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Abstract: Integration development of urban agglomeration is important for regional economic re-
search and management. In this paper, a method was proposed to study the integration development
of urban agglomeration by trajectory gravity model. It can analyze the gravitational strength of the
core city to other cities and characterize the spatial trajectory of its gravitational direction, expansion,
etc. quantitatively. The main idea is to do the fitting analysis between the urban axes and the
gravitational lines. The correlation coefficients retrieved from the fitting analysis can reflect the
correlation of two indices. For the different cities in the same year, a higher value means a stronger
relationship. There is a clear gravitational force between the cities when the value above 0.75. For the
most cities in different years, the gravitational force between the core city with itself is increasing by
years. At the same time, the direction of growth of the urban axes tends to increase in the direction
of the gravitational force between cities. There is a clear tendency for the trajectories of the cities to
move closer together. The proposed model was applied to the integration development of China
Liaoning central urban agglomeration from 2008 to 2016. The results show that cities are constantly
attracted to each other through urban gravity.

Keywords: integration development; urban agglomeration; urban axis; urban gravity

1. Introduction

Urban agglomeration are clusters of cities that have the characteristics of agglomer-
ation, innovation, and outward orientation in the context of increasing urbanization [1].
Urban agglomerations affect each other in terms of economic linkages, industrial labor
division and cooperation, transport, social life, urban planning, and infrastructure devel-
opment, and become an inevitable trend in urban development [2]. The development of
China’s urban strategy is centered on mega-cities, driving neighboring cities to develop
together. Central Liaoning urban agglomeration is an important gateway to the opening of
northeast of China, and the study of its integration development is of great significance
to the construction of “One Belt, One Road”, the promotion of new types of urbanization,
and the overall revitalization of the northeast of China.

The drivers of urban development have been the focus of regional development
research. Existing studies of drivers are usually based on data from cities’ level of de-
velopment, where one of the most important factors is the economy. Lin et al. pointed
out that Per capita GDP is the basic driving force of urbanization and the marginal utility
of GDP growth tends to decrease with the expansion of urbanization [3]. Xu et al. used
regression models to demonstrate the influence of human, climatic and physical drivers
on land use change within the context of rapid urbanization in China [4]. Although data
are a good representation of development, they lack a description of the interrelation-
ships between different cities. The urban gravity model derives from the law of universal
gravitational and is one of the main methods for studying the integration development of
urban agglomeration [5]. However, current research on integrated development of urban
agglomeration based on gravity model focuses more on the spatial description of gravity
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trajectories. For example, Zhang et al. used population migration to construct a gravity
model and analyzed the effect of gravity strength on the relationship between cities [6];
Chen et al. introduced fractal theory into the urban gravity model to improve the accuracy
of gravitational strength description [7]; the relationship between gravitational strength
and urban structure was discussed by Burger et al. [8]. Some of the above studies have only
considered the structural aspect of the city itself and do not consider the impacts of other
cities on themselves. Some have considered the interaction of information between differ-
ent cities without considering one of the more important spatial information between cities,
the distance. Based on spatial distance as an important factor, the urban gravity model
takes some indicators that have been shown to be associated with urban development, such
as economic, demographic, and energy, as gross size and describes the gravity strength
between cities by analyzing the variation of gross sizes and spatial distance. Trajectory and
intensity are two important properties of gravity, and trajectory description is another key
of addressing a complete representation of gravity.

The evolution of urban axis reflects the trajectory of urban development, and can pro-
vide one of the main bases for describing the gravity trajectory of urban agglomeration [9].
In general, some researchers use the skeleton lines of urban built-up areas as the urban axis.
The method of extracting the skeleton lines in the urban built-up areas is divided into two
parts: extracting the built-up areas and extracting the skeleton lines. Night-time lighting
images and Landsat images are the main data sources for extracting built-up areas [10,11].
The extraction of skeleton lines is mainly performed by parallel line cutting midpoint
linking method, Delaunay triangulation method, Voronoi plot method, and curvature
calculation method [12]. Delaunay triangulation method uses discrete points on polygon
boundaries to build triangles, and skeleton lines are constructed by connecting feature
points on triangles. Delaunay triangulation method is the more commonly used for trend
analysis of polygons, and can provide the reference for the extraction of gravity trajectory.

This paper aims to propose a method based on the trajectory gravity model for the
integration development of urban agglomeration and applied to China Central Liaoning
urban agglomeration. The method cannot describe only the gravity strength between cities,
but also the gravity trajectory, which provides a deeper understanding of the development
of urban integration.

Firstly, we pre-process the night-time lighting data and Landsat data by radiation
correction, fusion, geometry correction, etc.

Secondly, the normalized differentiated built-up area index is constructed by grayscale
values of night-time lighting data and impervious surface indices of Landsat data. The
urban built-up areas are extracted by Statistical Comparison Method. Multisource data can
take advantage of different data, and it is of great research significance to study a method
of built-up area extraction that integrates night-time lighting data and Landsat data.

Thirdly, gravity strength between cities is calculated by urban gravity models, which
can quantitatively describe the interaction.

Fourthly, the Delaunay triangular networks of built-up area polygons are constructed,
and the skeleton lines are extracted as urban axis by the triangular feature point analy-
sis method.

Finally, we analyze the development of urban integration by the changes in gravity
intensity and urban axis. In addition, the proposed method is compared with other
methods, and its main advantages and disadvantages are summarized.

2. Study Areas and Data
2.1. Study Areas

The Chinese government issued three regions and ten urban agglomerations as the
key regions during the 12th Five-Year Plan in October 2012. The three regions include
Beijing-Tianjin-Hebei region, Yangtze River Delta region, and Pearl River Delta region.
Central Liaoning is included in ten urban agglomerations [13].
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Liaoning is a developing province located in northeastern China. China Central
Liaoning urban agglomeration is an important part of the Northeast Economic Zone and
Bo Sea Metropolitan Area, which includes Shenyang, Anshan, Fushun, Benxi, Yingkou,
Liaoyang, and Tieling. Shenyang is the core city. The location is shown in Figure 1.
Although it has a low level of development and is still at the stage of rapid development
and spatial agglomeration, there are many policies proposed for the sake of regional
synergy. Shenyang proposes the spatial development planning strategy of “Expansion
towards South, North, and West, Eastward Optimization”. Fushun expands westward in
order to realize the co-urbanization of Shenyang and Fushun. The overall spatial function
between Anshan, Benxi, and Liaoyang is further optimized. Shiqiaozi Development Zone
in Benxi develops westward, close to Hunnan District of Shenyang. Tieling is actively
building the Shenyang Railway Industrial Corridor for creating Tieling New Town and
Xintaizi High-tech Industrial Zone, which is linked to the North District of Shenyang.
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2.2. Data
2.2.1. Landsat Data

This paper used Landsat TM/ETM+ images published by NASA to extract impervious
surfaces in cities [14,15]. Impervious surface is an important indicator of urban built-up
areas and the degree of expansion directly reflects the expansion of urban built-up areas.
Landsat TM data consist of seven bands with a spatial resolution of 30 m. Landsat ETM+
data consist of nine bands with a spatial resolution of 30 m and one band has a resolution
of 15 m. Landsat images can collect the land cover data and have a high spatial resolution.
In general, some researchers extract built-up areas in Landsat images by constructing
impervious surface indexes, and the results are more effective in describing the details [16].
However, the spectra of Landsat data pixels have a certain complexity, which not only
make the extraction more difficult, but also result in a higher fragmentation. It is necessary
to process some small spots to obtain a complete built-up area [17].

2.2.2. Night-Time Lighting Data

Night-time lighting images can describe the spatial distribution of urban economy
and population, the main methods include statistical analysis method, clustering anal-
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ysis method, spatial constraint method, extraction results have the advantage of high
integrity [18–20]. However, there is a light spillover effect in the night-time light images,
which makes the extraction results have a high false detection rate.

DMSP/OLS data are from the National Oceanic and Atmospheric Administration
(NOAA) of the United States. So far, NOAA has released three types of nighttime light
data: stable light images, radiometric mean light intensity images, and nonradiometric
mean light intensity images. Currently, the widely used one is the stable light image. This
image includes town lights and persistent light sources from other locations, and the raster
removes the effects of transient or incidental noise such as moonlight clouds, light fires, and
oil and gas combustion. Its brightness values range from 0 to 63 and its spatial resolution
is 1 km. We select the data from F16 and F18 sensors, which the years of data are 2008
and 2012.

NPP/VIIRS data are also from the National Oceanic and Atmospheric Administration
(NOAA) of the United States. It has a higher resolution of 430 m from 2013 to 2016 [21] and
shows more details. As DMSP/OLS data ceased to be received in 2013, NPP/VIIRS data
for August 2016 are selected.

2.2.3. Vector Map and Statistical Data

The vector map for provincial, municipal, and county administrative divisions in
China are from the National Center for Basic Geographic Information. Download Web-
site: www.webmap.cn (accessed on 4 October 2021).; Scale: 1:4 million; Coordinate Sys-
tem: WGS-84.

The data of built-up areas for each year are taken from the statistical yearbooks
in the China Economic and Social Development Database. Download Website: https:
//data.cnki.net (accessed on 4 October 2021).

3. Methods
3.1. Data Pre-Processing
3.1.1. Landsat Data Pre-Processing

Firstly, the Landsat images were processed by band fusion and multitemporal image
alignment was performed using a polynomial algorithm. Secondly, the linear stretching
algorithm was used to adjust the grayscale values of the data from 0 to 255. Finally, images
were cropped using administrative division vector data to obtain interest data.

3.1.2. DMSP/OLS Data Pre-Processing

Since the 2008 and 2012 DMSP/OLS data are from different sensors, there are oversatu-
ration and discontinuity in the multitemporal data. In order to improve the continuity and
stability, the relative radiation correction method based on quadratic regression model [22]
was employed in this paper. The quadratic regression model is shown in (1):

DNcalibrated = a ∗ DN2 + b ∗ DN + c (1)

where DNcalibrated is the relative radiation-corrected gray value, DN is the original image
grayscale value, and a, b and c are the correction factors. DMSP/OLS data for 1999 from
F12 Sensor were selected as the reference data. The calibrated DNSP/OLS data were
re-projected as Asia Lambert Conformal Conic and set to the sampling spatial resolution
of 500 m.

3.1.3. NPP/VIIRS Data Pre-Processing

The DMSP/OLS images and the NPP/VIIRS images have different spatial resolutions
and range of brightness values. In order to ensure time series consistency and comparability
between DMSP/OLS data and NPP/VIIRS data, relative radiation correction of NPP/VIIRS
data was performed by DMSP/OLS data as reference data.

www.webmap.cn
https://data.cnki.net
https://data.cnki.net
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Firstly, we used DMSP/OLS data and NPP/VIIRS data from the same year, 2012, to
do the regression analysis. From the result of the analysis, we defined the formula and the
coefficients. The regression Equation is shown in (2):

DNVIIRS−calibrated = 0.358DNVIIRS + 0.817 (2)

where DNVIIRS−calibrated is the corrected gray value and DNVIIRS is the original grayscale
value of the VIIRS/NPP data.

Secondly, we used the equation to adjust the 2016 NPP/VIIRS to make the image the
same brightness values with DMSP/OLS data from 0 to 63.

Finally, the calibrated NPP/VIIRS data were re-projected as Asia Lambert Conformal
Conic and set to the sampling spatial resolution of 500 m.

3.2. Urban Built-Up Areas Extraction

Urban built-up area extraction is the first step in conducting the analysis. The main
purpose of this step is to extract the urban built-up areas and depict them according to their
location. The obtained urban built-up areas also provide data for subsequent processing.
Based on the obtained results, we extracted the gray value information and area values. It
also provides the basic data source for obtaining the shortest distance between the built-up
areas of two cities.

3.2.1. Normalized Differential Built-Up Area Index Construction

Both the night-time lighting image gray values and the Landsat image impervious
surface index are proportional to the probability that the pixel belongs to the built-up
area [23]. Since built-up areas are the result of the combined interaction of people and land,
the night-time lighting images only reflect the spatial distribution patterns of the economy
and population, and the Landsat data only provide the objective description of the land
surface coverage. To improve the incompleteness of built-up areas extracted by the single
data source, the normalized difference built-up area index (NDUBI) was proposed in this
paper. The normalized difference impervious surface index (NDISI) of Landsat image was
used to form an impervious surface image. The NDISI index formula is shown in (3):

NDISI =
TIR − (MNDWI + NIR + MIR)/3
TIR + (MNDWI + NIR + MIR)/3

(3)

where the MNDWI index formula is shown in (4):

MNDWI =
GREEN − MIR
GREEN + MIR

(4)

where NIR is the near-infrared value, MIR is the mid-infrared value, and TIR is the thermal
infrared value. MNDWI is the corrected normalized water body index and GREEN is the
green value. NDUBI takes the sum of the gray values of the night-time lighting image and
the impervious surface image as the denominator, its difference as the numerator. NDUBI
index formula is shown in (5):

NDUBI =
NTL − NDISI
NTL + NDISI

(5)

where NTL is the night-time lighting image gray value. The above equation is the empirical
formula imitating Equation (3), which fuses multisource data information in the form of
difference ratio.

3.2.2. Urban Built-Up Areas Extraction Based on Statistical Comparison Method

The statistical comparison method determines the optimal segmentation threshold
for NDUBI images by comparing the similarity between the built-up extraction area and
the official statistical built-up area [18,24]. Firstly, the official statistical data of the study
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area were collected. Secondly, the initial segmentation threshold to separate the NDUBI
image was set to 0. The temporary segmentation threshold was increasing from the initial
one gradually. The temporary built-up area was the sum of the pixels whose brightness
values were larger than the threshold. Then, the temporary segmentation threshold stoped
increasing when the absolute value of the difference between the area of the temporary
built-up and the area of statistics was lowest. Finally, the temporary segmentation threshold
at that moment was defined as the optimal segmentation threshold. We used the optimal
threshold to separate the image into two groups, the built-up area and nonurban built-
up area.

3.3. Urban Axis Extraction by Delaunay Triangular Network

The urban axis is the directional line that describes the spatial expansion abstractly
and functional transfer of the city, and it can express the urban evolutionary direction
objectively and quantitatively. The contours of urban built-up areas serve as the spatial
projection of the urbanization, and their skeleton lines are the objective representation of
the urban spatial axis. The main purpose of getting the city axes is to simplify the faces
into lines and to show more clearly the direction of urban expansion. Firstly, the Delaunay
triangulation network was constructed by equidistant points along the contour line of
the built-up area. Secondly, we constructed the initial skeleton lines by the network. The
triangles of Delaunay triangulation network were classified into three types: type I, II,
III, as shown in Figure 2a. Type I triangles are connected to only one adjacent triangle
and take its vertex as the endpoint of the skeleton line segment; Type II triangles have
common sides with two adjacent triangles and take the midpoint of the two common sides
as the point of the skeleton line segment; Type III triangles have common sides with three
adjacent triangles and connect the gravity of the triangle with the midpoint of the three
sides of the other triangles to form three skeleton lines. The points from the three types
of triangles were connected sequentially to form the initial skeleton line of the built-up
area contour. Finally, trim the initial skeleton line. The shorter branches of the skeleton line
were eliminated, and the main branches were retained to obtain the final skeleton line of
the built-up area, which serves as the urban axis. This is illustrated in Figure 2b.
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3.4. Principal Component Analysis on Gross Sizes of Cities

Urban gravity requires a value to represent the level of development of the city,
reflecting the social, economic, and other aspects of the indicators. Therefore, we need
to make a comprehensive consideration of most aspects of the cities and get a combined
result as the gross size. Faced with a variety of urban indicators, we have chosen several
mentioned in the paper. In addition, we chose a method that is widely used nowadays,
principal component analysis (PCA), in order to integrate multiple parameters effectively
and reduce the correlation of parameters.

The drivers of urban development cover various aspects. Under the premise of in-
tegrated urban and rural development, the coordinated development of urban and rural
areas highlights the function and value of the primary industry in the social economy [25].
Liaoning is also a long-standing industrial province, and the industrial economy of the
secondary industry has been an important factor in promoting the development of cities. In
today’s information exchange and smart city development, the tertiary industry created by
trade flow and information interchange has also made positive contributions to urban de-
velopment. In this paper, the urban built-up area was extracted as the key factor that could
visually reflect the urban construction. From this result, we obtained relevant information,
such as area, gray value information, etc., combined with urban infrastructure, population,
transportation, and other elements that are closely related to urban development. With
the above-mentioned information, we constituted the basic elements used in PCA. So,
the parameters in this paper included sum of gray values, mean of gray values, built-up
area, added value of primary sector, added value of secondary sector, added value of
tertiary sector, population, number of streetlights and urban road area. Among them,
the values of primary, secondary, and tertiary industries represented different aspects of
urban development, the sum and average of grayscale values and built-up area values
represented the experimental extraction results, and population, number of streetlights
and road area reflected population, urban infrastructure, and transportation, respectively.
All data are from the Chinese Statistical Yearbook for each year except for the sum and
mean of gray values.

The principle of principal component extraction is to extract principal components
with an eigenvalue greater than 1. The eigenvalue is an indicator of the magnitude of the
principal component’s impact. If the eigenvalue is less than 1, it means that the principal
component is not as strongly interpreted as an original variable, eigenvalues greater than 1
are used as inclusion criteria.

The main process of PCA is as follows. Firstly, the data in the component matrix
was used to calculate the feature vectors of each principal component. We can obtain
the variance of each principal component, like var(Fi). A larger variance indicates more
information is covered. Secondly, the feature vectors were multiplied with the standardized
values of the parameters. The equation is shown in (6):

Fi = a1i ∗ ZX1 + a2i ∗ ZX2 + · · ·+ aPi ∗ ZXP (6)

where a1i, a2i, . . . . . . api are the eigenvectors corresponding to the eigenvalues of the
covariance array, ZX1, ZX2, . . . . . . , ZXp are the normalized values of the original variables.
Fi is the final value of the principal component and i is the number of the principal
component. p is the number of the parameters. Then, the results summed to get the
numbers of each principal component. The equation is shown in (7):

F =
(var(F1) ∗ F1 + var(F2) ∗ F2 + · · ·+ var(Fm) ∗ Fm )

∑m
i=1 var(Fm)

(7)

Finally, the feature values of each principal component were used as weights to
calculate the weighted average, and the principal component composite model values were
obtained to represent the gross sizes of cities. The gross size of the city reflects the most
aspects of the city as a whole, not only the development within the urban area. As the
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population used, it includes all population numbers within the urban and rural areas. For
the value of growth of primary, secondary, and tertiary industries, both rural and urban
areas contribute to its development. Thus, the size only reflects the level of the development
of the city in that year, and it is not the exact value and only used in comparison with other
cities in the urban agglomeration.

3.5. Urban Gravity Calculation

In the field of urban agglomeration integration, the urban gravity model is one of
the classical models reflecting the strength of spatial interactions between cities and is
widely used in practice. The urban gravity model is based on Newton’s law of universal
gravitational, where the gravitational strength of cities is proportional to the product of
their sizes and inversely proportional to the square of their distances. The equation to
calculate urban gravity is shown in (8):

F = K
M1M2

r2
1,2

(8)

where M1 and M2 are the gross sizes of city 1 and city 2, respectively; r1,2 is the spatial
distance between city 1 and city 2; K is the constant coefficient. To avoid the result being
too small, K is taken as 1 × 104. In this paper, the distance of the nearest endpoint between
two urban axes was taken as the spatial distance.

The urban gravity model captures the strength of linkages and integration trends
between cities within urban agglomeration, but it cannot describe the specific processes
of integration in space objectively. Based on the principle that the closer the geographic
distance is the stronger the geographical correlation, this paper takes the direction of the
contiguous vector of the nearest endpoint between two cities as the gravitational direction,
with the change in the spatial axis of the gravitational direction as the gravitational track.

4. Results and Discussion
4.1. Urban Built-Up Areas Extraction
4.1.1. Extraction of Urban Built-Up Areas Using Normalized Differential Built-Up
Area Index

The Landsat images of 2008, 2012, and 2016 were pre-processed. NDISI index images
were calculated and stretched to 0 to 255, and the stretched NDISI index images of Shenyang
are shown in Figure 3. As we can see from Figure 3, the gray-scale value of the NDISI index
image was proportional to the probability of belonging to the built-up area.
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The DMSP/OLS images from 2008 and 2012 and the VIIRS/NPP images from 2016
were radiation corrected, and Shenyang night-time lighting images are shown in Figure 4.
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The NDUBI index images were constructed by NDISI index images and night-time
lighting images, and Shenyang NDUBI index images are shown in Figure 5. As shown in
Figure 5, the character of the built-up area was enhanced significantly.
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Figure 5. Shenyang NDUBI images.

The statistics of government-declared built-up areas of central Liaoning urban ag-
glomeration in 2008, 2012, and 2016 are shown in Table 1. Based on this, the optimal
segmentation thresholds obtained by the statistical comparison method are also shown
in Table 1. Between 2008 and 2016, the area of each city increased. The optimal seg-
mentation thresholds for 2016 were significantly different from the remaining two years
and had a sharp decrease due to the different sensors. Although NPP/VIIRS images’
range of brightness values were changed to be the same as DMSP/OLS, the results also
were affected.
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Table 1. Statistical data of urban built-up areas (km2) and optimal segmentation threshold of central
Liaoning urban agglomeration.

Statistic Data Segmentation Threshold

Year 2008 2012 2016 2008 2012 2016

Shenyang 370.00 455.00 588.26 137 157 18
Anshan 148.04 166.55 172.05 151 163 48
Benxi 106.50 108.00 109.00 211 222 30

Fushun 123.90 131.03 139.34 151 163 9
Liaoyang 66.00 76.50 76.50 149 149 30

Tieling 43.69 45.08 56.81 107 141 12
Yingkou 97.12 103.81 188.80 154 183 11

The NDUBI images were segmented by the optimal threshold. The built-up area
extraction results are shown in Figure 6. The detailed step of the statistical comparison
method to get the threshold is shown in Section 3.2.2. As shown in Figure 6, the spatial
coverage of built-up areas had increased significantly in all cities. The growth of urban
built-up areas showed two patterns: the core city of Shenyang had merged with smaller
surrounding towns, such as small built-up areas in the north and south; the rest of the
cities were multiregional developments, generally building development zones around the
city, such as the small built-up areas that emerged in Fushun’s northeast region in 2016.
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4.1.2. Accuracy Analysis of Built-Up Areas Extraction

The extraction accuracy of built-up areas is the guarantee of the accurate extraction
of urban axes. In this paper, the built-up area extraction method based on the normalized
difference urban built-up area index was compared with the method by night-time lighting
images or Landsat images. Shenyang was selected as the experimental area, DMSP/OLS
data were selected for night-time lighting images. The method still used the statistical
data comparison method. For Landsat data, the impervious surfaces of the city were first
extracted, and the urban built-up areas were extracted by fusing small spots on this basis.
The study time was selected for 1992, 2000, and 2012. The reason for choosing this time
period was to compare the validity between the parameters and made the comparison
results clearer. The control variables were different only for the methods, and the data
types used should remain the same to avoid differences in the comparison of results due to
transformed data source.
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The optimal segmentation thresholds for night-time lighting images and NDUBI index
images are shown in Table 2.

Table 2. The optimal segmentation thresholds for nighttime light images and NDUBI index images.

Item 1992 2000 2012

nighttime light images 53 59 60
NDUBI index images 138 138 151

Since gray values of DMSP/OLS data were in the range of 0 to 63, the optimal
segmentation thresholds were small. However, in order to unify the gray range of the
impervious surface index image and the night-time lighting image, the gray values of
NDUBI were stretched to 0 to 255, so the NDUBI segmentation thresholds were larger.

The build-up areas extraction results of the three methods are shown in Figure 7. The
reference data were extracted artificially from Landsat data. The result areas of DMSP/OLS
images were slightly smaller than the reference data, which meant that there was an
omission in the extraction results of night-time lighting images. While the misclassification
of extraction results of Landsat data was more obvious, the overall extraction results had
good accuracy and no excessive disparity occurs. The results based on NDUBI index had a
larger range compared with the reference data, but the overall extraction results were better.
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In this paper, the Kappa coefficient, overall accuracy, user accuracy, and producer
accuracy were evaluated by the confusion matrix, and the accuracy evaluation results
are shown in Table 3. The kappa coefficients of the method based on DMSP/OLS data
were able to maintain above 0.75, but none of the producer accuracy exceeded 0.75. The
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minimum values of Kappa coefficient and user accuracy for the method based on Landsat
images are 0.77 and 0.74, with fluctuations in 2012. The method based on NDUBI index had
the highest average Kappa coefficient and the Kappa coefficient did not fluctuate, reflecting
the comprehensiveness. It showed that the results extracted by NDUBI index were more
stable and less susceptible to data quality disturbances than the other two methods, and
the accuracy was improved compared with the other

Table 3. The accuracy evaluation results of built-up area extraction method.

Accuracy Index 1
DMSP/OLS Impervious Surface NDUBI

1992 2000 2012 Mean 1992 2000 2012 Mean 1992 2000 2012 Mean

K 0.82 0.78 0.78 0.79 0.87 0.84 0.77 0.83 0.84 0.84 0.84 0.84
OA 0.98 0.96 0.95 0.96 0.98 0.98 0.99 0.98 0.98 0.97 0.95 0.97
UA 0.94 0.95 0.94 0.94 0.83 0.91 0.74 0.82 0.81 0.87 0.84 0.84
PA 0.75 0.68 0.70 0.71 0.94 0.84 0.98 0.92 0.89 0.85 0.91 0.88

1 K: Kappa coefficient; OA: Overall accuracy; UA: User accuracy; PA: Producer accuracy.

There are various methods to extract urban built-up areas, mainly using the large-scale
characteristics of nighttime lighting data or the precision of Landsat data to obtain the
results. In this paper, we compared the results obtained from nighttime lighting data and
Landsat data with the proposed new index normalized difference urban built-up area
index. The results showed that the index better solved the problems of the overflow of
lights and the fragmentation of results caused by Landsat data, and achieved the extraction
of urban built-up areas more quickly and efficiently while ensuring the accuracy of the
extracted results for urban built-up areas, so that the information of urban built-up areas
was significantly enhanced.

4.2. Urban Axes Extraction

The Delaunay triangulation method was used to extract the urban axis of the built-up
areas of central Liaoning urban agglomeration in 2008, 2012, and 2016, and the extraction
results are shown in Figure 8. The period 2008 to 2016 was chosen because this time
period was a period of rapid economic development in China, and urbanization was
rapidly accelerating. Rapid urbanization had led to rapid inter-city linkages, making the
experimental results more representative.
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As shown in Figure 8, the urban axes accurately reflect the spatial characteristics
of the built-up areas, including shape and direction of extension. It shows clearer than
Figure 8 in the expansion direction. By comparing and analyzing the urban axes in the
three years, it shows that the urban axes of Shenyang and Anshan have multiple directions,
whereas the urban axis of the other cities have a single direction. For the core city like
Shenyang, external expansion was not very obvious because it had already formed its own
development pattern and was subject to regional restrictions. However, for the rest of
the fast-growing cities, external expansion was evident. In Anshan, Benxi, and Fushun,
while the city’s downtown was expanding, these cities were also developing new districts
as built-up areas. And these new built-up areas would develop along the axes to the
downtown, for example, Liaoyang and Tieling. In addition, we can see from the overall
view that there is also a trend of mutual development between different cities like Anshan
and Liaoyang.

4.3. Urban Gravity
4.3.1. Calculation on Gross Sizes of Cities

This paper used principal component analysis to calculate gross sizes of cities. Based
on several parameters, a comprehensive model was calculated that is representative of
the gross sizes of cities. The included parameters contained many socio-economic vari-
ables, urban development indicators, and so on, which explained different aspects of
urban formation.

Two principal components, principal component 1 (PC1) and principal component
2(PC2), were identified from the statistics and a component matrix. The results are shown
in Table 4. The component matrix is the initial factor load matrix, where each load quantity
represents the correlation coefficient between the principal component and the correspond-
ing variable. In PC1, it shows that all selected parameters, expect mean of gray values,
have a strong correlation. The gross sizes were calculated by PC1 and PC2.

Table 4. Component matrix in 2008, 2012, and 2016.

Item
2008 2012 2016

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Sum of gray values 0.926 0.370 0.943 0.313 0.970 0.237
Mean of gray values −0.149 0.972 −0.263 0.947 0.088 0.992

Built-up area 0.985 0.133 0.987 0.116 0.992 0.004
Added value of primary sector 0.839 −0.408 0.848 −0.402 0.903 −0.177

Added value of secondary sector 0.987 0.056 0.993 0.083 0.996 0.012
Added value of tertiary sector 0.994 −0.002 0.993 0.062 0.998 −0.011

Population 0.987 0.056 0.990 0.052 0.989 0.129
Streetlights number 0.949 −0.036 0.964 −0.032 0.917 −0.318

Urban road area 0.996 −0.060 0.990 0.016 0.996 0.002
Variance value 7.452 1.426 11.735 3.846 10.659 2.164

The PC1 and PC2 were used to calculate the gross sizes. The specific calculation
procedure is shown in (6)–(7). For simplicity of results, the gross sizes were normalized
by 2008 as the base year [26]. The final composite sizes of the central Liaoning urban
agglomeration are shown in Table 5. According to the values of the obtained gross sizes of
cities, we can make a ranking of the level. Since the principal components do not have a
meaningful ratio scale, we cannot make a quantitative evaluation. The results were only
used to describe the rank of the level of the development.
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Table 5. Gross sizes of cities.

City 2008 Rank 2012 Rank 2016 Rank

Shenyang 1 1 1.024 1 1.036 1
Anshan 0.284 2 0.272 2 0.205 2
Benxi 0.140 4 0.107 6 0.102 5

Fushun 0.147 3 0.128 3 0.146 3
Liaoyang 0.112 5 0.111 4 0.077 6

Tieling 0.037 7 0.048 7 0.033 7
Yingkou 0.105 6 0.110 5 0.145 4

In Table 5, it shows that there is an indication of the level of development of cities.
We used the obtained gross sizes to rank the level of development of cities in the urban
agglomeration. It can be seen from the table that, in the three years, Shenyang, as the core
city, was always the first one in the rank. Anshan, Fushun and Tieling also had stable
rankings. Only Yingkou showed a steady growth. Liaoyang and Benxi both increased and
decreased in ranking. We guess it may be that the overall development level of Liaoning is
not high due to geographical factors and so on. The development of Yingkou was more
obvious rise, since it was located at the transportation hub of two major cities in Liaoning,
Shenyang, and Dalian. For the other cities, the changes were not obvious, since there were
many resource-based cities with a single industrial structure and depleted resources [27].

4.3.2. Urban Gravity Calculation

The urban gravity models between the core city of central Liaoning urban agglomer-
ation, Shenyang, and the rest of the cities were calculated, which the distances between
cities were expressed as the distances between the closest endpoints on the urban axes.
The urban gravity values and distance between cities are shown in Table 6. In Table 6, it
shows that the gravity of Shenyang and Fushun is the largest, followed by Shenyang and
Benxi, the urban gravity of Shenyang and rest cities is less than 1. The unit of distance
is kilometers.

Table 6. The urban gravity and distance between cities in central Liaoning urban agglomeration.

Cities
2008 2012 2016

Gravity Distance Gravity Distance Gravity Distance

Shengyang to Anshan 0.963 54.295 0.931 54.619 0.704 54.918
Shengyang to Benxi 1.003 37.927 2.438 21.200 3.592 17.152

Shengyang to Fushun 9.758 10.817 10.777 11.028 31.629 6.915
Shengyang to Liaoyang 0.745 38.763 0.801 37.665 0.533 38.680

Shengyang to Tieling 0.304 34.788 0.342 37.919 0.369 30.447
Shengyang to Yingkou 0.067 125.105 0.068 128.257 0.101 122.085

In Table 6, it shows that the interaction between Shenyang and Fushun is the closest.
Geographically, the two cities are the closest in distance. The data in the table show a strong
correlation with the distance between cities, which proves that the results are more related
to spatial distance. In order to describe the relationship between cities more objectively, we
used the change rate.

4.4. Integration Development Analyst of China Central Liaoning Urban Agglomeration

The change rates of gravity between Shenyang and other cities were calculated, and
the results are shown in Table 7. In Table 7, when the value is positive, the gravitational
force between cities keeps growing and, conversely, keeps declining. The table shows that
there are higher urban gravitational growth rates between Shenyang and Fushun or Benxi,
that Shenyang with Benxi reaching 143.07% from 2008 to 2012 and Shenyang with Fushun
reaching 193.49% from 2012 to 2016. It indicated that the relationship of the two cities was
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highly closer. The urban gravity growth rate between Shenyang and Fushun or Yingkou
increased, that means the city was more closely linked to the core city than in the previous
year. Whereas the urban gravity growth rate between Shenyang and Tieling decreased.
Although growth rates have declined, inter-city gravitational forces have still increased,
just not to the same extent as in the previous year’s division. The urban gravity between
Shenyang and Anshan or Liaoyang showed a tendency to decrease. At this point it meant
that the gravitational force between the two cities was getting smaller and less connected.

Table 7. Urban gravity change rate of central Liaoning urban agglomeration.

Year 2008 to 2012 2012 to 2016

Shengyang to Anshan −3.32% −24.38%
Shengyang to Benxi 143.07% 47.33%

Shengyang to Fushun 10.44% 193.49%
Shengyang to Liaoyang 7.52% −33.46%

Shengyang to Tieling 12.50% 7.89%

The growth rates between most cities and Shenyang are not high and even on a
downward trend, because Shenyang is not competitive as a core city and its radiation
drive is limited [28]. Insufficient innovation has become an important factor limiting
the development of central Liaoning urban agglomeration. Meanwhile, influenced by
the slowdown of economic growth, low wage level and weak radiation-driving ability
of cities, the net outflow of population from central Liaoning urban agglomeration has
started since 2014, and the population outflow and aging aggravation have reduced the
development momentum of urbanization. Due to the similar resource conditions and the
same investment direction driven by the interests of enterprises, the industrial isomorphism
of central Liaoning urban agglomeration is serious. Petrochemical, iron and steel, energy
and equipment manufacturing have become the key development industries of most cities.
Because of the serious duplication of industries, it is difficult to realize the cluster effect,
resulting in a large waste of resources and unable to cultivate brand competitiveness.

The multitemporal urban axes were extracted as the urban gravity trajectory, and the
urban gravity trajectory of central Liaoning urban agglomeration is shown in Figure 9.
The connections between different cities in different years were distinguished according to
style and color. The development direction of the built-up area in the next study period
tended to be roughly the same as that of the inter-city linkage. Therefore, we could infer
that there was a correlation between the development of the city and the direction of
gravitational force.

As seen from Figure 9, the spatial variation trend of urban axes reflected the urban
gravity trajectory. The connecting lines between Shenyang and Fushun were getting shorter
and shorter. And Fushun had developed along the Hunhe River to the west. The trend was
the same between Shenyang and Benxi. Benxi Development Zone was developing to the
northwest, bordering Shenyang’s Hunnan District. Anshan, Liaoyang, and Yingkou also
had the tendency to develop towards Shenyang, but the gravity trajectories changed little.
Because of the poor development of Tieling, there was no significant inter-city development.

In summary, from the results of gravitational strength and gravitational trajectory
changes, it can be seen that, except for Fushun and Benxi, the connections between the
rest of the cities and Shenyang were not significantly strengthened, and the integration of
central Liaoning urban agglomeration was weak.
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4.5. Correlation Analysis of Urban Gravitational Direction Lines and Urban
Gravitational Trajectories

There is gravitational direction between objects, such as the gravitational direction
towards the center of the earth. In this paper, the gravitational direction lines were the
connecting lines between the endpoints of the urban axes. To demonstrate the validity
of using the trend of urban axes as the gravitational trajectory of the city, it was verified
by analyzing the correlation between the gravitational trajectory and the gravitational
direction line. Firstly, we took points equidistant from two cities to form the set of urban
axis points and the set of gravitational direction line points. Then, the correlation of the two
kinds of point sets was analyzed. Finally, the correlation between the two data sets was
analyzed by correlation coefficient. The correlation analysis results of urban gravitational
trajectory and urban gravitational direction line are shown in Figure 10.

It can be seen from Figure 10 that, except for Shenyang and Fushun from 2012 to 2016,
the correlation coefficients between Shenyang and other cities were above 0.75. When the
values above 0.75, it means that the two for analysis have the strong correlation. However,
for the result of Shenyang and Fushun from 2012 to 2016, the correlation coefficient is 0.115,
indicating that the correlation is not strong. It can be seen through Figure 8 that there is
an internal conjunctive development trend between the northeast corners of the city in
Shenyang in 2012, which makes the axial direction change. This may be the reason for this
particular result. However, a discrete result does not affect the overall result. In addition,
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the fits of the two-point sets were generally good, indicating that the trend of urban axis
change is strongly correlated with the urban gravity direction line. Therefore, the trend of
urban axis change can describe the urban gravity trajectory.

Meanwhile, since Liaoning is an old industrial province, the main industries of sev-
eral cities in the province are industrial. In China, most northern industrial cities are
facing the challenge of urban transformation. The policymakers and city authorities are
exploring solutions to provide new services to large populations in an efficient, responsive,
and sustainable manner. Current urbanization requires strong strategies and innovative
planning to modernize urban life [29]. But the rapid development of energy efficiency
programs in commercial buildings over the past decade can lead to a growing decoupling
effect [30]. It is therefore normal for some of these cities to identify a range of services and
prioritize demand in order to obtain user value for a long-term urban transformation that
will accelerate their own development and a certain decoupling from the development of
the core city.
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5. Conclusions

This paper validated the effectiveness of the proposed urban trajectory gravity model
by analyzing integration development of central Liaoning urban agglomeration. By analyz-
ing the gravity of core city in urban agglomeration to other cities, the relationship between
urban spatial change and gravity was established. Different from the traditional urban
gravity model, which only provides urban gravitational strength, this paper gives the
spatial description of gravity. It can determine the change characteristics of gravity direc-
tion, extension, or contraction, so that the description of urban agglomeration integration
development has an objective basis to follow.

5.1. Key Findings

This paper presented the normalized differential urban built-up area index combining
night-time lighting data and Landsat data. The method can be used to quickly extract
urban built-up areas, improve the incomplete information representation of built-up areas
by single source data, and increase the accuracy of built-up area extraction. In order to
describe the strength and trajectory of urban gravity, the urban gravity trajectory model
was proposed. The model adopted the indicators including urban information, population,
and economy to calculate urban gravity, and described the urban gravitational trajectory
through the changes of multitemporal urban axis, which could provide a more comprehen-
sive and objective analysis of the integrated development of urban agglomeration.

The results show that cities are constantly attracted to each other through urban
gravity. For the different cities in the same year, a higher correction coefficient of fitting
analysis means a stronger relationship. There is a clear gravitational force between the cities
when the value above 0.75. For the most cities in different years, the gravitational force
between the core city with itself is increasing by years. At the same time, the direction of
growth of the urban axes tends to increase in the direction of the gravitational force between
cities. There is a clear tendency for the trajectories of the cities to move closer together.

5.2. Future Work

A central city, with its expanding scale and growing strength, will have a radiating
effect on the surrounding areas. Along with the continuous improvement of inter-city
transportation conditions, the radiation belts between neighboring cities are increasing,
and even overlap phenomenon occurs. In this paper, we can see that China’s urban
agglomerations are gradually developing, and the old industrial cities represented by
the central Liaoning urban agglomeration are also in the process. The cities are gradually
transformed by various factors such as urban infrastructure, transportation, and population.
This paper analyzes the drivers of inter-city cluster development, starting from the direction
of inter-city cluster development.

This paper still has some shortcomings. The statistical comparison method uses the
built-up area of government statistics to determine the optimal segmentation threshold
of NDUBI index image. The social science data used to calculate gross sizes of cities is
mainly from government statistics. These data sources have been criticized due to its
nonobjectivity and low quality. In addition, the variables we use for PCA, which represent
absolute measures, assess more the size of a city than the actual level of urbanization.

Additionally, for the next study, social media data such as POI data and weibo check-in
data may improve the objectivity of the data. Furthermore, in order to determine the level
of urbanization, it would be better to use relative measures rather than absolute measures.
Finally, we can analyze the role played by different kinds of cities, such as industrial cities,
trading cities, etc., in urban agglomerations and their drivers from the perspective of city
types and development structures.
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