronounced. Therefore, the threshold distance should be set to the maximum
peak distance. Choosing the Boston housing dataset as an example, it can be found from
the incremental spatial autocorrelation line chart (Figure 9) that with increasing distance,
the z-score exhibits two peaks, and the maximum peak distance is 7827 m. Therefore, the
threshold distance used in the experiment on the Boston housing dataset is set to 7827 m.
The threshold distances for the other two datasets are determined in a similar way to the
above approach.

Figure 9. Incremental spatial autocorrelation line chart for the Boston housing dataset.
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To ensure the allocation rationality of the training and test sets, there are 405 units
in the training set and 101 units in the test set for the Boston housing dataset, 624 units
in the training set and 182 units in the test set for the real estate transactions dataset, and
2485 units in the training set and 622 units in the test set for the election dataset. All of
the training and test sets were randomly selected, and the arranged prediction results
obtained with the conventional LS-SVR model and the Geo LS-SVR model fused with the
numeric-type spatial weight matrix (denoted as the numeric-type Geo LS-SVR model) are
shown in Figures 10–12. Model evaluation index values of these models were calculated
for the above three datasets (Table 3).

Figure 10. Boston housing dataset prediction results obtained with the models fused with the numeric-type spatial weight
matrix: (a) conventional LS-SVR model; (b) Geo LS-SVR model.

Figure 11. Real estate transaction dataset prediction results obtained with the models fused with the numeric-type spatial
weight matrix: (a) conventional LS-SVR model; (b) Geo LS-SVR model.

Overall, the performance of the Geo LS-SVR model is superior to that of the conven-
tional LS-SVR model. The dot graph of the prediction results for these datasets shows
that the prediction points determined with the Geo LS-SVR model are more clustered
around the real value curve, which suggests that the fitness of the Geo LS-SVR model is
better than that of the other models. Similar to the results in Section 3.2.1, the Geo LS-SVR
model achieves a great improvement on the Boston housing and election datasets. The
RMSE index values of the conventional LS-SVR and Geo LS-SVR models are always higher
than the MAE index values, but the RMSE index values of the Geo LS-SVR model are
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closer to the MAE index values, indicating that the Geo LS-SVR model is more sensitive to
large errors.

Figure 12. Election dataset prediction results obtained with the models fused with the numeric-type spatial weight matrix:
(a) conventional LS-SVR model; (b) Geo LS-SVR model.

Table 3. Evaluation index value comparison between the conventional LS-SVR and numeric-type Geo LS-SVR models.

Evaluation Index Model Boston Housing Dataset Real Estate
Transactions Dataset Election Dataset

MAE
LS-SVR 2.0317 5.2165 0.0595

Geo LS-SVR 1.2250 5.2072 0.0587

RMSE
LS-SVR 2.8182 6.8265 0.0748

Geo LS-SVR 1.8205 6.8179 0.0735

R2 LS-SVR 0.8676 0.6091 0.5178
Geo LS-SVR 0.9448 0.6101 0.5351

3.2.4. Comparison to Traditional Models and Result Analysis

The Boston housing dataset has been extensively described from many statistical
perspectives [47,48]. To more accurately evaluate the prediction performance of the Geo
LS-SVR model, we compared the results obtained with the numeric-type Geo LS-SVR
model to those obtained with models widely applied in regression prediction problems on
the Boston dataset, as follows:

1. Linear regression: We calculated the correlation coefficients between 13 independent
variables and the dependent variable, chose three variables with absolute values
of the correlation coefficient with dependent variable medv greater than 0.5, i.e.,
RM, PTRATIO and LSTAT, and employed these three variables to perform linear
regression.

2. Ridge regression: Multivariate polynomial fitting with a degree of 3 was applied, and
ridge regression was adopted as the regression method.

3. Decision tree regression [49]: A tree structure was used for regression. The decision
process of the decision tree starts from the root node of the tree, the data were
compared to feature nodes, and the next comparison branch was selected according
to the comparison result until the leaf node providing the final decision result was
obtained. RMSE was chosen as the criterion. The maximum depth was set to 9.

4. K-nearest neighbor regression (KNN) [50]: A nonparametric model that only makes
decisions on the regression values of the test samples with the help of the target values
of K nearest training samples. We set the number of neighbors to 5 and the weight to
the inverse distance weight.
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5. SVR: In the conventional SVR model, a Gaussian kernel was selected as the kernel
function.

The prediction performance of each model is summarized in Table 4.

Table 4. Evaluation index value comparison between the numeric-type Geo LS-SVR model and
traditional models.

Model MAE RMSE R2

Linear regression 3.7668 5.4849 0.6550
Ridge regression 2.7778 4.3512 0.7829

Decision tree regression 1.2753 2.4832 0.9288
KNN regression 0.77034 2.3486 0.9367

SVR 2.4802 3.1604 0.8846
LS-SVR 2.0317 2.8182 0.8676

Geo LS-SVR 1.2250 1.8205 0.9448

The independent and dependent variables of the Boston housing dataset attain not
only linear relationships but also nonlinear relationships. Therefore, in terms of the linear
and ridge regression models, which can only capture linear relationships, the model
prediction performance is poor. In contrast, the MAE and RMSE index values of the
remaining five models are all lower, and the R2 index values are all above 0.8, indicating
a good prediction performance of these models. The MAE index value of the K-nearest
neighbor regression model is lower, but the RMSE index is higher, indicating that its overall
error is small, but the model is insensitive to certain large errors. Correspondingly, the
MAE index value of the Geo LS-SVR model is higher than that of the K-nearest neighbor
regression model, but the RMSE index value is the smallest and the R2 index value is the
highest among these models. This suggests that the Geo LS-SVR model can better fit the
dataset, and the proposed model performs better in dependent variable prediction.

4. Discussion

Comparing the R2 index values between the 0–1 type and numeric-type Geo LS-
SVR models, it is found that the numeric-type fusion method yields a good fitting effect.
This may occur because 0–1 type spatial weight matrix is binarized and only contains
the information of first order neighbors. However, the numeric-type Geo LS-SVR model
considers more surrounding geospatial objects at locations where the geospatial objects are
clustered. The weight of numeric-type spatial weight matrix will decrease with distance
increasing. It is consistent with Tobler’s First Law of Geography that closer objects are
more strongly related than are more distant ones.

Due to the complex data structure of spatial lattice data, there are nonlinear relation-
ships among variables. Models which can only capture linear relations have a poor fitting
effect on data with nonlinear relations. SVR, LS-SVR and Geo LS-SVR models use kernel
function to map input data to high-dimensional space and perform linear regression in
high-dimensional space which facilitates mathematical calculations. From the results in
Section 3.2.4, we can find that the ability of learning nonlinear relationships makes SVR,
LS-SVR and Geo LS-SVR models perform better on datasets with nonlinear relationships
among variables.

Combined with the experimental results in Sections 3.2.2 and 3.2.3, the Geo LS-SVR
model always achieves a better prediction result than does the conventional model regard-
less of the dataset or type of spatial weight matrix. The conventional LS-SVR model only
performs nonlinear relationship mapping of an object without considering other spatially
adjacent or nearby objects. In the comparison of nonlinear models, the Geo LS-SVR model
with spatial weight matrix is sensitive to some large errors and can better fit spatial datasets.
The KNN model uses neighbor samples for prediction, but the neighbor refers to objects
which have higher numerical similarity of independent variables rather than adjacent or
nearer in space. Spatial weight matrices represent the spatial autocorrelation between
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dependent variables of geospatial objects. The fusion with spatial weight matrices enables
the Geo LS-SVR model to predict based on the information of the geospatial object to be
predicted and its neighbor geospatial objects. The ability of geospatial data to describe
geospatial phenomena is also improved. We can infer that considering spatial autocorre-
lation of spatial lattice data when implementing the LS-SVR model is feasible and useful.
The Geo LS-SVR model can solve practical problems by comprehensively considering the
spatial and attribute characteristics of geospatial geographic objects. It is more suitable for
regression prediction of spatially dependent geospatial objects.

In future research, we may fuse the spatial weight matrix via other fusion methods
or modify the calculation form of the spatial weight matrix. In addition, since spatial
autocorrelation among geospatial objects can be reflected in the model, further research on
whether other spatial information, such as spatial heterogeneity, sequential relationships,
metric relationships and topological relationships, can be reflected in the model will
constitute a greater challenge.
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