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Abstract: The real-time kinematic positioning technique (RTK) and visual–inertial odometry (VIO)
are both promising positioning technologies. However, RTK degrades in GNSS-hostile areas, where
global navigation satellite system (GNSS) signals are reflected and blocked, while VIO is affected
by long-term drift. The integration of RTK and VIO can improve the accuracy and robustness of
positioning. In recent years, smartphones equipped with multiple sensors have become commodities
and can provide measurements for integrating RTK and VIO. This paper verifies the feasibility of
integrating RTK and VIO using smartphones, and we propose an improved algorithm to integrate
RTK and VIO with better performance. We began by developing an Android smartphone application
for data collection and then wrote a Python program to convert the data to a robot operating system
(ROS) bag. Next, we established two ROS nodes to calculate the RTK results and accomplish the
integration. Finally, we conducted experiments in urban areas to assess the integration of RTK and
VIO based on smartphones. The results demonstrate that the integration improves the accuracy and
robustness of positioning and that our improved algorithm reduces altitude deviation. Our work can
aid navigation and positioning research, which is the reason why we open source the majority of the
codes at our GitHub.

Keywords: smartphones; RTK; VIO; ROS

1. Introduction

Global navigation satellite systems (GNSSs) have advanced at a breakneck pace in
recent years. The expansion of constellations, as well as the addition of new signals and
the introduction of multiple positioning solutions, have contributed to the advancement
of precise navigation [1,2]. The real-time kinematic positioning technique (RTK) is repre-
sentative and attracts research. RTK is a differential positioning technique that utilizes at
least one stationary station to determine the location of movable receivers. The station-
ary station, also known as the reference station, is critical for providing a reference and
mitigating common errors between itself and the movable receiver, also known as the
rover or the user [3]. RTK simultaneously processes the pseudo-range and carrier phase
measurements with the ambiguity resolution (AR) technique to generate more accurate
positioning results [4]. According to certain studies, the dual-frequency RTK can accom-
plish quick AR for short baselines, resulting in real-time centimeter-level precision [5]. In
comparison, the single-frequency RTK performance is restricted but can be considerably
improved by utilizing satellites from various constellations. These constellations include
the global positioning system (GPS), the China-developed Beidou navigation satellite sys-
tem (BDS), the European Galileo system, and the Russian global navigation satellite system
(GLONASS) [6–8]. RTKLIB is a well known and representative open-source software for
calculating RTK positioning results [9].

Compared to geodetic-grade multifrequency GNSS receivers, consumer-grade re-
ceivers are more prevalent in everyday life because of their low cost and low-power
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consumption. Smartphones, which have become almost ubiquitous in modern society,
can be thought of as consumer-grade GNSS receivers. However, smartphone-grade an-
tennas might lose several or even dozens of decibels of sensitivity when compared to
professional GNSS antennas, causing smartphones to struggle to maintain a lock on GNSS
signals [10]. Additionally, GNSS signals are circularly polarized to suppress the effect of
Faraday rotation, while smartphone-grade antennas adopt linear polarization [11]. As a
result, the smartphone-grade antenna can only provide a poor carrier-to-noise ratio and
insufficient multipath suppression, limiting the performance of the smartphone’s built-in
GNSS receiver [12]. The advancement of the Android operating system and GNSS chipsets
promotes research into positioning, using smartphones. Before 2016, researchers could
only obtain the positioning results calculated by the inbuilt GNSS chipset. This situation
persisted until Google released Android N, which started providing the Android Raw
GNSS Measurements API. Since then, developers have gained access to the pseudo-range
and carrier phase measurements and have begun processing the measurements, using their
positioning algorithms [13]. Nonetheless, a technique called duty cycling prevents smart-
phones from tracking the carrier phase continuously. Duty-cycling periodically powers
on and off the GNSS chipset to extend the battery life [14]. Android P has a developer
option titled “Force full GNSS measurements” that disables duty cycling, paving the path
for precise positioning with the carrier phase [15]. Meanwhile, the Xiaomi MI 8 equipped
with BCM47755 was released. The Xiaomi MI 8 can provide dual-frequency GNSS mea-
surements and has become an ideal platform for research into smartphone-based precise
positioning. According to studies, the Xiaomi MI 8 is promising for offering accurate
positioning results in urban areas with RTK and precise point positioning (PPP) [16–18].

Users of smartphones are often pedestrians in urban areas. Buildings can block
and reflect GNSS signals, obstructing receivers’ ability to maintain signal tracking and
exacerbating the multipath effect. The carrier phase tracking loop is the weakest link of the
GNSS receiver, and it is easier that the carrier tracking loop loses the lock than the code
tracking loop [19,20]. The carrier phase measurements may occasionally be absent in urban
areas [21]. A pedestrian often keeps their smartphone near their body when they need
positioning. As a result, the user’s body becomes an unavoidable signal blocker. This fact
significantly constrains the performance of smartphone-based RTK. We should introduce
other sensors and positioning approaches to assist RTK in providing continuous positioning
results in urban areas. A common complementary solution is the inertial navigation system
(INS) based on an inertial measurement unit (IMU) [22]. An IMU consists of gyroscopes
and accelerometers. The measurements are subject to additive noise and a changing bias,
which results in a long-term drift in positioning [23]. Visual odometry (VO), a camera-based
visual approach, is also a supplementary positioning solution [24]. VO performance is
constrained by light circumstances, ambient textures, and device speed. In the case of
monocular VO, the system’s absolute scale is ambiguous [25]. Visual–inertial odometry
(VIO) is a technique that combines VO with INS to mitigate long-term drift and solve
scale ambiguity. Additionally, the combination increases the robustness [26]. VINS-mono,
ORB-SLAM3, and MSCKF are representative VIO algorithms [27–29]. Generally, these
algorithms are integrated with the robotic operating system (ROS) [30]. Nonetheless, VIO
systems still undergo long-term drift [31]. In addition, VIO generates a pose output that
includes the estimation of position and orientation in local coordinates, indicating that it
is a relative positioning technique. Its positioning results depend on the starting point.
As a result, VIO is unfriendly for reusing without a fixed global coordinate [32]. These
positioning techniques are summarized in Table 1. In Table 1, X means that the technique
has a corresponding feature, while ×means the opposite.

VIO can produce highly accurate relative positioning data in a short period of time. In
contrast, GNSS positioning techniques can deliver absolute positioning results. Combin-
ing VIO and GNSS can provide locally accurate and global drift-free positioning results.
In recent years, the integration of INS, VO, and GNSS has been a popular topic. ETH
Zurich designed MSF-EKF, a loosely coupled GNSS/INS/VO framework, based on an
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extended Kalman filter (EKF) [33]. Rui Sun et al. proposed a GNSS/INS/VO fusion
scheme, using two EKFs with a non-holonomic constraint (NHC) for real-time 3D vehicle
state estimation [34]. Tong Qin and colleagues published VINS-fusion, a loosely coupled
GNSS/VIO system based on optimization [35]. Tuan Li and his colleagues utilized MSCKF
to tightly fuse RTK/INS/VO to increase velocity and attitude accuracy [36]. Shaozu Cao’s
team offered GVINS, derived from VINS-mono. GVINS optimizes GNSS measurements,
including pseudo-range and Doppler measurements, along with visual and inertial mea-
surements [37]. These studies advance the field of navigation study. They focus on giving
precise positioning results, using bulky and complex specialized devices. Additionally,
researchers frequently need to assemble and synchronize sensors, as few commercial de-
vices simultaneously collect GNSS measurements, inertial measurements, and images. For
instance, VINS-fusion is built on a self-developed suite that contains stereo cameras and
a DJI A3 controller (http://www.dji.com/a3 (accessed on 14 October 2021)). The DJI A3
controller comprises an IMU and a GNSS receiver. The team proposing GVINS combines
a u-blox ZED-F9P receiver (https://www.u-blox.com/en/product/zed-f9p-module (ac-
cessed on 14 October 2021)) with a VI-Sensor [38]. The VI-Sensor synchronizes the camera
and IMU well, and the ZED-F9P delivers a pulse per second (PPS) signal to trigger the
VI-Sensor and align the time. Regrettably, the VI-Sensor is no longer commercially available
(https://github.com/ethz-asl/libvisensor/issues/11 (accessed on 14 October 2021)). Rui
Sun and Tuan Li both utilized three components to acquire GNSS measurements, IMU
measurements, and images. They used the PPS signal to trigger the camera and record the
GPS time of the exposure. These works are summarized in Table 2.

Table 1. The comparison of different positioning techniques.

Features
Techniques RTK INS VO VIO

Absolute positioning results X × × ×
Long-term drifts × X X X

Scale ambiguity × × X ×

Constraints Signal blockage IMU biases Light Ambient textures
Device’s speed

Light Ambient textures
IMU biases

Table 2. Works on the fusion of GNSS/IMU/VO.

Algorithms Characteristics Devices

VINS-fusion Loose couple of GNSS/VIO Stereo cameras+DJI A3 controller

MSF-EKF Loose couple of GNSS/VIO An Asctec Firefly micro aerial vehicle

R.S.’s algo NHC Novatel receiver+STIM300+ CCD camera

T.L.’s algo Tight couple of GNSS/VIO Trimble receiver+MEMS IMU+ CCD camera

GVINS Tight couple of GNSS/VIO Ublox receiver+VI-Sensor

In comparison to these sophisticated and professional devices, smartphones are ubiq-
uitous portable devices in modern society. Currently, smartphones are generally equipped
with a camera, an IMU, and a GNSS chipset, which provide a platform for data fusion.
Admittedly, these low-cost sensors have certain inherent flaws. For example, there are
temporal offsets between the camera and the IMU. Additionally, smartphones generally
adopt rolling shutter cameras that can generate motion blur [39]. The abovementioned
antenna’s low performance is also a significant issue. However, it is critical to investigate
the potential of smartphones’ positioning abilities [40,41]. Certain VIO algorithms, such as
VINS-mono, can estimate the temporal offset, and an appropriate integration can compen-
sate for the sensors’ shortcomings. In addition, smartphone users can easily align the GPS

http://www.dji.com/a3
https://www.u-blox.com/en/product/zed-f9p-module
https://github.com/ethz-asl/libvisensor/issues/11
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time with the local time of the IMU and images. Researchers can treat smartphones as an
expedient to study the integration of GNSS and VIO if they do not have the resources to
build up a specialized suite.

There are multiple applications of logging measurements from smartphone inbuilt
sensors. The GEO++ RINEX Logger is a representative application that can generate a file
of measurements of GPS, BDS, Galileo, and GLONASS in a receiver independent exchange
(RINEX) format [42]. RINEX is a widely used standard format in the fields of geodesy and
navigation. The GEO++ RINEX Logger generates a file that can be directly processed by
RTKLIB. Many studies on smartphone positioning are based on this application [43,44].
Regrettably, the GEO++ RINEX Logger can only provide GNSS measurements and does
not allow access to its source code. The MARSLogger is an open-source application for
recording IMU measurements and images [45]. However, the MARSLogger cannot offer
GNSS measurements. Our previous work open sourced a CIGRLogger to collect images,
IMU measurements, and GPS measurements. The GPS measurements are output in RINEX
format and can be directly processed by RTKLIB, similar to what the GEO++ RINEX Log-
ger does [46]. However, valid satellites in a single constellation are unable to meet the
positioning requirements in urban areas. In this work, we upgrade our CIGRLogger to
collect BDS measurements to introduce more valid satellites. CRGRLogger can also collect
magnetic measurements and barometric measurements. These Android applications are
summarized in Table 3. Table 3 illustrates the sensors from which the applications can col-
lect measurements. In Table 3, X means that the application can collect the corresponding
sensor’s measurements, while ×means the opposite.

Table 3. The comparison of GEO++ RINEX Logger, MARSLogger, and CIGRLogger.

Sensors
App. GEO++ Logger MARSLogger CIGRLogger

GNSS GPS/BDS/Galileo/GLONASS × GPS/BDS

Camera × X X

IMU × X X

Magnetometer × × X

Barometer × × X

Many academics focus on positioning, using smartphone built-in sensors. Researchers
from Nottingham Scientific Limited (NSL) assessed the smartphone-based multifrequency
RTK and PPP performance in urban environments. Their research demonstrates that
smartphone-based PPP and RTK can provide the location precision of 1–2 m [47]. Re-
searchers from Wuhan University (WHU) used magnetic measurements to assist the IMU
in smartphones. Additionally, they utilized pseudo-observations and strategies, such as
zero-velocity update technology (ZUPT) and zero angular rate update (ZARU) to effec-
tively suppress IMU drifts and, hence, offer robust, accurate positioning results [48,49].
A team from the Institute of Space Technology and Space Applications (IST) tested the
performance of the loosely coupled RTK/INS with a smartphone. The results indicate
that the introduction of IMU bridges the RTK gap and decreases RTK fluctuations [50].
Numerous researchers are studying smartphone-based VIO algorithms. Peiliang Li mod-
ified VINS-mono and ported his VINS estimator to the iPhone 7 [51]. Yuan Wang and
his team deployed VIO algorithms on an Android smartphone [40]. In recent years,
some researchers applied machine learning and deep learning techniques to the subject
of smartphone navigation. They collected training data and formed models to estimate a
smartphone’s trajectory, using IMU measurements. Hang Yan and his colleagues employed
a support vector machine (SVM) and a neural network in sequence to provide trustworthy
positioning results, using a smartphone’s IMU [52,53]. However, few studies have concen-
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trated on fusing RTK, IMU, and images with a smartphone to provide positioning results.
These works are summarized in Table 4.

Table 4. Works on smartphone-based positioning algorithms.

Team Sensors Techniques

NSL GNSS chipset PPP/RTK

WHU IMU ZUPT+ZARU

IST GNSS chipset+IMU Loose couple of RTK/INS

P. L. IMU+camera VINS estimator

Y. W. IMU+camera VIO

H. Y. IMU SVM/deep learning

The following are the contributions of this paper.
(1) We demonstrate the feasibility of integrating RTK and VIO, using smartphones.

Our previous work verifies the feasibility of continuous positioning based on RTK and
VIO, using smartphones. However, in our previous work, RTK and VIO do not run
simultaneously, but alternate to estimate a positioning solution. The position output from
RTK does not affect the output from VIO and vice versa [46]. In our previous work,
we combined RTK with VIO in a straightforward and unreliable way. In this paper, we
choose more reliable and robust strategies to integrate RTK and VIO. First, we upgrade
our CIGRLogger to collect BDS measurements to introduce more valid satellites. Then,
as many VIO algorithms are coupled with ROS, we design a Python script to convert the
images, IMU measurements, and GNSS measurements into a ROS bag. A ROS bag is a
file that stores messages for ROS. Each kind of message has a unique topic. ROS nodes
can subscribe to different topics to obtain the data they require. Following that, RTKLIB is
a sophisticated system that consists of many algorithms and functions. The algorithm is
implemented in ANSI C. We follow RTKLIB’s principle to implement the RTK function
in C++ and package these codes into a ROS node. This RTK node subscribes to the topics
in the ROS bag created by our Python script and publishes the RTK positioning results to
other nodes. This RTK node can be directly integrated into other ROS algorithms. Finally,
we adopt the integration strategy of VINS-fusion [35] and integrate our RTK node with
VINS-mono [27]. Another node based on optimization is introduced to accomplish the
integration. The details of the optimization are explained in Section 2.3. The experiments
demonstrate that the integration of both approaches combines RTK and VIO’s advantages
and can provide accurate continuous positioning results with a smartphone in urban areas.

(2) We provide valuable research tools. As shown in Table 2, many researchers work
on the GNSS/INS/VO fusion algorithm based on the bulky and complex specialized
devices. We open source our codes on GitHub to facilitate the researchers who lack the
resources to build a specialized suite for RTK/VIO integration research. The researchers
can collect measurements using an Android smartphone with CIGRLogger. They do not
need to implement RTK nodes themselves, which saves time and effort. The academics can
concentrate on integration algorithms without spending too much effort on data acquisition,
data transformation, and RTK algorithm implementation.

(3) We improve the integration strategy for smartphones. The positioning results
provided by RTK with a smartphone can fluctuate immensely. Due to the geometric
distribution of satellites, these fluctuations are more pronounced in vertical positioning.
We design a sliding window strategy and calculate the vertical positioning fluctuations in
the window. The result is treated as a criterion to adjust the weight for RTK in integration.
This improvement decreases the deviation in altitude positioning results when compared
to the VINS-fusion integration strategy.

As our work involves several existing algorithms, we use Figure 1 to depict the
relationship between the existing algorithms and our work.



ISPRS Int. J. Geo-Inf. 2021, 10, 699 6 of 31

Figure 1. The relationship between the existing algorithms and our work.

The remainder of the paper is structured as follows: Section 2 discusses the RTK
algorithm, the framework of VINS-mono, the integration strategy of VINS-fusion, the
improvement of integration, and some specifics regarding our tools and devices. Next,
Section 3 introduces the results of the experiments. Finally, Section 4 summarizes the
conclusions and future work.

2. Materials and Methods

This section introduces the principles of the existing techniques utilized by us and
our novel algorithm. The existing techniques include RTK in Section 2.1, VINS-mono
in Section 2.2, and VINS-fusion in Section 2.3. Our proposed algorithm is introduced in
Section 2.4. We introduce the details about our experiments in Section 2.5. A comparison
between this work and our previous work is presented in Section 2.6.

In this section, we use t to denote the time. We use ∆t to denote the time interval
between two adjacent sampling epochs. We use a notation that is followed by (t) to denote
a variable that changes over time.

2.1. Implementation of RTK

This section introduces the RTKLIB principle [9,54]. We implement our RTK node
in C++ following this principle. The current version of our RTK node has no algorithmic
innovations when compared to RTKLIB. We use “G” as a descriptive term for GPS and use
“B” as a descriptive term for BDS.

2.1.1. The Single Difference and the Double Difference

RTK is a differential positioning technique involving a single difference (SD) and a
double difference (DD). The SD and DD techniques can mitigate the influence of biases
because the measurements of the user and those of the reference station are correlated.
Figure 2a depicts the geometry of two satellites and two receivers. Figure 2b explains how
to calculate the SD and DD measurements [55].

In Figure 2a, o(t) with the specific superscript and subscript is the unit line-of-sight
(LOS) vector from a receiver to a satellite. In Figure 2, ρ(t) with the specific superscript
and the specific subscript denotes the pseudo-range between the corresponding receiver
and the corresponding satellite. The carrier phase measurements are denoted by φ(t)
with different superscripts and subscripts. The pseudo-range and the carrier phase are
formulated as shown in Equations (1) and (2):

ρ(t) = r(t) + τiono(t) + τtropo(t) + c(δrec(t)− δsat(t)) + ωρ(t), (1)
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φ(t) = λ−1[r(t)− τiono(t) + τtropo(t) + c(δrec(t)− δsat(t))] + N + ωφ(t). (2)

In Equations (1) and (2), r(t) denotes the geometric distance between the receiver
and the satellite in meters; λ and N represent the wavelength and the integer ambiguity,
respectively; ω(t) with different subscripts are the measurement noise and unmodeled
error in the pseudo-range and carrier phase, respectively; τiono(t) and τtropo(t) refer to
the ionospheric delay and the tropospheric delay, respectively; δrec(t) and δsat(t) denote
the receiver clock bias and the satellite clock bias, respectively; and c stands for the speed
of light. The carrier phase measurements are more precise than the pseudo-range mea-
surements. The phase tracking loop uses a numerically controlled oscillator (NCO) to
generate a local signal with the same frequency and phase as the received signal. The
loop utilizes a phase discriminator and a filter to compute the feedback to the NCO. The
discriminator cannot distinguish between one cycle and another and thus, converges to the
nearest cycle. The NCO can only match the phase of the local and received signals within
one cycle. As a result, the carrier phases are ambiguous by an unknown integer number
of wavelengths, which is denoted by N. RTK utilizes the SD and DD measurements to
eliminate the influences of the clock biases and the delays and employs the AR technique
to calculate the ambiguities for the carrier phases.

(a) (b)

Figure 2. SD measurements and DD measurements. (a) Two receivers track the signals of two
satellites. (b) Steps to calculate SD measurements and DD measurements.

In Figure 2b, the SD pseudo-range and the SD carrier phase are denoted by ∆ρ(t)
and ∆φ(t). SD measurements eliminate the influence introduced by the satellite clock
bias. When used in short-baseline RTK, the SD technique can eliminate most ionospheric
delays and tropospheric delays. ∇∆ρ(t) and ∇∆φ(t) refer to the DD pseudo-range and
the DD carrier phase, respectively. DD measurements have the advantage of removing the
influence of the receiver clock bias. In short-baseline RTK, the DD pseudo-range and DD
carrier phase are represented in meters as follows:

∇∆ρ(t) = ∇∆r(t) +∇∆ωρ(t), (3)

λ∇∆φ(t) = ∇∆r(t) +∇∆N(t) +∇∆ωφ(t), (4)

where ∇∆(·) denotes the DD operator. The state vector of the RTK Kalman filter is
composed by the integer ambiguities, and the measurement vector is composed by the
DD pseudo-ranges and DD carrier phases. Each GNSS system has its own time reference.
A time offset exists between GPS and BDS, and the clock biases of different systems are
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different. Admittedly, a GNSS system can broadcast the ephemeris that includes the
information of the satellite clock bias. However, the satellite clock bias calculated in this
way is not accurate enough. The SD and DD techniques are introduced to eliminate the
influence of the clock bias. If we choose only one reference satellite for GPS and BDS, we
should model the clock bias between two systems and estimate it, which can degrade
the positioning accuracy. In this paper, we only make DD between satellites of the same
systems to eliminate the clock biases more completely.

2.1.2. RTK’s Kalman Filter

RTKLIB is built on an EKF that consists of two steps: prediction and update. The EKF
provides floating ambiguity solutions. The lambda algorithm [56] is then used to search for
integer ambiguity solutions. This section discusses the EKF in detail for GPS/BDS single-
frequency RTK. The state vector χRTK(t), in general, contains the SD phase ambiguities
and the position. We can expand the state vector and use the velocity and acceleration
to smoothen the position fluctuations. If we extend the state vector and consider two
constellations, the state vector can be represented as Equation (5):

χRTK(t) = (du(t)T, vu(t)T, au(t)T, eG(t)
T, eB(t)

T)
T

. (5)

In Equation (5), du(t) refers to the user’s position; vu(t) refers to the user’s velocity;
au(t) refers to the user’s acceleration; eG(t) stands for the SD phase ambiguities of GPS
satellites, and eB(t) stands for the SD phase ambiguities of BDS satellites.

We define the measurement vector y(t) as Equation (6):

y(t) = (∇∆φG(t)
T,∇∆ρG(t)

T,∇∆φB(t)
T,∇∆ρB(t)

T)
T

. (6)

In Equation (6), ∇∆φG(t) and ∇∆φB(t) represent the DD carrier phase vectors of
GPS satellites and BDS satellites, respectively. ∇∆ρG(t) and ∇∆ρB(t) refer to the DD
pseudo-range vectors of GPS satellites and BDS satellites, respectively.

We use the variables mG and mB to represent the numbers of visible GPS satellites and
visible BDS satellites, respectively. mG and mB are not necessarily equal. We define the state
transition matrix as follows:

F(t) =


I3×3 I3×3 · ∆t I3×3 · (∆t)2

2 O3×mG
O3×mB

O3×3 I3×3 I3×3 · ∆t O3×mG
O3×mB

O3×3 O3×3 I3×3 O3×mG
O3×mB

OmG×3 OmG×3 OmG×3 ImG×mG
OmG×mB

OmB×3 OmB×3 OmB×3 OmB×mG
ImB×mB

. (7)

In Equation (7), I with different subscripts denotes identity matrices of different
dimensions; O with various subscripts denotes zero matrices of varying dimensions. F(t)
is derived from fundamental kinematics theory and the fact that the carrier phase ambiguity
is constant during uninterrupted tracking of a satellite signal. We use Q(t) to denote the
covariance matrix of the process noise as shown in Equations (8)–(10):

Q(t) =


O3×3 O3×3 O3×3 O3×mG

O3×mB
O3×3 Q1(t) O3×3 O3×mG

O3×mB
O3×3 O3×3 O3×3 O3×mG

O3×mB
OmG×3 OmG×3 OmG×3 OmG×mG

OmG×mB

OmB×3 OmB×3 OmB×3 OmB×mG
OmB×mB

, (8)

Q1(t) = R
ECEF

ENU
(t)Q2(t)R

ECEF

ENU
(t)T, (9)
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Q2(t) =

σ2
ve∆t 0 0
0 σ2

vn∆t 0
0 0 σ2

vu∆t

. (10)

In Equation (9), R
ECEF

ENU
(t) refers to the coordinates rotation matrix from the east-

north-up (ENU) coordinate to the Earth-centered and Earth-fixed (ECEF) coordinate. In
Equation (10), σve, σvn, and σvu are the standard deviations of east, north, and up compo-
nents of the user’s velocity.

We use E(t) with different superscripts to denote different satellites’ SD phase ambi-
guity state variable. The relationship between e(t) in the state vector in Equation (5) and
E(t) is shown in Equation (11):

eG(t)
T =

[
ESG1 (t), ESG2 (t), . . . E

SGk1 (t), . . . ESGmG (t)
]
,

eB(t)
T =

[
ESB1 (t), ESB2 (t), . . . E

SBk2 (t), . . . ESBmB (t)
]
.

(11)

In Equation (11), k1 and k2 refer to the indices of GPS satellites and BDS satellites,
respectively. SGk1

denotes the k1th GPS satellite, while SBk2
denotes the k2th BDS satellite.

We use∇∆r
SG1

,SGk1 (t) to denote the DD geometric range between the 1st GPS satellite

and the k1th GPS satellite. We use∇∆r
SB1

,SBk2 (t) to denote the DD geometric range between

the 1st BDS satellite and the k2th BDS satellite. ∇∆r
SG1

,SGk1 (t) and ∇∆r
SB1

,SBk2 (t) can be
calculated using the user’s position in the state vector in Equation (5) and the satellites’
position as shown in Equation (12):

∇∆r
SG1

,SGk1 (t) = |dSG1
(t)− du(t)| − |dSG1

(t)− dref| − (|dSGk1
(t)− du(t)| − |dSGk1

(t)− dref|),

∇∆r
SB1

,SBk2 (t) = |dSB1
(t)− du(t)| − |dSB1

(t)− dref| − (|dSBk2
(t)− du(t)| − |dSBk2

(t)− dref|).
(12)

In Equation (12), dSGk1
(t) denotes the position of the k1th GPS satellite, and dSBk2

(t)

refers to the position of the k2th BDS satellite. The position of a satellite is calculated using
the ephemeris broadcast by the satellite. dref is the position of the reference station.

We use h(χRTK(t)) to refer to the the measurement function for the update step. The
measurement function consists of four sub-functions as shown in Equation (13):

h(χRTK(t)) = (hΦG
(du(t), eG(t))

T, hρG
(du(t))T, hΦB

(du(t), eB(t))
T, hρB

(du(t))T)
T

, (13)

where:

hΦG
(du(t), eG(t)) =



∇∆rSG1
,SG2 (t) + λG(ESG1 (t)− ESG2 (t))

∇∆rSG1
,SG3 (t) + λG(ESG1 (t)− ESG3 (t))

...

∇∆r
SG1

,SGk1 (t) + λG(ESG1 (t)− E
SGk1 (t))

...
∇∆rSG1

,SGmG (t) + λG(ESG1 (t)− ESGmG (t))


,

hΦB
(du(t), eB(t)) =



∇∆rSB1
,SB2 (t) + λB(ESB1 (t)− ESB2 (t))

∇∆rSB1
,SB3 (t) + λB(ESB1 (t)− ESB3 (t))

...

∇∆r
SB1

,SBk2 (t) + λB(ESB1 (t)− E
SBk2 (t))

...
∇∆rSB1

,SBmB (t) + λB(ESB1 (t)− ESBmB (t))


,

(14)
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hρG
(du(t)) =



∇∆rSG1
,SG2 (t)

∇∆rSG1
,SG3 (t)

...

∇∆r
SG1

,SGk1 (t)
...

∇∆rSG1
,SGmG (t)


,

hρB
(du(t)) =



∇∆rSB1
,SB2 (t)

∇∆rSB1
,SB3 (t)

...

∇∆r
SB1

,SBk2 (t)
...

∇∆rSB1
,SBmB (t)


.

(15)

In Equation (14), λG and λB are the wavelengths of the GPS L1 signal and BDS B1I
signal, respectively.

We define DG and DB as the SD transition matrices for GPS and BDS as shown in
Equations (16) and (17):

DG =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1


(mG−1)×mG

, (16)

DB =


1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1


(mB−1)×mB

. (17)

We can define LG(t) and LB(t) as matrices comprised of LOS vectors for different
constellations as shown in Equations (18) and (19):

LG(t) =



oSG1
(t)T

oSG2
(t)T

...
oSGk1

(t)T

...
oSGmG

(t)T


mG×3

, (18)

LB(t) =



oSB1
(t)T

oSB2
(t)T

...
oSBk2

(t)T

...
oSBmB

(t)T


mB×3

. (19)



ISPRS Int. J. Geo-Inf. 2021, 10, 699 11 of 31

Finally, we can define the observation matrix H(t) as:

H(t) =


-DG LG(t) O(mG−1)×6 λG · DG O(mG−1)×mB
-DG LG(t) O(mG−1)×6 O(mG−1)×mG

O(mG−1)×mB
-DB LB(t) O(mB−1)×6 O(mB−1)×mG

λB · DB

-DB LB(t) O(mB−1)×6 O(mB−1)×mG
O(mB−1)×mB

. (20)

We use the C to denote the covariance matrix of the observation noise as follows:

C =


DG C

φ,G DG
T O(mG−1)×(mG−1) O(mG−1)×(mB−1) O(mG−1)×(mB−1)

O(mG−1)×(mG−1) DG C
ρ,G DG

T O(mG−1)×(mB−1) O(mG−1)×(mB−1)

O(mB−1)×(mG−1) O(mB−1)×(mG−1) DB C
φ,B DB

T O(mB−1)×(mB−1)

O(mB−1)×(mG−1) O(mB−1)×(mG−1) O(mB−1)×(mB−1) DB C
ρ,B DB

T

, (21)

C
φ,G = diag(2σ

SG1
φ

2
, 2σ

SG2
φ

2
, ...2σ

SGk1
φ

2

, ...2σ
SGmG
φ

2
),

C
ρ,G = diag(2σ

SG1
ρ

2
, 2σ

SG2
ρ

2
, ...2σ

SGk1
ρ

2

, ...2σ
SGmG
ρ

2
),

C
φ,B = diag(2σ

SB1
φ

2
, 2σ

SB2
φ

2
, ...2σ

SBk2
φ

2

, ...2σ
SBmB
φ

2
),

C
ρ,B = diag(2σ

SB1
ρ

2
, 2σ

SB2
ρ

2
, ...2σ

SBk2
ρ

2

, ...2σ
SBmB
ρ

2
).

(22)

In Equation (22), σφ and σρ denote the standard deviation of the phase measurement
error and the pseudo-range measurement error, respectively.

2.2. The Structure of VINS-Mono

This section summarizes the structure of VINS-mono that integrates recent study
achievements in the fields of VIO and simultaneous localization and mapping (SLAM). We
now give the frame definitions that we use throughout the remainder of the paper. (·)w

denotes the world frame, which corresponds to the pose after initialization. (·)b denotes
the body frame, which is the same as the IMU frame. (·)cam refers to the camera frame.
Figure 3 illustrates the VINS-mono structure [27].

VINS-mono processes measurements from an IMU and a monocular camera. VINS-
mono begins with a measurement preprocessing module that preintegrates IMU mea-
surements and extracts and tracks visual features. The system is subsequently initialized,
using preprocessed measurements. The initialization module aligns IMU pre-integrals with
feature observations to provide initial values of attitude, velocity, IMU bias, and scale for
the system. These initial values enter the nonlinear optimization-based VIO that follows.
This tightly coupled VIO makes use of a sliding window to reduce computational resources.
VINS-mono defines the state vector as follows:

χV−mono(t) =
[
x1(t)T, . . . xi(t)T, . . . xn1(t)

T, pb
cam, qb

cam, s1(t), . . . sj(t), . . . sn2(t)
]T

, (23)

xi(t) =
[

pw
b,i(t)

T, vw
b,i(t)

T, qw
b,i(t)

T, εacc(t)T, εgyro(t)T
]T

, i = 1, . . . , n1. (24)

In Equations (23) and (24), pb
cam and qb

cam refer to the rotation and translation from
the camera frame to the body frame. We use i and j to denote the keyframe index and the
feature index, respectively. xi(t) in Equations (23) and (24) stands for the IMU state vector
when the ith frame is captured. xi(t) includes the position, velocity, orientation of the IMU
in the world frame, and IMU biases in the body frame, as Equation (24) shows. sj(t) in
Equation (23) denotes the inverse distance of the jth feature from the first observation. The
variables n1 and n2 in Equations (23) and (24) denote the number of keyframes and features
in the sliding window, respectively.
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Figure 3. The framework of VINS-mono.

If a frame is treated as a keyframe, the relocalization module will perform loop
detection, using the frame’s features. The relocalization module compares this keyframe to
all other keyframes in the database to identify a candidate for loop closure. The information
associated with this keyframe is imported into the database. Finally, the pose graph
optimization module verifies the relocalization results and establishes the feature-level
connections between loop closure candidates and the current keyframe. The VIO module
mentioned above uses these feature correspondences to eliminate drifts. Relocalization can
enhance VIO performance if a user frequently returns to a location he previously passed
through. However, an outdoor user can move around a large region without returning to
the position he walked through. We can use RTK and other GNSS techniques instead of
relocalization to eliminate drift for outdoor users.

2.3. The Integration Strategy of VINS-Fusion

VINS-fusion loosely couples VIO and GNSS, as it transforms the results of VIO and
of GNSS to unified factors to construct the optimization problem. The integration of
GNSS and VIO is based on a global pose graph. Figure 4 illustrates this global pose graph
structure. This pose graph is a nonlinear least-squares problem [32]. In this section, we use
(·)g to denote the global frame.

In Figure 4, a state node represents a pose estimation in the global frame. VINS-fusion
involves a VIO module and the global optimization. VINS-fusion’s VIO module defines the
state vector as Equation (25) shows. The same symbol in Equations (23) and (25) denotes
the same variable. VINS-fusion’s VIO does not estimate the extrinsic parameters. VINS-
fusion uses the VIO results as measurements to optimize the pose estimation in the global
frame. The pose includes the position pg

b(t) and the orientation qg
b(t):

χVIO(t) =
[
x1(t)T, . . . xi(t)T, . . . xn1(t)

T, s1(t), . . . sj(t), . . . sn2(t)
]T. (25)
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Figure 4. The global pose structure of VINS-fusion.

In Figure 4, a factor is a constraint that is derived from one kind of measurement.
The blue edge between two neighboring nodes represents a VIO factor and reflects a
VIO-provided local constraint on two consecutive states. The purple edge represents a
GNSS factor and reflects a global constraint on the position state of every node. GNSS
outputs low-frequency positioning results, while VIO generates high-rate local poses. VINS-
fusion runs global optimization at the same rate as the GNSS updates. After each global
optimization, VINS-fusion updates the transformation matrix that reflects the rotation and
translation from the local frame to the global frame. The transformation matrix is presented
in Equation (26). VINS-fusion utilizes the VIO factor and the transformation matrix to
constrain the change between neighboring pose estimations in the global frame and utilizes
the GNSS factor to constrain the global position estimation.

Tg
w(t) =

[
Rg

w(t) lg
w(t)

O1×3 1

]
, Rg

w(t) ∈ SO(3), lg
w(t) ∈ R3. (26)

VINS-fusion calculates the VIO factor, also known as the local factor, as Equation (27)
shows:

zVIO
i−1,i(t)− f VIO(pg

b,i−1(t), qg
b,i−1(t), pg

b,i(t), qg
b,i(t))

=

[
qw

b,i−1(t)
−1(pw

b,i(t)− pw
b,i−1(t))

qw
b,i−1(t)

−1qw
b,i(t)

]
-©

[
qg

b,i−1(t)
−1(pg

b,i(t)− pg
b,i−1(t))

qg
b,i−1(t)

−1qg
b,i(t)

]
.

(27)

In Equation (27), zVIO
i−1,i(t) refers to the VIO results. The VIO factor uses these results

as measurements to constrain the pose in the global frame; pg
b,i(t) and qg

b,i(t) denote the
pose in the global frame when the ith keyframe is captured. -© denotes the quaternions’
minus operation. As noted previously, VIO can provide accurate positioning results in a
local region. The local factor specifies that the change between two adjacent state nodes
should correspond with that provided by VIO. The poses in VIO’s world frame and the
global frame can be transformed as Equation (28) shows:

qg
b,i(t) = qg

w(t)qw
b,i(t)(q

g
w(t))−1,

pg
b,i(t) = Rg

w(t)pw
b,i(t) + lg

w(t).
(28)

In Equation (28), qg
w(t) is the quaternion that can be calculated with the elements of

Rg
w(t).

VINS-fusion calculates the GNSS factor, also known as the global factor, as Equa-
tion (29) shows:

zGNSS
i (t)− f GNSS(pg

b,i(t)) = pGNSS
i (t)− pg

b,i(t). (29)
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The GNSS positioning results directly constrain the position states at each node. After
each global optimization, the transformation matrix is updated as Equation (30) shows:

Tg
w(t) = Tg

b (t)(T
w
b (t))−1. (30)

In Equation (30), Tg
b (t) is derived from pg

b(t) and qg
b(t); Tw

b (t) is derived from pw
b (t)

and qw
b (t).

The researchers who designed VINS-fusion use the GNSS covariance to determine the
weight for GNSS in the optimization phase. They claim that the covariance is determined
by the number of satellites when the measurement is received [32]. The more satellites the
receiver receives measurements from, the smaller the covariance is. However, the number
of satellites cannot accurately reflect RTK performance because a visible satellite may not
provide a valid carrier phase. Additionally, the accuracy of GNSS positioning is highly
dependent on the geometric distribution of satellites. The RTK node is based on an EKF,
which can estimate the state variable covariances. In addition, RTK’s state vector comprises
the position. Therefore, we can use the inverse of the position covariances estimated by the
RTK algorithm as the weight for RTK.

2.4. The Improved Integration Strategy for Smartphones

In general, the smartphone users’ altitude does not change rapidly over a short period
of time. However, the deviation in GNSS vertical positioning results is more evident than
that in horizontal positioning because of the geometric distribution of satellites. The RTK
algorithm employs an EKF to estimate the position covariances to assess the accuracy of the
position. If the covariances are estimated accurately enough, they can roundly reflect the
positioning accuracy, and their inverse can be set as the weight for RTK in the optimization
phase. However, the estimation of covariances can be inaccurate. In a GNSS-unfriendly
area, the multipath effects can introduce random errors into the measurements. It is difficult
to model these errors with a perfect measurement covariance matrix, which can reduce
the estimation accuracy. In this case, the inverse of the position covariances is not an
ideal weight for RTK. Based on these facts, we design an improved integration strategy
adjusting the weight dynamically to reduce vertical positioning deviation. First, we collect
sets of GNSS measurements with the Xiaomi MI 8 in an open sky environment devoid
of tall buildings. We use the RTK algorithm to process these measurements and obtain
the Root-Mean-Square Error (RMSE) of the positioning results. We use µ0 to denote the
RMSE in the open sky environment. Then, we set a threshold based on µ0. Next, we use
a sliding window containing a fixed number of RTK positioning results. Once the RTK
algorithm generates a new positioning result, the sliding window moves. We calculate
the RMSE of the positioning results in the sliding window and designate the RMSE as an
indicator of positioning result fluctuations. We use µ(t) to denote the RMSE in the sliding
window. Finally, we compare the RMSE with the above threshold. If µ(t) is smaller than
the threshold, we directly use the inverse of the position covariance as the RTK weight.
If µ(t) exceeds the threshold, we dynamically adjust the RTK weight in the optimization
phase. This process is shown in Equation (31), where γ(t) denotes the position covariance
estimated by RTK; β(t) denotes the RTK weight in the optimization phase:

β(t) =


1

γ(t) , µ(t)
µ0

<= 1.5
1

γ(t) ·
1

e
µ(t)
µ0

, 1.5 < µ(t)
µ0

<= 5

1
γ(t) ·

1
150 , µ(t)

µ0
> 5

. (31)

The low RMSE indicates a period of stable positioning results, and the integration
adopts a large weight for RTK. Once the RMSE in a sliding window surpasses the thresh-
old, the integration reduces the weight for RTK and becomes more reliant on the VIO
positioning results. Figure 5 illustrates this process. The sliding window remains stationary
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if there are no new RTK results. In this case, we do not calculate the RMSE of the position-
ing results in the window, and the integration strategy is completely reliant on the VIO
positioning results.

Figure 5. The illustration of the improved integration strategy.

The improved integration strategy aims to dynamically adjust the weight for RTK to
reduce the influence of RTK positioning errors. The improved strategy does not change
VINS-fusion’s optimization principle. The improved strategy still updates the transfor-
mation matrix and utilizes the transformation matrix to transfer the VIO results from the
local frame to the global frame. The details described in Section 2.3 also fit in our improved
integration strategy.

2.5. Field Testing

This section introduces some details about our experiments.

2.5.1. Data Collection and Processing

The measurements are collected with our CIGRLogger. We upgrade our CIGRLogger
to collect the BDS measurements, magnetometer measurements, and barometer measure-
ments. The CIGRLogger linearly interpolates magnetometer measurements at the epoch of
the gyroscope readings. We designed a Python script to convert measurements collected
by our CIGRLogger to a ROS bag so that ROS-integrated algorithms can read and process
these measurements directly. This work does not process all visible satellite measurements.
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Each satellite whose elevation is lower than 15◦ will be discarded, as low-elevation satel-
lites experience large atmospheric delays and multipath errors. In addition, satellites that
cannot simultaneously provide a pseudo-range and a carrier phase will be disregarded,
as RTK makes use of both pseudo-ranges and carrier phases. This work relies entirely on
GNSS measurements acquired by the Xiaomi MI 8 to run the RTK algorithm and estimate
the position and the position covariance. We do not use any additional data offered by
Android APIs.

We follow the principle of RTKLIB and implement the RTK algorithm in C++. We
also package these codes into a ROS node. This RTK node subscribes to the topics in
the ROS bag mentioned above and publishes RTK positioning results to the other nodes.
Algorithms integrated with ROS can directly fuse themselves with our RTK node. The
VINS-fusion publicly available algorithm focused more on the use of stereo VIO. However,
most smartphones can only provide images with a monocular camera. Therefore, we
introduce our RTK node and an integrating node into the framework of VINS-mono. The
integrating node that integrates RTK and VIO adheres to VINS-fusion’s integration strategy.
After that, we improve the integrating node with a sliding window. Finally, we compare
the performances of different integration strategies. Figure 6 shows the CIGRLogger and
the flow chart of the software design.

Figure 6. The CIGRLogger and the flow chart of the software design.

2.5.2. Description of Devices and Scenarios

We choose two u-blox NEO-M8T receivers to collect GNSS measurements (https:
//www.u-blox.com/zh/product/neolea-m8t-series (accessed on 14 October 2021)). The
GNSS measurements are processed with the RTK algorithm to generate the ground truth.
One NEO-M8T is connected to a tactical antenna on the roof of our laboratory, while the
other one is connected to a mini-survey antenna AT340 that moves with the researcher
(http://www.comnavtech.com/AT340.html (accessed on 14 October 2021)). The RTK
algorithm is used to generate a reference trajectory, using the GNSS measurements collected
by NEO-M8Ts. We use the Xiaomi MI 8 to capture images, GNSS data, and IMU data.
A researcher holds a Xiaomi MI 8 in the hand with an AT340 over his head, as Figure 7a
illustrates. We premeasure the height difference between the Xiaomi Mi 8 and the AT340
and subtract it to evaluate the accuracy of the RTK and VIO integration. We perform
walking tests along the track of Peking University’s playground. We set µ0 as 1.2 for this
scenario. The south of the playground is a GNSS-hostile area surrounded by several tall
buildings. Figure 7b depicts the scenario. Figure 8 shows the position of the Xiaomi Mi8’s
phase center [57]. Additionally, we use Kalibr to calculate the extrinsic matrix that reflects
the rotation and translation from the IMU to the camera [58].

https://www.u-blox.com/zh/product/neolea-m8t-series
https://www.u-blox.com/zh/product/neolea-m8t-series
http://www.comnavtech.com/AT340.html
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(a) (b)

Figure 7. Devices and environments. (a) Devices. (b) Buildings to the south of the playground.

Figure 8. The position of the Xiaomi MI8’s phase center.

2.6. Differences between This Work and Our Previous Work

We proposed a continuous positioning algorithm based on RTK and visual–inertial
SLAM (VI-SLAM) in our previous work [46]. The location part of VI-SLAM (VIO) is
employed in [46] to assist RTK in urban areas. While both our previous and current
studies involve RTK and VIO, the strategies for combining them are different. This section
discusses how this work differs from our previous work.

The strategy employed in [46] is unreliable and straightforward. RTK and VIO work
at distinct times, and they will not work simultaneously. VIO does not work when RTK can
provide positioning results. VIO starts to provide positioning results when an RTK outage
happens. The RTK positioning results and VIO positioning results do not affect each other.
The strategy is fundamentally flawed in three ways. First, as noted previously in this study,
VIO can only provide positioning results in a local frame. The starting point determines
this local frame. It is difficult to reliably convert VIO positioning results to the global frame
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during the RTK outage. Second, as RTK and VIO run separately in different periods, they
cannot compensate for each other’s deficiencies. VIO is powerless to smoothen the RTK
result deviations. RTK cannot help reduce the influence of VIO drift. Finally, the strategy
of not letting RTK and VIO simultaneously work is insufficient to verify the potential of a
smartphone’s positioning abilities.

We develop this work to address the aforementioned concerns. We employ VINS-
fusion’s strategy and our improved strategy to integrate RTK and VIO. RTK and VIO
operate simultaneously, and their outputs are fused to provide more robust and accurate
positioning results. A transformation matrix is estimated and updated to ensure a reliable
transformation of VIO positioning results into the global frame. This work can verify
the potential of a smartphone’s positioning abilities because we fuse GNSS/IMU/visual
measurements that are collected simultaneously. The differences between the current
strategy and the previous strategy are illustrated in Figure 9.

Figure 9. Differences between the current strategy and the previous strategy.

In addition, measurements were post-processed in our previous work. Our previous
work was based on two open-source software programs: RTKLIB and VINS-mono. RTKLIB
implements the RTK algorithm in ANSI C. Many VIO algorithms are implemented in
C++ and are coupled with ROS. In this work, we implement our RTK ROS node and
integration node following the principles of RTKLIB and VINS-fusion. The current version
of our RTK node has no algorithmic innovations when compared to RTKLIB. However, it
can be flexibly embedded into a variety of ROS-based algorithms. The researchers who
study the integration of RTK and VIO do not need to implement RTK nodes themselves,
which saves time and effort. We open source our software to facilitate the work of other
researchers. Our work provides valuable tools for the academics who lack the resources to
build a specialized suite for RTK/VIO integration research. The academics can concentrate
on integration algorithms without spending too much effort on data acquisition, data
transformation, and RTK algorithm implementation.



ISPRS Int. J. Geo-Inf. 2021, 10, 699 19 of 31

3. Results
3.1. The Validity of GNSS Measurements Collected by the Smartphone

This section presents the visibility of GNSS measurements in a walking test.
These measurements are collected with a Xiaomi MI 8. The CIGRLogger invokes
getAccumulatedDeltaRangeState, the Android API, to obtain the state of a carrier phase (https://
developer.android.com/reference/android/location/GnssMeasurement#getAccumulated
DeltaRangeState() (accessed on 14 October 2021)). The CIGRLogger discards the carrier
phase measurements with invalid states. As discussed previously, the smartphone’s an-
tenna has a low-level performance, and the multipath can influence the phase tracking
loop. Sometimes, a visible satellite cannot provide both a valid pseudo-range and a valid
carrier phase. Figure 10a,b shows that satellites with a valid carrier phase are usually less
than satellites with a valid pseudo-range. Figure 11a,b shows that satellites with valid
phases can occasionally be less than four, while visible satellites are more than four at the
same moment. RTK cannot provide positioning results when satellites providing valid
carrier phases are less than four. VIO can help bridge this outage.

(a) (b)

Figure 10. The visible satellites with a valid pseudo-range and the visible satellites with a valid
carrier phase. (a) The visible satellites with a valid pseudo-range. (b) The visible satellites with a
valid carrier phase.

https://
developer.android.com/reference/android/location/GnssMeasurement#getAccumulated
DeltaRangeState()
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(a) (b)

Figure 11. The number of the visible satellites with a valid pseudo-range and the number of the
visible satellites with a valid carrier phase at different moments. (a) The number of the visible
satellites with a valid pseudo-range at different moments. (b) The number of the visible satellites
with a valid carrier phase at different moments.

3.2. The Advantage of the Introduction of BDS Satellites

As we modify the CIGRLogger to collect BDS measurements using a smartphone, this
section discusses the benefits of the introduction of BDS satellites. We collect GPS/BDS
measurements with the Xiaomi MI 8, and we compare GPS RTK and GPS/BDS RTK.
Figure 12 illustrates the results.

(a) (b) (c)

Figure 12. The performance comparison of GPS RTK, GPS/BDS RTK, and the reference. (a) Hor-
izontal positioning results of GPS RTK. (b) Horizontal positioning results of GPS/BDS RTK. (c)
The reference.

Figure 12 shows that both GPS RTK and GPS/BDS RTK suffer an outage in the south
of the playground. The outage is caused by signal blockage caused by the tall buildings
around the playground. This fact is consistent with the satellites’ visibility in Figure 10 and
the number of satellites depicted in Figure 11. However, the introduction of BDS shrinks
the outage and improves the positioning continuity. VIO can assist in bridging the outage,
and the following analyses are based on GPS/BDS RTK.

3.3. The Performance of a Standalone VIO

As previously stated, VIO is a relative positioning technique that is dependent on the
starting point. This section presents the performance of VIO as a standalone unit. VIO
by itself can provide results that indicate the device’s translation and rotation relative to
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the starting pose. VIO by itself is unable to provide results for absolute positioning in a
fixed global coordinate because it cannot provide the location and orientation in global
frame of the starting pose. VIO by itself cannot provide the device’s absolute attitude. VIO
algorithms often establish the world frame as a reference and calculate the device’s pose in
the world frame. The term “world frame” does not refer to a fixed global coordinate. Rather,
the world frame corresponds to the device’s pose after initialization. As a result, VIO by
itself can only provide positioning results relative to the world frame, and presenting the
results in a fixed global coordinate, such as the ENU coordinate, directly is nonsensical.
Figure 13 shows the comparison of results generated by VIO alone and those given by RTK
based on two NEO-M8Ts in a test. The results are presented in the ENU coordinate, with the
base station’s position as the origin. We directly present VIO’s horizontal positioning results
in the ENU coordinate in Figure 13a only to provide an intuitive depiction. Figure 13a
shows that the standalone VIO trajectory has a similar shape to the ground truth. However,
the moving direction of the trajectories differs. This difference is caused by the choice of
the world frame. Then, we use two lines to join the starting point and the midpoint of
the two trajectories. We calculate the angle between the two lines and rotate the trajectory
of VIO by that angle to illustrate the standalone VIO’s performance more intuitively in
Figure 13b. Figure 13b indicates that a drift exists in the positioning results given by the
standalone VIO. The drift distorts the trajectory and results in an obvious gap between the
positioning results at the start and the end. The gap indicates that an evident difference
exists between the first and final position results of the standalone VIO trajectories. We
return to the starting point in the tests, so the difference means positioning errors. We
collect 20 sets of data and calculate the average value of the difference. Table 5 summarizes
the results.

(a) (b)

Figure 13. The performance of the standalone visual–inertial odometry (VIO). (a) The trajectory
given by the standalone VIO. (b) The rotation of VIO’s trajectory.

Table 5. The average difference between the first and final position of the VIO and RTK trajectories.

Techniques The Average Value (m)

VIO 13.57

Reference 0.08

3.4. Performances of the RTK/VIO Integration

Figure 14 presents the position results from a walking test. The Xiaomi MI 8’s RTK
positioning results fluctuate immensely, while the user is in the south of the playground
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due to the blockage and the multipath. The signal blockage can result in a poor geometric
distribution of satellites, leading to significant position deviation. The multipath effect has
a greater effect on the pseudo-range quality than on the carrier phase quality. The multipath
effect dramatically affects the performance of RTK because it utilizes both pseudo-ranges
and carrier phases. In Figure 14, the blue line represents the reference positioning results
estimated by the NEO-M8Ts. The RTK results provided by NEO-M8Ts are accurate and
continuous, as the movable NEO-M8T is connected to an anti-multipath antenna. The
assistance of VIO alleviates the fluctuations, and the integration of RTK and VIO provides
more accurate positioning results. As Figure 14 cannot depict the RTK outage, we use
Figures 15 and 16 to illustrate that an outage exists in the RTK positioning results and the
integration can mitigate the outage. The positioning results in the south of the playground
in Figure 15a are sparser when compared to those in Figure 15b,c. The tall buildings
around the playground and the user’s body can block the GNSS signal and exacerbate the
multipath effect. Meanwhile, the Xiaomi MI 8 is equipped with a poor antenna, which
can only provide a poor carrier-to-noise ratio and insufficient multipath suppression. As
a result, the GNSS receiver in the Xiaomi MI 8 cannot track enough satellites that can
provide pseudo-range and carrier phase simultaneously as shown in Figures 10 and 11. As
a result, the Xiaomi MI 8 is occasionally unable to deliver valid RTK positioning results
in the south of the playground, which means an RTK outage happens. The reference
trajectory in Figure 15c contains positioning results at every epoch because the professional
receivers and anti-multipath antennas can provide enough measurements for RTK at every
epoch. The trajectory in Figure 15b shows that the integration of RTK and VIO based on
the Xiaomi MI 8 can also provide positioning results at every epoch. When RTK based on
the Xiaomi MI 8 cannot provide positioning results, we use the transformation matrix to
transfer the VIO results from the local frame to the global frame so that we can bridge the
RTK outage, as described in Section 2.3. We use Figure 16 to depict the RTK outage and the
compensation clearer. In Figure 16, a cycle with a specific color means the specific algorithm
can provide a valid positioning result at the corresponding epoch. The positioning results
given by RTK based on the Xiaomi MI 8 are intermittent in the red box, which means an
RTK outage happens. On the contrary, the positioning results given by the integration
in the red box are continuous. Figure 16 shows that the Xiaomi MI 8 is occasionally
unable to deliver valid RTK positioning results, but with the assistance of VIO, the gap
is compensated. We collect 20 sets of data to quantitatively compare the performance of
RTK and that of RTK/VIO integration. In a walking test, we count the total number of
epochs between algorithm initialization and termination. Then, we count the number of
epochs for which the algorithm can provide positioning results. The ratio of the latter to
the former demonstrates the continuity of the algorithm. Additionally, we calculate the
difference between the position result given by the NEO-M8T and the corresponding one
given by the Xiaomi MI 8 at every epoch. Then, we sum up these differences to calculate
the average deviation of positioning results in a walking test. Table 6 presents the average
deviation of positioning results and the average percentage of valid positioning results of
20 tests.
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(a) (b)

Figure 14. The performance of the integration of real-time kinematic (RTK) technique and VIO. (a)
Horizontal positioning results. (b) Vertical positioning results.

(a) (b) (c)

Figure 15. The performance comparison of RTK, RTK/VIO, and the reference. (a) Valid positioning
results of RTK. (b) Valid positioning results of RTK/VIO. (c) The reference.

Figure 16. Valid positioning results.
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Table 6. The deviation and the percentage of valid positioning results.

Techniques Average Deviation (m) Average Percentage

RTK 3.23 92%

RTK+VIO 2.80 100%

3.5. The Performance of the Improved Integration

As illustrated in Figure 14b, the vertical positioning results of RTK+VIO still suffer
a huge fluctuation. Although the fluctuation is reduced when compared to that given
by RTK alone, the deviation can be up to 10 m. The position covariance given by RTK
is an estimation. The covariance cannot roundly reflect vertical positioning accuracy at
approximately 00:43:30 (Universal Coordinated Time). As a result, the weight for RTK
in the integration is too large, influencing the integration’s accuracy. We propose an
improved integration strategy to improve this situation. Our strategy focuses on the
vertical positioning results. We design a sliding window and calculate the fluctuations in
the window to set the weight for RTK. We only use this sliding window to calibrate the
vertical positioning results because, as Figure 14a shows, RTK+VIO can provide satisfactory
horizontal positioning results. Figure 17a,b presents the horizontal positioning results of
the improved strategy in a walking test. These figures and their local views show that the
horizontal positioning results given by the improved strategy are close to those provided
by VINS-fusion’s strategy. The fusion strategy calculates and optimizes the residuals of
position in three dimensions separately. Hence, the sliding window and the calibration on
vertical positioning have a small influence on the horizontal positioning results. Figure 18
presents the vertical positioning results of our strategy in the same test. Our improved
strategy smoothens the fluctuations in the vertical positioning results. We collect 20 sets
of data and calculate the average deviation of the positioning results. Table 7 shows
the statistics. Figure 18 and Table 7 show that our improved integration can reduce the
deviation in the vertical positioning results when compared to the VINS-fusion strategy.
Figure 17 illustrates the horizontal positioning results of the VINS-fusion’s strategy and
the improved strategy. As the positioning results of different strategies can be close to
each other, we present the absolute values of the differences between the reference and
the integration results of different strategies in Figure 19. Figures 17 and 19 and Table 7
demonstrate that the improvement in accuracy in vertical positioning do not degrade the
horizontal positioning performance.

(a) (b)

Figure 17. Horizontal positioning results. (a) The positioning results in east. (b) The positioning
results in north.
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Figure 18. Vertical positioning results.

Table 7. Positioning results’ deviations.

Strategies Vertical Deviation (m) East Deviation (m) North Deviation (m)

VINS-fusion strategy 2.52 0.86 1.14

Improved strategy 1.21 0.84 1.12

(a) (b) (c)

Figure 19. The differences between the reference and the integration results of different strategies. (a)
The differences between the reference and the integration results in east. (b) The differences between
the reference and the integration results in north. (c) The differences between the reference and the
integration results in vertical.

When it comes to the compensation for the RTK outage, the improved integration
strategy can perform as well as the pre-improved strategy. The improved integration
concentrates on adjusting the weight for RTK to reduce the impact of the RTK positioning
errors. The improved integration updates the transformation matrix and utilizes the
transformation matrix to transfer the VIO results from the local frame to the global frame
so that VIO results can compensate for the RTK outage. The details are described in
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Section 2.3. The improvement in positioning performance shown in Figures 17 and 18 will
not degrade the integration’s ability to provide continuous positioning results. Figure 20
illustrates different algorithms’ trajectories, which are plotted in dots. Figure 20 shows
that the improved integration can provide continuous positioning results in the south of
the playground as the pre-improved strategy does when the RTK positioning results are
intermittent, which means our proposed improved strategy can compensate for the RTK
outage. We use Figure 21 to depict the improved strategy’s ability in providing continuous
positioning results clearer. In Figure 21, a cycle with a specific color means that the specific
algorithm can provide a valid positioning result at the corresponding epoch. Figure 21
shows that the proposed strategy can provide valid positioning results at every epoch in the
test as the pre-improved strategy does. We collect 20 sets of data to assess the continuity of
the proposed strategy quantitatively. The improved strategy can provide valid positioning
results at every epoch in all the tests. Table 8 presents the average percentages of valid
positioning results given by different integration strategies of 20 tests.

(a) (b)

(c) (d)

Figure 20. The performances in continuity of different algorithms. (a) The valid positioning results
of RTK. (b) The valid positioning results of the pre-improved integration. (c) The valid positioning
results of the improved integration. (d) The reference.
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Figure 21. The valid positioning results given by different algorithms.

Table 8. The percentage of valid positioning results given by different integration strategies.

Strategies Average Percentage

The pre-improved strategy 100%

The improved strategy 100%

4. Conclusions

This study verifies the feasibility of integrating RTK and VIO with a smartphone. RTK
and VIO run simultaneously. Their results are fused to improve positioning robustness and
accuracy. We first integrate RTK and VIO following the strategy of VINS-fusion and then
improve the strategy to reduce the deviation in the altitude positioning results. Several
walking tests show that the integration of RTK and VIO can provide continuous positioning
results, while RTK sometimes cannot provide positioning results. The average positioning
deviation drops from 3.23 m to 2.8 m after the introduction of VIO. The tests also verify the
validity of our improved strategy. The average vertical positioning deviation drops from
2.52 m to 1.21 m. We also provide some useful tools and source codes for researchers. We
first modify our CIGRLogger to log BDS measurements. Then, we design a Python script
to transform the measurements into a ROS bag. Finally, we follow RTKLIB’s principle
and provide a ROS node implementing RTK. Users can integrate this node with their ROS
algorithms. These codes can be found at https://github.com/Nronaldo (accessed on 14
October 2021).

The improved strategy of integrating RTK and VIO verifies the potential of a smart-
phone’s positioning abilities, but is still in the proof-of-concept stage. In the future, we will
evaluate our strategy in other urban environments. We will improve the way of adjusting
the RTK weight in our algorithm to adapt to different urban environments. We will also
explore a more efficient integration strategy. For example, we plan to tightly couple RTK
and VIO to improve accuracy and robustness. We will utilize VIO to help improve the
fixed rate of AR in RTK and utilize RTK to improve the initialization of VIO. In addition,
we will study algorithmic innovations to develop our RTK node.

https://github.com/Nronaldo
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Notations
The following notations are used in this manuscript:

Matrix
C The covariance matrix of the observation noise
DG The SD transition matrix for GPS
DB The SD transition matrix for BDS
F(t) The state transition matrix in RTK
H(t) The observation matrix in RTK
I The identity matrix
LG (t) The matrix comprised of LOS vectors of GPS
LB (t) The matrix comprised of LOS vectors of BDS
O The zero matrix
Q(t) The covariance matrix of the process noise
R

ECEF

ENU
(t) The coordinates rotation matrix from the ENU coordinate to the ECEF coordinate

Rg
w(t) The rotation matrix from the world frame to the global frame

Tg
w(t) The transformation matrix between the global frame and the world frame

Tg
b (t) The transformation matrix between the body frame and the global frame

Tw
b (t) The transformation matrix between the body frame and the world frame

Vector
au(t) The user’s acceleration
du(t) The user’s position
dSGk1

(t) The position of the k1th GPS satellite

dref The position of the reference station
eG (t) The SD phase ambiguities of GPS satellites
eB (t) The SD phase ambiguities of BDS satellites
h(χRTK (t)) The measurement function for the update step in RTK
lg
w(t) The translation from the world frame to the global frame

o(t) The LOS vector
pb

cam The translation from the camera frame to the body frame
pw

b,i(t) The position of the IMU in the world frame when the ith frame is captured
pg

b,i(t) The position of the IMU in the global frame when the ith frame is captured
pGNSS

i (t) The position given by GNSS when the ith frame is captured
qb

cam The rotation from the camera frame to the body frame
qw

b,i(t) The orintation of the IMU in the world frame when the ith frame is captured
qg

b,i(t) The orintation of the IMU in the global frame when the ith frame is captured
vu(t) The user’s velocity
vw

b,i(t) The velocity of the IMU in the world frame when the ith frame is captured
vg

b,i(t) The velocity of the IMU in the global frame when the ith frame is captured
xi(t) The IMU state vector when the ith frame is captured
χRTK (t) The state vector of the Kalman filter in RTK
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χV−mono (t) The state vector of VINS-mono
χVIO (t) The state vector of VINS-fusion
y(t) The measurements vector of the Kalman filter in RTK
∇∆φG (t) The DD carrier phase vectors of GPS satellites
∇∆ρG (t) The DD pseudo-range vectors of GPS satellites
∇∆φB (t) The DD carrier phase vectors of BDS satellites
∇∆ρB (t) The DD pseudo-range vectors of BDS satellites
εacc(t), εgyro(t) The IMU biases
Scalar
ρ(t) The pseudo-range
φ(t) The carrier phase
r(t) The geometric distance between the receiver and the satellite
∇∆ρ(t) The DD pseudo-range
∇∆φ(t) The DD carrier phase
∇∆r(t) The DD geometric distance

∇∆r
SB1 ,SBk2 (t) The DD geometric range between the 1st BDS satellite and the k2th BDS satellite

τiono(t) The ionospheric delay
τtropo(t) The tropospheric delay
λ The wavelength of the GNSS signal
δrec(t) The receiver clock bias
δsat(t) The satellite clock bias
ωρ(t) The measurement noise in the pseudo-range
ωφ(t) The measurement noise in the carrier phase
∇∆ωρ(t) The DD measurement noise in the pseudo-range
∇∆ωφ(t) The DD measurement noise in the carrier phase
σve The standard deviation of the east component of the velocity
σvn The standard deviation of the north component of the velocity
σvu The standard deviation of the up component of the velocity
σφ The standard deviation of the phase measurement error
σρ The standard deviation of the pseudo-range measurement error
β(t) The RTK weight in the integration
µ(t) The positioning RMSE in the sliding window
µ0 The threshold
γ(t) The position covariance given by RTK
c The speed of light
ESG1 (t) The SD phase ambiguity state variable of the 1st GPS satellite
i The keyframe index
j The feature index
k1 The index of GPS satellites
k2 The index of BDS satellites
mG The number of the visible GPS satellite
mB The number of the visible BDS satellite
n1 The number of keyframes in the sliding window
n2 The number of features in the sliding window
N The integer ambiguity
sj(t) The inverse distance of the jth feature
SGk1

The k1th GPS satellite
SBk2

The k2th BDS satellite
t The time
∆t The time interval
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