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Abstract: A spatial co-location pattern denotes a subset of spatial features whose instances frequently
appear nearby. High influence co-location pattern mining is used to find co-location patterns with
high influence in specific aspects. Studies of such pattern mining usually rely on spatial distance for
measuring nearness between instances, a method that cannot be applied to an influence propagation
process concluded from epidemic dispersal scenarios. To discover meaningful patterns by using
fruitful results in this field, we extend existing approaches and propose a mining framework. We first
defined a new concept of proximity to depict semantic nearness between instances of distinct features,
thus applying a star-shaped materialized model to mine influencing patterns. Then, we designed
attribute descriptors to perceive attributes of instances and edges from time series data, and we
calculated the attribute weights via an analytic hierarchy process, thereby computing the influence
between instances and the influence of features in influencing patterns. Next, we constructed
influencing metrics and set a threshold to discover high influencing patterns. Since the metrics do
not satisfy the downward closure property, we propose two improved algorithms to boost efficiency.
Extensive experiments conducted on real and synthetic datasets verified the effectiveness, efficiency,
and scalability of our method.

Keywords: time series data mining; high influencing pattern; influence propagation; attribute-aware

1. Introduction

In the past two decades, spatial co-location pattern mining has been a hot topic in the
field of spatial data mining. After Shekhar et al. [1] first introduced the notion of spatial
co-location patterns in 2001, many experts and scholars devoted themselves to this field
and achieved abundant results. Thus far, the mining of spatial co-location patterns and
extended patterns has been widely applied in public governance and traffic management
and services, among others [2–4].

Currently, the COVID-19 pandemic has become a major worldwide event that seri-
ously endangers human health and public safety. It has profoundly impacted all aspects
of the world, and it has attracted increasing attention and in-depth study. Most existing
research on the spread of epidemics focuses on practical applications, e.g., predictions
of scale or effects of control measures, and little focuses on the pattern recognition in
epidemic dispersal scenarios. Since the mechanisms of public opinion transmission and
epidemic dispersal are similar [5–7], with the former being a hot topic of online community
influence analysis, it is possible to view an epidemic as an influence between cities and to
conclude an influence propagation process from epidemic dispersal scenarios. Therefore,
the authors of this study intend to take advantage of the findings of spatial co-location
pattern mining fields and explore meaningful high influencing patterns in an influence
propagation process.

A typical paradigm for co-location pattern mining research can be described as follows:
Given a set of spatial features F = { f1, f2, . . . , fm} and a set of instances O = {o1, o2, . . . , on},
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each instance oi ∈ O corresponding to a feature fi ∈ F denotes an object at a specified loca-
tion. A spatial co-location pattern is defined as a subset c = { f1, f2, . . . , fk} of spatial feature
set F, whose instances are co-located together in the geographic space. Generally, two
instances are adjacent if their spatial distance is not larger than a preset distance threshold R.
When a set of instances I = {i1, i2, . . . , ik} satisfies the state that an arbitrary pair of instances
in I are adjacent, I covers all features in c, and any subset of I cannot cover all features in c,
the set I is reckoned as a row instance of c, denoted by row_instance(c). All row instances
form a table instance of c, denoted by table_instance(c). The participation ratio of feature
fi in c (denoted as PR(c, fi)) is calculated by

∣∣∣π fi
Table_instance(c)

∣∣∣/|Table_instance({ fi})|,
which is the number of non-repetitive instances of feature fi involved in table_instance(c)
divided by total instances of fi. Participation index PI(c) of c takes the minimum PR(c, fi)
in c. Pattern c is prevalent if PI(c) is no less than a given threshold PIthreshold. Similarly, we
first defined a new proximate relation for instances of distinct features, then found the
influencing patterns based on the proximate relations, and next designed a measurement
and set a threshold to identify the high influencing patterns whose measurements meet
the threshold.

Construct new proximate relations: In order to construct new proximate relations be-
tween instances of distinct features, we reviewed the theoretical basis by which traditional
spatial co-location pattern mining adopts spatial proximity, i.e., the first law of geography
(or called Tobler’s first law (TFL)), alleging that everything is related to everything else
but near things are more related to each other [8,9]. Based on this law, traditional spatial
co-location pattern mining uses spatial distance or combined distance [10] to measure
spatial nearness. In epidemic dispersal scenarios, viruses spread with infectors among
streams of people, so neighbor cities in a space may have no or little association when
there are no or few personnel exchanges; meanwhile, a strong association may exist be-
tween two cities that are far away but have frequent exchanges on a large scale, and in
these contexts, spatial distance is no longer the dominant factor for reflecting the sematic
proximate relations between instances on influence. A literature search revealed that, in a
study on SARS dispersal in 2003, Li et al. [11] found that the semantic proximity between
cities is closely related to the flows of people, and Brockmann et al. [12] noticed that human
travel is responsible for the geographical spread of human infectious diseases. Therefore,
it is feasible to construct new semantic proximate relations between instances of distinct
features (i.e., cities of distinct categories) based on the flow of infectors and identify high
influencing patterns accordingly.

In general, a neighborhood relation must satisfy the conditions of reflexivity, symmetry,
and being non-negative bounded. That is the case for spatial proximity. However, in the
case of influence propagation processes abstracted from epidemic dispersal scenarios,
flows show the directions of influential media (i.e., infectors) with influence (i.e., viruses of
epidemics). To solve the problem, we separated the fact of exchanges of influential media
from their directions; that is, we decided to regard exchanges of influential media between
instances of distinct features as the premise for judging semantic proximity between
instances, and the directions of flows was considered in the influence calculation.

Influence calculation: Previous studies have usually mined spatial co-location patterns
and extended patterns by means of external characteristics such as spatial distance, instance
distribution, or statistics, so it has been difficult for them to deal with situations where
complex interactions between organisms lead to their own changes. For instance, Barua
et al. [13] used statistical methods to study the nesting behaviors of two kinds of ants
and explore their biological dependence. They did not find definite evidence of spatial
correlation between the two neighboring organisms, but the existing co-location pattern
mining approaches can reveal an illusory correlation between them. In view of this, Duan
et al. [14] proposed a method for mining co-location patterns without autocorrelation
between species. Therefore, the authors of this study introduced influence-related time
series attribute data of instances to describe the cumulative influence between instances of
distinct features at different moments of an influence propagation process.
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We first defined a semantic proximity relationship, i.e., two instances of distinct
features are proximate if they exchange influential media. To simplify the analysis, the
relationship is assigned a Boolean value of 0 (not proximate) or 1 (proximate). The rela-
tionship satisfies the properties of non-negative bounds, symmetry, and reflexivity (please
refer to the proof B1 in Appendix B), and it can be used to describe semantic proximity
between instances. Accordingly, with reference to the existing sub-prevalent co-location
pattern [15,16], we propose a new kind of influencing patterns (IPs for short), where each
feature of the pattern has at least one instance proximate to the instances of the other
features of the pattern. Next, we set the flowing directions of influential media as the
influencing directions between instances of distinct features, computed the influence be-
tween instances and then the influence of features in IPs with the preprocessed data of
multi-dimensional attribute vectors perceived over time series data, attributed weights
obtained from pairwise comparisons to obtain star influence ratio (SIR) values for features
in IPs, and finally defined a metric of the star influence index (SII) by taking the minimum
star influence ratio to measure the influencing levels of IPs and assign an SIIthreshold to filter
high IPs.

In summary, the contributions of this study include:

• For an influence propagation process abstracted from epidemic dispersal scenarios, we
define a semantic proximate relationship to describe the nearness between instances of
distinct features and accordingly propose a novel influencing pattern, and we further
introduce a high influencing pattern based on the directions of influence and inner
changes in instances perceived by an attribute-aware analysis of time series data to
meet the needs for pattern discovery in the influence propagation process.

• We propose a framework for mining high IPs, design a Benchmark algorithm wherein
we apply a top–down method to identify IPs to implement it, utilize a three-layer
hashmap structure to store the IPs, compute the influence between instances and the
influence of features in the IPs by using preprocessed multi-dimensional attribute
vectors and attribute weights, and design influencing metrics to filter high IPs. As
the metrics do not satisfy the downward closure property, we analyze two time-
saving properties, propose two corresponding pruning strategies, and thus design
two improved algorithms to boost efficiency.

• Extensive experiments were conducted on real and synthetic datasets, and the experi-
mental results verified the effectiveness, efficiency, and scalability of our methods.

The rest of this study is organized as follows. Section 2 introduces related works.
Section 3 provides definitions and the problem statement. Section 4 describes our mining
framework, three algorithms, and time complexity analysis. Section 5 depicts the data and
their preprocessing; it also presents our experiments on the effectiveness, efficiency, and
scalability of the algorithms. Finally, Section 6 summarizes the study and discusses future
research directions. Additionally, Appendix A lists the notation of the proposed algorithms
in Table A1, and Appendix B provides proofs of the semantic proximity relationship
properties, Lemma 1 and Lemma 2.

2. Related Works

The authors of this study aimed to discover high IPs from an influence propagation
process as reflected by epidemic dispersal scenarios. Our work extended the use of spatial
co-location pattern mining based on the absorption of research findings in the fields of
influence analysis and spatio-temporal pattern mining. We elaborate the related works in
three aspects as follows.

2.1. Spatial Co-Location Pattern Mining

Shekhar et al. [1] first introduced the concept of spatial co-location patterns and proposed
an event-centric approach adopting Apriori generation in 2001, and then Huang et al. [17]
developed a full-join algorithm with a minimal participation ratio for discovering preva-
lent co-location patterns in 2004. As the statistically meaningful measurement of patterns
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has become more reasonable, many subsequent studies continue to use it, but mass join
operations require extensive time. Thus, Yoo et al. [18,19] proposed a partial-join approach
to divide instances into disjoint clusters and a join-less method based on a star neighbor
materialized model to avoid join operations. Wang et al. [20,21] proposed new join-less
approaches, i.e., CPI-tree- and iCPI-tree-based algorithms to speed up calculations of table
instances, and they proved that their tree structures were effective for fast co-location mining.
Yao et al. [22] reckoned prevalent size-2 co-locations as sparse undirected edges, and they
adopted a degeneracy-based maximal clique mining method to generate candidate maximal
co-locations and introduced a hierarchical verification approach to build a condensed instance
tree for storing instance cliques, thus saving costs in computation and storage. Bao et al. [23]
proposed an instance-driven schema and a neighborhood-driven schema to generate cliques
and transformed them into a two-layer hash structure by which the prevalence of co-location
patterns can be efficiently calculated without the identification of the row-instances of co-
location patterns. Following studies on efficiency boosting, this field grew into a flourishing
family with abundant fruitful results, including maximal clique and maximal prevalent co-
location mining [24], high utility co-location mining [25], and fuzzy analysis [26]. Chen [27]
first proposed a new concept of impact from buffers of extended spatial objects and designed a
high impact measure to replace a participation ratio measure for co-location mining. This sys-
tem can be used to compare the impacts that supermarkets and groceries exert on consumers.
Fang et al. [28] introduced multi-dimensional attributes for spatial instances and applied
information entropy technology to construct an influence measure based on the amount of
neighbors and the similarity of neighbor pairs’ attributes, thus allowing for the discovery
of high influence co-locations from instances with attributes. Lei et al. [29] used the cosine
function to simulate the property of diminishing influence with distance, and they proposed
high influence co-locations in which multiple pollution sources affected cancer patients. As
cliques are too strict to reflect real world scenes, Ma et al. [30] observed that central instances
usually had more neighbors than non-central instances in a star-shaped materialized model,
so they proposed a new approach to mine sub-prevalent co-locations with dominant features.
Although many notions and methods have been proposed for co-location mining, they are
not applicable to an influence propagation process where space is anisotropic.

2.2. Influence Analysis

Influence analysis is another hot spot that has aroused researchers’ enthusiasm for
in-depth study and wide applications, including influence evaluation on nodes [31],
attribute-based treatment [32], community partition [33], and influence propagation [34].
Shang et al. [31] used an analytic hierarchy process method for constructing judgment
matrices with multi-dimensional attributes, evaluated attribute weights, and calculated
weights on nodes and edges to form a weighted topological network; they subsequently
computed the influence of nodes with Weibo reposting and non-reposting probabilities.
Li et al. [32] built a hierarchical tree based on the attributes associated with locations and
dispersed the locations into different segments by using the Voronoi partition method,
and then they used the four-color mapping theorem for coloring polygons to quickly
choose virtual locations and protect privacy. Citraro et al. [33] introduced a bottom-up
low complexity approach (EVA) to identify network-hidden mesoscale topologies by opti-
mizing structural and attribute-homophilic clustering criteria. Subbian et al. [34] realized
that information flow trends and influencers in social networks have become increasingly
relevant, so they proposed an algorithm to mine the information flow patterns and then
leverage an approach to determine key influencers in networks. Although research on
influence analysis has achieved fruitful insights that can be considered for reference, few
have considered the spatial characteristics of objects or the influence between instances of
distinct categories. Moreover, research in the fields of influence analysis and co-location
mining has seldom been fused.
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2.3. Spatio-Temporal Pattern Discovery

In the era of big data, the scale and growth of data have expanded tremendously.
Therefore, spatio-temporal pattern mining has grown to be an important research field.
Yoo et al. [35] introduced a temporal dimension and identified co-evolving spatial event
sets by applying an existing spatial co-location pattern mining approach on each timestamp.
To cut down expensive costs of prevalence calculation, Celik et al. [36] proposed a method
for mining mixed drive spatio-temporal co-location patterns and designed combined
indices that satisfied anti-monotone conditions to prune the search space. They also mined
persistently occurring and top-K ordering spatio-temporal co-location patterns [37,38].
Qian et al. [39] studied the spread patterns of spatio-temporal co-occurrences over zones.
Celik et al. [40] proposed a new method for mining partial spatio-temporal co-occurrence
patterns by first discovering spatially prevalent co-occurrence patterns then calculating
temporal prevalence indices to filter those prevalent patterns. To consider the linkages
between time slots, Qian et al. [41] introduced the influence of a time interval between
features into the interest measure and proposed a sliding window model with weights to
mine spatio-temporal co-location patterns. Huang et al. [42] proposed sequence pattern
and corresponding mining approaches for a scenario of an epidemic disease spreading
among different features.

In addition, this study concerns the latest progress in related interdisciplinary fields,
e.g., mechanisms of epidemic dispersal [43], dynamic pattern mining of spatio-temporal
data [44–47], and attribute-aware analysis [48]. Within this context, Hufnagel et al. [43]
introduced a probabilistic model that described the worldwide spread of infectious dis-
eases and achieved good agreement with published case reports, which showed that the
high degree of predictability was caused by the strong heterogeneity of their network.
Chen et al. [44] mined recurring co-movement patterns from trajectories of objects in a con-
secutive period of time. Hu et al. [45] proposed dynamic co-location mining in view of the
fact that the definition of the participation ratio for a traditional co-location cannot reflect
two or more feature changes in the same proportion and omits some meaningful patterns.
Moosavi et al. [46] introduced a geo-spatiotemporal pattern discovery framework that
defined a semantic neighborhood and proposed a propagation pattern to reveal common
cascading forms of geospatial objects in a region, and they proposed another influential
pattern to demonstrate the impact of long-term geospatial objects on their neighborhood.
Shekhar et al. [47] reviewed recent computational techniques and tools in spatio-temporal
data mining and asserted that the vast majority of present research was still in Euclidean
space, but the unique asymmetric neighborhood and directionality of the neighborhood
relationship, e.g., anisotropy and flow direction, required by the spatio-temporal network
structure call for novel spatio-temporal statistical foundations and new computational
approaches for spatio-temporal network data mining. Feng et al. [48] aimed to find a region
elsewhere with area and multiple attributes most similar to a specified region.

From the perspective of the aforementioned research, it can be seen that the simplistic
definition of existing spatio-temporal neighborhoods, i.e., spatial nearness based on a Eu-
clidean or Cartesian system and temporal overlap, has hindered traditional explorations of
the influence of leapfrog transmission, which reflects an anisotropic space. Therefore, based
on latest research, the authors of this study defined a new proximity relationship based
on influential flows that perceived attributes of instances and edges from spatio-temporal
data, thus allowing us to mine high IPs within a specified period for the studied scenarios.

3. Definitions and Problem Statement
3.1. Definitions and Formulae

To aid the intuitive understanding of the influence propagation process proposed in
this study, we provide a general overview in Figure 1, where an epidemic first outbreaks in
instance B.1 and spreads along influential media (infectors) flows within a period of time
[t0, t4]. Figure 1a shows that instance B.1 exerts influence on instance A.2 until the moment
ti and the cumulative influence can be computed based on a three-dimensional attribute
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vector AB.1 of instance B.1 and vector Be(B.1,A.2) of directed edge e(B.1, A.2). The digraphs
in Figure 1c illustrate all the existing and existed proximity relations and influencing
directions of Figure 1b. Detailed definitions and examples are provided next.

1 

 

Figure1: 

 

Figuer 2: 

 

Figure 3: 

Figure 1. Demonstration of an influence propagation process within a specific period. (a) Instance
B.1 has cumulative influence on instance A.2 until moment ti, reflected by attribute vectors of the
influencing instance and the directed edge; (b) influential media flows moving between instances
of distinct features within a time span (e.g., T1 = (t0, t1]) are depicted at last moment (e.g., t1);
(c) influence propagation digraphs at different moments.

Definition 1. (proximity (P)): Given two instances oi, oj, fi 6= f j (their features are distinct), if
influential media flow between oi and oj within a specific period of time, there exists an association
between oi and oj called proximity that is denoted as P(oi,oj) or P(oj,oi). The two instances are
called influential instances or a neighbor instance pair and are linked by directed edge(s). A neighbor
instance pair indicates the occurrence of influence propagation whose directions are determined by
the flows of influential media between the instances. Therefore, two instances of distinct features are
proximate whenever two-way edges or a one-way edge link(s) them, regardless of the direction(s) of
the edge(s).

Definition 2. (star neighbor instance set (SNeI)): Given a spatial instance oi whose feature is
fi ∈ F, the SNeI, i.e., SNeI(oi), denotes a set of instances comprising the central instance oi and its
neighbors with proximity. As depicted in Figure 2, SNeI(A.1) = {A.1, B.1, D.1, D.2, E.2}.

SNeI(oi ) =
{

oj ∈ O
∣∣ oj = oi∨

(
f j > fi∧ P

(
oj , oi))} (1)

Here, instance oj corresponds to feature f j ∈ F and P refers to a proximate relation; the
alphabetic order of features is used for sorting the features to generate non-repetitive SNeI.

Definition 3. (candidate pattern (CAP)): Given a star neighbor instance set I = {o1, o2, . . . , os}
whose non-repetitive features form a candidate pattern c, namely:

CAP(I) = π f I (2)

where π f denotes a relational projection operation on features. As depicted in Figure 2,
c = {A, B, D, E} is a CAP of SNeI(A.1).
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1 

 

Figure1: 

 

Figuer 2: 

 

Figure 3: Figure 2. An example of an influence propagation digraph at a specific moment.

Definition 4. (star participation instance (SPIns)): Given a candidate pattern c = { f1, f2, . . . , fk},
k ≥ 2, feature fi ∈c, and 1 ≤ i ≤ k, the star participation instance of feature fi in pattern c, i.e.,
SPIns(c, fi), denotes an instance set of feature fi where each instance’s SNeI contains instances
covering all features in c:

SPIns(c, fi ) = { oi

∣∣∣ c ⊆ π f SNeI(oi)} (3)

As depicted in Figure 2, SPIns({A, B}, A) = {A.1, A.3}, SPIns({A,C,E}, A) = {A.2}.

Definition 5. (influencing pattern (IP)): Given a candidate pattern c = { f1, f2, . . . , fk}, k ≥ 2,
the pattern c is an IP if any feature fi ∈ c, 1 ≤ i ≤ k, SPIns(c, fi) 6= ∅.

As depicted in Figure 2, the IPs include seven size-2 ones {{A, B}, {A, C}, {A, D}, {A, E},
{B, C}, {B, D}, {C, E}} and three size-3 ones {{A, B, C}, {A, B, D}, {A, C, E}}.

Definition 6. (star row instance (SRI)): Given an IP c = { f1, f2, . . . , fk} and one of its star
neighbor instance sets, i.e., I = {o1, o2, . . . , os}, k, s ≥ 2, then if I is a subset of SNeI(oi) where
oi ∈ SPIns(c, fi), 1 ≤ i ≤ s, fi is the central feature and I (which is called a SRI or SRI(c, fi, oi))
covers c and k = s. The total star row instances of oi are called SRIs(c, fi, oi). The total star row
instances of a central feature fi in c are called SRI(c, fi). The total SRI(c, fi) of all central features
in c constitute star table instance of c, called STI or STI(c).

An instance with an * superscript indicates a central instance in its star row instance.
As depicted in Figure 2, SPIns({A, B, D}, A) = {A.1, A.3}, SRI({A, B, D}, A, A.1) = {{A.1*, B.1,
D.1}, {A.1*, B.1, D.2}}, SRI({A, B, D}, A) = {{A.1*, B.1, D.1}, {A.1*, B.1, D.2}, {A.3*, B.2, D.3}},
STI({A, B, D}) = SRI({A, B, D}, A) + SRI({A, B, D}, B) + SRI({A, B, D}, D) = {{A.1*, B.1, D.1},
{A.1*, B.1, D.2}, {A.3*, B.2, D.3}, {A.3, B.2*, D.2}, {A.1, B.2, D.2*}}.

Since we extracted the time series data from spatio-temporal datasets to reflect the
long-term influencing effect of neighbor instances on a central instance in the form of
multi-dimensional attributes, it was reasonable to reckon our studied object as an attribute
network and utilize its formal expressions. More complicated is that the instances cor-
respond to distinct features, and the edges are also endowed with multi-dimensional
attributes in order to distinguish the influencing effect of an instance on neighbor instances
of distinct features.

Therefore, what we studied can be denoted as an attributed network G = (F, V, E, A),
where F denotes the set of features, V denotes the set of nodes (i.e., instances), and
E ⊆ (V × V) denotes the set of directed edges in the network. A ∈ Rn×d denotes a matrix
that contains all attributes of instances, where n represents the number of instances, d
represents the attribute dimension of an instance, and Aoi ∈ Rd represents a row of matrix
A; the row means the attribute vector of instance oi. Additionally, we used B ∈ Rn′×n′×d′

to denote a matrix that contains all attributes of edges, where n′ represents the number of
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edged instances, d′ represents the attribute dimension of an edge, and Beij ∈ Rd′ denotes
a row of matrix B; the row means the attribute vector of a directed edge eij, which links
instances oi to oj, fi 6= f j.

Definition 7. (unilateral influence of instance (UII)): Given a neighbor instance pair oi and oj,
assuming influential media flow from oi to oj, the instance oi has influence on oj. The influence UII,
i.e., UII(oi, oj), is defined as the power of oi caused its neighbor oj to change:

UII(oi, oj) = (1− p)·Aoi ·ω
T
1 +p·Beij ·ω

T
2 (4)

where p denotes the possibility that instance oi affects oj, Aoi denotes the attribute vector of
instance oi, Beij denotes the attribute vector of edge eij between endpoints oi and oj, and
vectors ωT

1 and ωT
2 denote the weights of attributes of instance and edge, respectively.

Example 1. Choose an instance pair {D.2, A.1} in Figure 2; given AD.2. = [0.819961, 0.102800,
0.774131], ωT

1 = [0.69, 0.23, 0.08]T, Be(D.2,A.1). = [0.611657, 0.238967, 0.582688], ωT
2 = [0.75,

0.07, 0.18]T, p equals 58%, indicating a percentage that influential media landing instance A.1
takes in the total influential media when moving out of instance D.2. Thus, we obtain UII(D.2,
A.1) = (1 − 0.58) · [0.819961, 0.102800, 0.774131] · [0.69, 0.23, 0.08]T + 0.58 · [0.611657,
0.238967, 0.582688] · [0.75, 0.07, 0.18]T = 0.610171. In the same way, we can see that UII(B.1,
A.1) = 0.840806, UII(D.1, A.1) = 0.189951, as per Formula (4) and the given data.

Definition 8. (influence of feature in an IP (IFIP)): Given a size-k IP c = { f1, f2, . . . , fk}, k ≥ 2,
feature fi ∈ c, and the star participation instance SPIns(c, fi), the influence of feature fi in pattern
c, i.e., IFIP(c, fi), is defined as sum of maximal influence of SPIns(c, fi). The maximal influence of
each central instance oi of SPIns(c, fi) denotes the maximum cumulative influence that the instance
oi receives from its neighbor instances in its star row instance SRI(c, fi, oi), namely:

IFIP(c, fi) = ∑
oi∈SPIns(c, fi)

max
oi∈SRIs(c, fi , oi)

1− ∏
oj∈SRI(c, fi , oi),oj 6=oi

[
1−UII

(
oj, oi

)] (5)

Example 2. Given the IP c = {A, B, D} in Figure 2, the UII(B.1, A.1), UII(D.1, A.1), and
UII(D.2, A.1) values in example 1 can be used to calculate UII(B.2, A.3) = 0.584771, UII(D.3, A.3)
= 0.230016, and SRI(c, A) = {{A.1*, B.1, D.1}, {A.1*, B.1, D.2}, {A.3*, B.2, D.3}}; therefore, IFIP(c,
A) = max{[1 − (1 − 0.840806)(1 − 0.189951)], [1 − (1 − 0.840806)(1 − 0.610171)]} + [1 − (1
− 0.584771)(1 − 0.230016)] = max{0.871045, 0.937942} + 0.68028= 1.618222. Formula (5) can
ensure that the cumulative influence that a central instance receives from its multiple neighbors
grows but does not surpass 1; this arrangement is useful for constructing a metric to evaluate an
influencing level of IPs and taking advantage of the downward closure property to prune search
space later.

Definition 9. (star influence ratio (SIR)): Given a size-k IP c = { f1, f2, . . . , fk}, k ≥ 2, feature
fi ∈ c, and a set containing all the influential instance(s) of feature fi, i.e., Sin( fi), 1 ≤ i≤ k, the ratio
SIR, i.e., SIR(c, fi), denotes the average of IFIP(c, fi) on each influential instance of feature fi, namely:

SIR(c, fi) =
IFIP(c, fi)

|Sin( fi)|
(6)

where |Sin( fi)| denotes the number of influential instances of feature fi.

Definition 10. (star influence index (SII)): Given a size-k IP c = { f1, f2, . . . , fk}, k ≥ 2, feature
fi ∈ c, and 1 ≤ i ≤ k, the star influence index SII, or SII(c), denotes the minimal star influence
ratio SIR(c, fi) among all features in c, namely:

SII(c) = mink
i=1{SIR(c, fi)} (7)
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Definition 11. (high influencing pattern (high IP)): high IP denotes a high influencing pattern if
its SII(c) is no less than a given threshold SIIthreshold.

Example 3. For an IP c = {A, B, D} in Figure 2, IFIP(c, A) = 1.618222, IFIP(c, B) = 0.919276,
IFIP(c, D) = 0.737827, |Sin(A)| = 3, |Sin(B)| = 2, | Sin(D)| = 3, so SIR(c, A) = 1.618222/3
≈ 0.54, SIR(c, B) ≈ 0.46, SIR(c, D) ≈ 0.25, SII(c) = min{0.54, 0.46, 0.25} = 0.25. We assumed
SIIthreshold = 0.2, and since SII(c) > SIIthreshold, the IP {A, B, D} is a high IP.

3.2. Problem Statement

Based on the aforementioned analysis, we defined the concerned problem.

Definition 12. (high influencing pattern discovery in an influence propagation process (HIPD-
IPP)): We assumed a nonempty finite set O of spatial instances that belong to a set F of features.
If original influence outbreaks in an instance, influential media flow between instances, creating
proximate relations between instances of distinct features and showing influencing directions, thus
resulting in a set of IPs. Given an influencing measurement SII on star table instances STI of an IP
c, the HIPD-IPP problem aims to find the set C of all the IPs whose influencing levels are no less
than a given threshold SIIthreshold at a specific moment of the influence propagation process, i.e.,:

C = { c | SII(c) ≥ SIIthreshold, c ⊆ F } (8)

4. Methodology

This method aims to provide a pattern mining tool for an influence propagation
process, where the spatial objects have complex interactions. To elaborate this tool, the
section is divided into four sub-sections: a framework and Benchmark algorithm, an
analysis of related properties, two improved algorithms with pruning strategies, and an
analysis of time complexity.

4.1. A Framework and Benchmark Algorithm

The authors of this study proposed a framework for mining high IPs over time
series data (Figure 3) by integrating multidisciplinary knowledge and technologies from
fields such as spatial co-location pattern mining, influence analysis, and spatio-temporal
pattern discovery.

Specifically, in this framework, a data preprocessing stage is set up before high IP
mining, where we first generate proximate relations between instances of distinct features
by identifying influential media flows, then apply attribute descriptors to extract time
series data and calculate multidimensional attribute vectors for instances and edges, and
obtain attribute weights by an analytic hierarchy process. Next, we mine high IPs in two
steps: one finds IPs from a star neighbor instance set (in a top-down way), and the other
picks up high IPs from the IPs (in a bottom-up way). The details are described as follows.

In the first step, one uses a star-shaped materialized model to obtain a star neighbor
instance set, and then one identifies candidate patterns and creates a three-layer hashmap
structure of HashMap<Character, Map<String, Map<Character, List<String>>>> for fast stor-
age and retrieval. Figure 4 illustrates the process of obtaining a star neighbor instance
set, candidate patterns, and a corresponding three-layer hashmap structure from Figure 2.
Next, one traverses the candidate patterns to collect qualified patterns to an IPs set or
decomposes the unqualified patterns by a central feature to sub candidate patterns at a
smaller size (Figure 5). The process iterates size-by-size in a top-down way until it stops at
the size-2 level. Finally, the IPs at all sizes can be acquired.
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Figure 3. A proposed framework for mining high IPs.
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Figure 5: Figure 4. An illustration that shows the star neighbor instance set, candidate patterns, and three-layer hashmap structure
obtained from Figure 2, where the central features of candidate patterns are marked with an * superscript to improve readability.
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Figure 5. An example of decomposition of the unqualified patterns by a central feature to sub candidate patterns at a smaller
size, based on Figure 2, where the central features of candidate patterns are marked with an * superscript to improve readability.

In the second step, one extracts the star table instances, i.e., star row instances of
central instances and those of their features for the IPs; then, based on the attribute vectors
and attribute weights obtained in the preprocessing stage, one obtains the influence of
features in IPs by calculating the sum of the maximum influence of star participation
instances of the features in the star row instances. Next, one calculates the star influence
ratio and the star influence index for IPs and then filters high IPs with a given SIIthreshold.
The process starts at size-2 IPs and iterates size-by-size in a bottom-up way until it traverses
all IPs. Finally, all the high IPs at all sizes are available.

Based on the aforementioned analysis, we proposed a benchmark algorithm (Bench-
mark for short) for mining high IPs. The pseudocode is listed in Listing 1 and Listing 2,
and the description of Benchmark is as follows.

1. Data preprocessing (Steps 1–4): In this step, one extracts time series data from
spatio-temporal datasets, identifies each influential instance that has influential media
to/from other instances, generates proximate relations for those influential instances
(Steps 1–3), and calculates attribute matrices A and B, weight vectors ωT

1 and ωT
2 , and

probabilities p, as described in Section 5.1.3 (Step 4).
2. Identifying influencing patterns (Steps 5–12): In this step, one first initiates IPs and

HIPs sets and generates a star neighbor instance set as per the proximate relations of
instances (Steps 5–6). Then, one applies a three-layer hashmap structure to extract
candidate patterns from the star neighbor instance set (Step 7). Next, one generates
star row instances and extracts star participation instances (Steps 8–9). Then, one
traverses candidate patterns in a top–down way (Step 10) to check whether they are
IPs. The identified IPs are added to the IPs set (Step 11); otherwise, the candidate
patterns are decomposed with central feature to sub candidate patterns at a smaller
size (Step 12).

3. Mining high influencing patterns (Steps 13–19): This process starts at size-2 IPs (Step 13).
Each c in size-k IPs (Steps 14–15) gets c’s star influence index by calling Function 1 (Step
16). Pattern c, whose SIIc ≥ SIIthreshold, is then added to HIPs set (Step 17). The while
loop continues in ascending order (Step 18). All found HIPs are returned (Step 19).
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Listing 1. A benchmark algorithm for high IP mining (Benchmark for short).

Input: F = { f1, f2, . . . , fm}, O = {o1, o2, . . . , on}, |Sin( fi)|, SIIthreshold.
Output: All high influencing patterns satisfying SIIthreshold.
Variables: Please refer to Table A1 in Appendix A.

Data Preprocessing:

1. For each o = {o1, o2, . . . , os} in O, do
2. If ∀ oi.influential_flows != 0, then add oi to Os;
3. Generate proximate relations Rs for all influential instances from F and Os over time series data;
4. Calculate attributes matrices A, B for all influencing instances and edges, respectively;

compute weight vector ωT
1 , ωT

2 for attributes of any instance and edge; and calculate
probability vector p.

Mining Steps:

5. IPs = ∅, HIPs = ∅;
6. Ns = generate_star_neighbor_instance_sets(Rs);
7. Cs = generate_candidate_patterns(Ns);
8. SRIc, fi

= generate_star_table_instance(c, fi, Ns);
9. SPInsc, fi

= extract_star_participation_instance(STIc, fi
);

10. For each c = { f1, f2, . . . , fk} in Cs do
11. If ∀ fi ∈ c, SPInsc, fi

!= ∅, then add c to IPs;
12. Else decompose c with central feature and add c′= { f1, f2, . . . , fk−1} to Cs;
13. k = 2;
14. While IPsk != ∅ do
15. For each c in IPsk, do
16. SIIc = calculate_star_influence_index(c, Ns, p, A, B, ωT

1 , ωT
2 );

17. If SIIc ≥ SIIthreshold, then add c to HIPs;
18. k = k + 1;
19. Return HIPs.

Listing 2. Function 1: calculate_star_influence_index(c, Ns, p, A, B, ωT
1 , ωT

2 ).

Input: c, Ns, p, A, B, ωT
1 , ωT

2 .
Output: Star influence index of pattern c.
Variables: Please refer to Table A1 in Appendix A.

1. For each fi in c, do
2. IFIPc, fi

= calculate_central_feature_influence(c, fi, SRIc, fi
, SPInsc, fi

, p, A, B, ωT
1 , ωT

2 );
3. SIRc, fi

= calculate_star_influence_ratio(IFIPc, fi
, |Sin( fi)|);

4. SIIc = min SIRc, fi
;

5. Return SIIc;

4.2. Analysis of Related Properties

As the Benchmark needs to traverse all IPs size-by-size to mine high IPs, it is inefficient
at treating large-scale data, so we found ways to improve its efficiency. In co-location
pattern mining research, a downward closure property (also called anti-monotonicity),
i.e., a measurement of pattern that continually decreases with the rise of pattern size,
is often applied to prune patterns whose measurement are less than a given threshold.
Unfortunately, as in Figure 2, SII({A, B}) = 0.15 < SII({A, B, D}) = 0.25, so the IPs measured
with star influence index cannot satisfy this property. As such, it was necessary to find
other ways to boost efficiency.

Lemma 1. (upper bound of SII satisfies downward closure property): the measurement of the star
influence index has an upper bound that satisfies the downward closure property.

Proof. please refer to proof B2 for Lemma 1 in Appendix B. �
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As mentioned in Lemma 1, the SII(c)’s upper bound SPI(c) = mink
i=1

{
| SPIns(c, fi) |
|Sin( fi)|

}
satisfies the downward closure property, that is, for a size-k IP c and a k + 1-size IP
c′ = c∪{ fk+1}, k ≥ 2 and SPI(c′) ≤ SPI(c), so when SPI(c) < SIIthreshold, there exists SII(c′) ≤
SPI(c′) ≤ SPI(c) < SIIthreshold and SII(c) ≤ SPI(c)< SIIthreshold. Therefore, the IP c and all its
super IPs c′ are not high influencing patterns and should be pruned.

This is the case for pruning IPs c whose SPI(c) < SIIthreshold. Once SPI(c) ≥ SIIthreshold,
so we needed to find another pruning strategy. Inspired by Definition 10 that SII(c) takes
the minimum SIR(c, fi), we proposed one more lemma for designing a pruning strategy
as follows.

Lemma 2. (an incremental feature determines the influencing level of super IP of a high IP): Given
a size-k high IP c = { f1, f 2, . . . , f k}, fi ∈ c, k ≥ 2, and its super IP c′ = c ∪ { fl}, once SRI(c, fi)
= SRI(c′, fi), fi 6= fl , the influencing level of c′ depends on whether the value of star influence ratio
SIR(c′, fl) is no less than SIIthreshold.

Proof. please refer to proof B3 for Lemma 2 in Appendix B. �

As mentioned in Lemma 2, once SII(c) ≥ SIIthreshold and SRI(c, fi) ⊆ SRI(c′, fi), fi 6= fl ,
when SIR(c′, fl) ≥ SIIthreshold, SII(c′) ≥ SIIthreshold holds; otherwise, SII(c′) < SIIthreshold, so
an incremental feature fl can be used to judge the influencing level of a supper IP c′ of a
high IP c.

Therefore, the authors of this study can propose two pruning strategies as per Lemmas
1 and 2 and put forward two accordingly improved algorithms to boost efficiency.

4.3. Two Improved Algorithms with Pruning Strategies

In view of Lemma 1, indicating that an IP c = { f1, f2, . . . , fk}, k ≥ 2, feature fi ∈ c,
and all its super IPs can be pruned whenever SPI(c) = mink

i=1{| SPIns(c, fi) |/|Sin( fi)|} <
SIIthreshold, we introduced an improved algorithm (Improved-1 for short) for mining high IPs
with a pruning strategy, as depicted in Listing 3. Improved-1 accepts codes of Benchmark
and inserts additional codes between Steps 12 and 13 of Benchmark. Thus, Steps 13–19 of
Benchmark are Steps 19–25 of Improved-1.

Listing 3. Improved algorithm for high IP mining with a pruning strategy (Improved-1 for short).

Input, Output, Variables: The same as in Listing 1.

13 k = 2;
14 While IPsk ! = ∅, do
15 For each c in IPsk, do

16 SPIc= compute_upper_bound_index
(

SPInsc, fi
, |Sin( fi)|);

17 If SPIc < SIIthreshold, then prune c and all its super IPs in IPs;
18 k = k + 1;

Whenever SPI(c) ≥ SIIthreshold, one cannot again use upper bounds to prune low IPs.
Lemma 2 provides a concise way to identify high IPs from size-k IPs (k > 2) based on size-2
high IPs, i.e., first filter size-2 high IPs and then search their super IPs c′ = c∪ { fl} in IPs size
by size. Once c′ exists and SRI(c, fi) ⊆ SRI(c′, fi), a common case occurs among low-size
IPs, and the value of SIR(c′, fl) determines whether c′ is a high IP or not. IPs with SIR(c′,
fl) ≥ SIIthreshold are added to HIPs; otherwise, they are pruned. As for other cases, such as
when IPs are not super IPs of a high IP or SRI(c, fi) ⊃ SRI(c′, fi), the regular calculation of
the features of an IP should be conducted to identify high IPs. The iteration proceeds until
IPs is traversed.

Therefore, we proposed another improved algorithm (Improved-2 for short) for min-
ing high IPs with two pruning strategies, as depicted in Listing 4. Improved-2 accepts codes
(Steps 1–18) of Improved-1 and replaces Steps 19–25 of Improved-1 with the following
codes (Steps 19–42 in Listing 4).
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Listing 4. Improved algorithm for high IP mining with two pruning strategies (Improved-2 for short).

Input, Output, Variables: The same as in Listing 1.

19 While IPs2 != ∅, do
20 For each c in IPs2, do
21 SIIc = calculate_star_influence_index(c, Ns, p, A, B, ωT

1 , ωT
2 );

22 If SIIc ≥ SIIthreshold, then add c to HIPs;
23 k = 3;
24 While IPsk != ∅ do
25 For each c′ in IPsk, do
26 If HIPsk-1 != ∅, then do
27 If c′ finds a sub pattern c in HIPsk-1, then do // suppose c′= c ∪ fl
28 If SRIc, fi

⊆ SRIc′ , fi
then do

29 IFIPc′ , fl
= calculate_star_feature_influence(c′, fl , SRIc′ , fl

, SPInsc′ , fl
, p, A, B, ωT

1 , ωT
2 );

30 SIRc′ , fl
= calculate_star_influence_ratio(IFIPc′ , fl

, |Sin( fl)|);
31 If SIRc′ , fl

≥ SIIthreshold, then add c′ to HIPs;
32 Else do
33 SIIc′ = calculate_star_influence_index(c′, Ns, p, A, B, ωT

1 , ωT
2 );

34 If SIIc′ ≥ SIIthreshold, then add c′ to HIPs;
35 Else do
36 SIIc′ = calculate_star_influence_index(c′, Ns, p, A, B, ωT

1 , ωT
2 );

37 if SIIc′ ≥ SIIthreshold, then add c′ to HIPs;
38 Else do
39 SIIc′ = calculate_star_influence_index(c′, Ns, p, A, B, ωT

1 , ωT
2 );

40 If SIIc′ ≥ SIIthreshold, then add c′ to HIPs;
41 k = k + 1;
42 Return HIPs.

4.4. Analysis of Time Complexity

To analyze the time complexity of the high IP mining algorithms based on Benchmark,
we divided the whole process into four relatively independent parts, proximity generation,
IPs search, size-2 high IP mining, and size-k (k > 2) high IP mining, and formulated an
equation for total time cost T:

T= Tgenerate_P(S)+TIPs_search(P)+T(2)+ ∑
k>2

T(k) (9)

where S denotes the input data sources, P denotes all proximity relations, and T(2) denotes
time cost for size-2 high IP mining. For the sake of discussion, u denotes the amount
of influential instances at the last moment of a specified period, m denotes total feature
amount, and n denotes total instance amount in space.

Tgenerate_P(S): first of all, one searches influential medium flows existing between
influential instances of distinct features to find neighbor instance pairs; one search costs
O(1) and proximity relations are O(u2) at most, so Tgenerate_P(S) = O(u2).

TIPs_search(P): An influential instance has at most u neighbors, so after traversing the
influential instances and their neighbors and applying a three-layer hashmap structure to
store the instances and their candidate patterns, star neighbor instance sets cost time O(u2).
Suppose the largest size of candidate patterns to be a (2 ≤ a ≤ m); as single feature patterns
are not in consideration, total candidate patterns are 2a − m − 1. A candidate pattern is
moved to an IPs set or be decomposed with a central feature to sub candidate patterns at a
smaller size. In the worst case, this process costs time O(u2) + O((2a − m − 1)·u).

T(2): The size-2 IPs are traversed to mine high IPs. Due to the design of the three-
layer hashmap structure, inquiring star row instances of a size-2 IP costs T(2)1 = O(1).
Considering the worst case, each central instance of a size-2 IP has u-1 neighbor instances of
distinct feature of the pattern. The time to calculate IFIP(c, fi) is T(2)2 = u·m·O(1) = O(u·m),
and calculations of SIR and SII cost T(2)3 = O(m). As |Sin( fi)| is a constant, size-2 IPs
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counts C2
m as the upmost; therefore, T(2) = C2

m·[T(2)1+T(2)2+T(2)3] = C2
m·[O(1) + O(u·m) +

O(m))] = O(u·m3).
∑

k>2
T(k): As discussed above, candidate IPs for mining high IPs count 2a − C2

m − m −

1 and the time to mine a high IP with SII metric costs O(u·m), so the time cost of ∑
k>2

T(k) is

O(2a − C2
m − m − 1)·O(u·m).

In summary, in the worst case, total time consumption T in Benchmark costs:

T = O(u2) + O(u2) + O((2a − m − 1)·u) + O(u·m3) + O(2a − C2
m − m − 1)

·O(u·m) = O(u2) + O(um3) + O(2a· u·m)
(10)

The heuristic strategy, i.e., identifying influential instances out of space, creates
only partial instances that need to be processed, and the two improved algorithms, i.e.,
Improved-1 and Improved-2, limit the value of a within a finite range. As such, our method
is related to the amount of influential media and features and the maximum of pattern size,
but it is not related to the amount of instances. Its operation speed is fast, especially in the
early and middle stages of influence propagation. However, its effects on cost saving are
uncertain due to the unknown scale and distribution properties of datasets.

5. Experimental Evaluation

In this section, we provide experimental results and corresponding analysis, including
the experimental conditions, data description and preprocessing, effectiveness of high IP
mining algorithms on a real dataset, efficiencies of high IP mining algorithms on a real
dataset and a synthetic dataset, and the scalability of high IP mining algorithms on the
synthetic datasets. Java 1.8.0_202, Java SE (build 1.8.0_202-b08), Java Server VM (build
25.202-b08, mixed mode), and Eclipse IDE 2019-03(4.11.0) were used to run experiments on
a normal PC with Intel core i7-8700K CPU @ 3.70 GHz, 3.70 GHz, 16.0 GB RAM, Windows
10 Pro (64-bit).

5.1. Study Area and Data
5.1.1. Study Area

Mainland China was the study area. Hong Kong, Macao, and Taiwan were excluded
due to their distinct enforcement of epidemics prevention and control measures. With
reference to the 2019 China cities classification of China Business News, we enumerated
365 cities of China (Figure 6a) comprising 304 cities in 22 provinces, 57 cities in 5 au-
tonomous regions, and 4 municipalities. Each city refers to an administrative area that
comprises affiliated cities and counties.

1 

 

  
(a) (b) 

 
Figure 6. (a) A distribution map for the studied POIs (cities) in mainland China; (b) a UI that shows inter-city human
migration trends at the Baidu Map Smart Eye site.
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5.1.2. Data Description

Though the influence propagation process proposed in this work was specifically
designed for epidemic dispersal scenarios, as far as we know, no such public dataset is
currently available. Therefore, we created a real dataset, Real-1, by collecting data on
COVID-19 epidemic dispersal, urban statistics, and ambient conditions for all the cities in
mainland China.

Our epidemic dispersal data, supplemented and verified by Doctor Clove, included
the number of infections, the number of cures, and the number of deaths in all cities from
12 December 2019 to 16 July 2020, and the number of inter-city infector migrations; they
were downloaded from the COVID-19/2019-nCoV time series infection data warehouse,
the COVID-19 data repository by the Center for Systems Science and Engineering (CSSE)
at Johns Hopkins University, the epidemic announcements of the National Health Com-
mission of China, and its provincial and municipal affiliates. These data were used in this
study to calculate the attribute vectors of cities (i.e., infected ratio, non-cured ratio, and
death ratio), and to determine proximate relations between cities (i.e., instances) of distinct
categories (i.e., features). Urban statistics included the aforementioned China cities classifi-
cation of China Business News on 26 May 2019 and the inter-city human migration data
and intra-city traffic intensity data from 12 December 2019 to 16 July 2020; these data were
downloaded from Baidu Map Smart Eye site (Figure 6b), and they were used to classify
all the cities into seven categories of {A, B, . . . , G} and to describe human-flow closeness
and traffic intensity similarities between neighbor instance pairs. Ambient condition data
included daily average values of relative humidity during 1960–2017; ultraviolet radiation
index values during 1961–2014; and temperature, precipitation, and overall air quality
index values during 1981–2010 for all cities. These data were downloaded from the Science
Data Bank and China Meteorological Observatory, and they were used to calculate the
ambient condition similarities between neighbor instances.

In addition, we used a spatial data synthesizer similar to that used in [17,19,23] to
generate 18 synthetic datasets at distinct scales (i.e., Syn-1~18).

A summary of real and synthetic datasets is presented in Table 1.

Table 1. A summary of real and synthetic datasets.

Name of Dataset Instance Amount Influential Media Amount Feature Amount Attribute Dimensions

Real-1 365 1,300 7 6

Syn-1 20,000 5,000 15 6

Syn-2/3/4/5/6 200,000/400,000/600,000/
800,000/1,000,000 10,000 20 10

Syn-2/7/8/9/10 200,000 10,000/20,000/30,000/
40,000/50,000 20 10

Syn-2/11/12/13/14 200,000 10,000 20/30/40/50/60 10

Syn-2/15/16/17/18 200,000 10,000 20 10/20/30/40/50

5.1.3. Data Preprocessing

The data preprocessing of the Real-1 dataset can be described as follows.
Generate proximate relations: we created semantic proximities for neighbor instance

pairs once they interacted via flows of influential media.
Obtain attribute vectors: As an influence propagation process usually shows different

properties within distinct time segments of a consecutive period of time, we divided the
time span of the Real-1 dataset, i.e., from 12 December 2019 to 16 July 2020, into five time
segments by four points in time, i.e., January 24, February 8, March 13, and April 30 of
2020. Accordingly, we designed a new attribute descriptor to obtain attribute vectors by
extracting time series data from the Real-1 dataset, preprocessing them in the divided time
segments, and integrating them.
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Definition 13. (Attribute Descriptor, AD): The descriptor AD denotes an integrated operation on
attributes of an object within a specific period of time T = {T1, T2, . . . , Tl} that is used to measure
the negative influence between two instances of distinct features.

When an object denotes an influencing instance o, the descriptor AD produces the
attribute vector Ao, i.e., AD(o), for the instance o as follows:

AD(o) = [Norm(Ds(o, v1, T)), Norm(Ds(o, v2, T)), . . . , Norm(Ds(o, vw, T))] (11)

where vj ∈ V = {v1, v2, . . . vw} denotes a dimensional attribute of instance o, Ti ∈ T denotes
a time segment of T, Ds averages the cumulative values o

[
vj
]

Ti
of attribute vj of instance o

in segment Ti (i.e., Ds
(
o, vj, T

)
=

l
∑

i=1
o
[
vj
]

Ti
/l), and Norm denotes a min–max normalization

of the value of Ds. For Formula (11), l = 5, w = 3, v1 denotes the infected ratio, v2 denotes the
non-cured ratio, and v3 denotes the death ratio; therefore, the AD(o) is a three-dimensional
attribute vector with values processed with the three kinds of ratios.

When an object denotes a directed edge e, the descriptor AD produces the attribute
vector Be, i.e., AD(e), for edge e as follows:

AD(e)=
[
Norm(Dh(e, T)), Norm

(
Dc
(
e, V′1, V ′′1 , T

))
, . . . , Norm

(
Dc
(
e, V′z , V ′′z , T

)]
(12)

where Dh averages the modulus for the vector sum of media flowing in two opposite direc-

tions in edge e within T, i.e., Dh(e, T) =
l

∑
i=1

{(
rTi

pq/|Ti|
)2

+
(

rTi
qp/|Ti|

)2
}1/2

/l, supposing

the edge e has two endpoints op, oq; fp 6= fq; rTi
pq denotes the amount of media moving from

op to oq within a time segment Ti ∈ T; rTi
qp denotes the amount of media moving in the

opposite direction within the same segment Ti; and |Ti| denotes the number (i.e., days) of
Ti. Additionally, Dc operates cosine similarity between an attribute vector V′i = {v′1, v′2, . . .
v′w′ } of endpoint op and another attribute vector V ′′i = {v′′1 , v′′2 , . . . v′′w′′ } of endpoint oq within
T, v′i (or v′′i ) denotes a dimensional value for vector V′i (or V ′′i ), and Norm denotes a min-max
normalization. For Formula (12), l = w‘= w‘’ = 5, and z = 2; Dh(e, T) processes media (i.e.,
human-flow) data; Dc

(
e, V′1, V ′′1 , T

)
processes the daily averaged ambient condition data

of relative humidity, ultraviolet radiation index, temperature, precipitation, and overall
air quality index; and Dc

(
e, V′2, V ′′2 , T

)
processes daily averaged inner-city traffic intensity

data within five divided time segments of T. Therefore, AD(e) is a three-dimensional at-
tribute vector with processed values of human-flow closeness, ambient conditions, and
inner-city traffic intensity.

Calculate weights of attributes: We applied an analytic hierarchy process, a widely
applied approach introduced by Thomas L. Saaty [49] for quantifying the weights of deci-
sion criteria and evaluating relative magnitudes of objects through pairwise comparisons,
to calculate the attribute weights for instances and edges. The process can be described
as follows. A nine-rank metric standard is first introduced to artificially assign weights
to paired attributes to obtain a judgment matrix. Then by normalizing the column vector
and doing an arithmetic average of the row vector, three attribute weight matrices for
instances (or edges) can be obtained. Next, after a consistency check, one can endow the
attributes of instances (i.e., ωT

1 ) with three weights, infected ratio (0.69), non-cured ratio
(0.23), and death ratio (0.08), and can endow the attributes of edges (i.e., ωT

2 ) with another
three weights: human-flow closeness (0.75), ambient condition (0.07), and inner-city traffic
intensity (0.18).

Calculate the possibility of influence for a neighbor instance pair: The possibility p
that instance oi affects its neighbor instance oj can be calculated as a percentage of the
amount of influential media leaving oi for oj occupies the total influential media leaving oi.
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Therefore, one can obtain attribute matrices A and B, weight vectors ωT
1 and ωT

2 , and
probability vector p from spatio-temporal datasets in the data preprocessing stage; then,
one is ready for influence evaluation between neighbor instances.

The data preprocessing of the synthetic datasets can be described as follows.
Generate random numbers for influential media: Based on synthetic datasets, one

generates random numbers of influential media in [1, 2] for influencing instances and
generates random numbers of influential media in [10, 15] for influenced instances; the
generated numbers are randomly assigned to instances in a distributed manner as much as
possible at five specific moments. The amount of influential media in influencing instances
equals that of influential media in influenced instances at adjacent moments, and the total
amount of influential media is specified for a specific synthetic dataset, e.g., five thousand
influential media are generated for the Syn-1 dataset. Then, those influential media flow in
a random way from influencing instances to the influenced instances at those moments.
Accordingly, proximate relations between influential instances of distinct features can
be obtained.

Generate random numbers for attributes: one generates random numbers in [0, 1) for
attributes of instances (or edges) as required during the running process of high IP mining
algorithms over synthetic data.

5.2. Effectiveness of High IP Mining Algorithms

We were the first to introduce high IP mining for an influence propagation process, so
we chose the most similar high influence co-location pattern mining algorithm [28] (HICP
mining for short) for a comparison of effectiveness and efficiency.

Our comparison of effectiveness was based on the Real-1 dataset with preset variables
as default unless specified otherwise. When studying the effect of the distance threshold
on pattern amount, we set SIIthreshold = InIthreshold = 0.01 and the distance threshold R took
values within [100, 500] km. When studying the effect of SIIthreshold/InIthreshold on pattern
amount, we set R = 500 km and the influence index threshold SIIthreshold/InIthreshold took
values within [0.01, 0.03].

Please note that to facilitate the comparison of the effectiveness and efficiencies of the
two algorithms in the same orders of magnitude in Sections 5.2 and 5.3, we temporarily
replaced the denominator |Sin( fi)| of Formula (6) with |S( fi)| (which denotes the number
of instances of feature fi) for high IP mining. Because |Sin( fi)| ≤|S( fi)|, the properties and
codes of the high IP mining algorithms are not affected.

5.2.1. Comparison of Top 5 Patterns at All Sizes Mined by Benchmark and HICP Mining of
the Real-1 Dataset

Table 2 reveals that Benchmark can find more patterns than the HICP mining algo-
rithm, i.e., a size-2 pattern {D, E}, two size-3 patterns {{B, D, E}, {B, E, F}}, three size-4
patterns {{A, B, C, D}, {B, C, D, E}, {B, C, E, F}}, and a size-5 pattern {A, B, C, D, E}. That
is because HICP mining can only find high influence co-location patterns whose table
instances exist in R-bounded cliques, while Benchmark can find high IPs beyond the stretch
of distance threshold R. Additionally, the two algorithms found some common patterns,
i.e., two size-2 patterns {{E, F}, {F, G}} and three size-3 patterns {{C, E, F}, {D, E, F}, {C,
D, F}}, because compared with remote cities, adjacent cities more frequently exchange
influential media.

The results showed that the influence index of HICP satisfied the downward closure
property but the star influence index of high IP did not, e.g., InI{C, E, F} = 0.012839, while
InI{C, E} = 0.013159, InI{C, F} = 0.014729, InI{E, F} = 0.015028, InI{C, E, F} < min{InI{C, E},
InI{C, F}, InI{E, F}}. On the other hand, the high IP {B, C, D, E} had no sub high IP {B, C},
and SII{D, E} = 0.035215, while SII{B, C, D, E} = 0.047151.
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Table 2. Top 5 patterns of high IP and HICP (marked with influence index values).

Size-2 Patterns Size-3 Patterns Size-4 Patterns Size-5 Patterns

Top 5 high influencing
patterns (mined
by Benchmark)

{E,F} 0.036990
{D,E} 0.035215
{F,G} 0.019201

{B,D,E} 0.155312
{B,E,F} 0.089215
{C,E,F} 0.025089
{D,E,F} 0.021476
{C,D,F} 0.017934

{A,B,C,D} 0.068126
{B,C,D,E} 0.047151
{B,C,E,F} 0.013266

{A,B,C,D,E} 0.01

Top 5 high influence
co-location patterns (mined

by HICP mining)

{F,G} 0.019537
{E,F} 0.015028
{C,F} 0.014729
{D,F} 0.013853
{C,D} 0.013547

{C,E,F} 0.012839
{C,D,F} 0.012581
{D,E,F} 0.011468
{D,F,G} 0.011316
{C,D,E} 0.010995

{C,D,E,F} 0.010517 null

Please note that Benchmark is the basic algorithm for realizing the high IP mining framework; HICP mining denotes high influence
co-location pattern mining.

The authors of this study classified several cities with serious epidemics into feature
B and found high IPs containing feature B at size-3 and above, while the HICP mining
found no HICPs with feature B at all sizes. This was because high IP mining relies on
influential medium flows, regardless of spatial distance, and star table instances of IPs
appear in a star structure that is more common than table instances of co-locations in
cliques. Additionally, this shows that the provincial capital cities (categorized into feature
B) and regional central cities (categorized into feature C) both have stronger influences
than ordinary cities (categorized into feature D) on relatively remote cities (categorized into
features E, F, and G), and cities at higher rank have wider influence due to the cumulative
effects of influence propagation. The results illustrated that the framework and algorithms
proposed in this study are practical and feasible for high IP discovery in an influence
propagation process.

5.2.2. Comparison of Mined Results of Benchmark and HICP Mining of the Real-1 Dataset

• Effect of distance threshold on pattern amount

Figure 7a shows that as R rose within [100, 500] km, the amount of high IPs (orange
solid line) remained 13 while the amount of HICPs (blue dashed line) fluctuated within
a numerical range of [41, 56]. This was because Benchmark mined high IPs based on
influential medium flows, regardless of R-constrained spatial distances. However, HICP
mining discovered more neighbor instance pairs with the rise of R. In addition to new
instance pairs, existing instances may have had more neighbors and the sizes of candidate
patterns may have been larger. The influence index metric designed for high influence
co-location pattern took the minimum among influence ratios of features and satisfied
the downward closure property, and the influences of instances mainly depended on the
attribute similarity entropy, the values of which were uncertain. Therefore, the pattern
amount mined by HICP mining fluctuated as the distance threshold increased.

• Effect of SIIthreshold/InIthreshold on pattern amount

Figure 7b shows that when SIIthreshold/InIthreshold rose within [0.01, 0.03], the amount
of high IPs (orange solid line) gradually declined from 13 at SIIthreshold = 0.01 to 6 at
SIIthreshold = 0.03. On the other hand, the amount of HICPs (blue dashed line) sharply de-
clined from 41 at InIthreshold = 0.01 to 7 at InIthreshold = 0.015 and then slowly descended to 2 at
InIthreshold = 0.03. This shows that the amount of patterns decreased as SIIthreshold/InIthreshold
rose, the majority of the HICPs had lower influence levels, and the high IPs had a wider
variety of influence levels.
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Figure 7. (a) Effect of distance threshold on pattern amount on the Real-1 dataset; (b) effect of SIIthreshold/InIthreshold on
pattern amount on the Real-1 dataset.

5.3. Efficiencies of High IP Mining Algorithms

Experiments were conducted to compare the efficiencies of the high IP mining and
HICP mining by using two kinds of thresholds (i.e., distance threshold and influence index
threshold) over the Real-1 and Syn-1 datasets. Because the high IP mining algorithms apply
principles for generating neighbor instance pairs different from those of HICP mining,
the latter spends more time finding neighbor pairs by calculating their spatial distance;
therefore, we deducted such neighbor generation time during the efficiency comparison.

The comparison of efficiency was preset with variables as default unless specified
otherwise. When studying the effect of distance threshold on efficiency, we set SIIthreshold
= InIthreshold = 0.01 and the distance threshold R took values within [100, 500] km (on the
Real-1 dataset) or within [80, 400] (on the Syn-1 dataset). When studying the effect of
SIIthreshold/InIthreshold on efficiency, we set R = 500 km (on the Real-1 dataset) or R = 400
(on the Syn-1 dataset) and the influence index threshold SIIthreshold/InIthreshold took values
within [0.01, 0.03].

5.3.1. Efficiency Comparison of High IP and HICP Mining Algorithms over the
Real-1 Dataset

• Effect of distance threshold on efficiency

Figure 8a reveals that the time costs of the high IP mining algorithms were 258, 206,
and 20 ms, and Improved-2 ran faster than the HICP mining algorithm at all times. On the
other hand, the time cost of the HICP mining algorithm (blue dashed line) grew with the
rise of the distance threshold; it started at 29 ms at R = 100 km, passes 209 ms at R = 300 km,
and reached 1347 ms at R = 500 km. This was because the HICP mining relied on distance
thresholds and needed more time to process incremental neighbor instance pairs with the
rise of R, while the high IP mining algorithms did not depend on distance thresholds.

• Effect of SIIthreshold/InIthreshold on efficiency

Figure 8b shows that the time costs of the high IP mining algorithms slightly fluctuated
around 252, 124, and 20 ms with the rise of SIIthreshold within [0.01, 0.03], though that
of Improved-1 fell by 82.6 ms once SIIthreshold rose from 0.01 to 0.015. Improved-1 and
Improved-2 ran faster than the HICP mining algorithm at all times. The time cost of the
HICP mining algorithm (blue dashed line) dropped with the rise of InIthreshold, i.e., it fell
sharply at 1402 ms at InIthreshold = 0.01, passed 131 ms at InIthreshold = 0.015, and then slowly
fell to 104 ms at InIthreshold = 0.03. This was because that majority of the HICPs had influence
levels less than 0.015, while the high IPs had a wider variety of influence levels.
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5.3.2. Efficiency Comparison of High IP and HICP Mining Algorithms over the
Syn-1 Dataset

• Effect of distance threshold on efficiency

The histograms of Figure 8c show that the high IP mining algorithms held their time
costs at 8.472, 6.594, and 6.173 s regardless of variation in R. In sharp contrast, when the
distance threshold R rose within [80, 400], the time cost of the HICP mining algorithm (blue
dashed line) exponentially rose from initial 0.806 s at R = 80 through 17.578 s at R = 160 to
31,499.259 s at R = 400. These results reveal that the HICP mining algorithm ran slower by
1~4 orders of magnitude than the high IP mining algorithms when R varied within [80, 400].

• Effect of SIIthreshold/InIthreshold on efficiency

The histograms of Figure 8d show that the time costs of high IP mining algorithms
slightly fluctuated around 6.9066, 5.9554, and 5.5314 s with the rise of SIIthreshold within
[0.01, 0.03]. On the contrary, when InIthreshold rose within [0.01, 0.03], the time cost of the
HICP mining algorithm (blue dashed line) exponentially fell from initial 31,499.259 s at
InIthreshold = 0.01 through 23.574 s at InIthreshold = 0.02 to 4.855 s at InIthreshold = 0.03. This
shows that most HICPs were concentrated within a range of 0 ≤ InIthreshold ≤ 0.02, while
the high IPs had a wider variety of influence levels.



ISPRS Int. J. Geo-Inf. 2021, 10, 696 22 of 28

5.4. Scalability of High IP Mining Algorithms

The scalability of high IP mining algorithms were evaluated with variations of four
aspects, i.e., instance amount, influential media amount, feature amount, and attribute
dimensions, over Syn-2~18 synthetic datasets. The experiments shared a variable as default:
SIIthreshold = 0.01.

• Effect of instance amount on scalability

The experiment ran on the Syn-2~6 datasets. To evaluate the effect of instance amount
on the scalability of the algorithms, we randomly and uniformly distributed 10,000 influ-
ential media to the instances of each aforementioned dataset. Figure 9a shows that as the
number of instances increased, the time costs of those algorithms did not monotonically
increase or decrease but instead varied within a numerical range of [107, 272] s, showing
a certain range of random fluctuation. This was because the data synthesizer usually
specified a random instance amount for a feature when creating a synthetic dataset, and
the instance amounts under a specific feature were different in distinct synthetic datasets.
Since high IP mining is based on the proximate relations between instances with distinct
features, the occurrence of more instances under the same feature in a dataset causes fewer
table instances of IPs and less time costs, or vice versa. Therefore, the increase in the num-
ber of instances had no effect on the scalability of the algorithms, unless the distribution
of instances changed the relevant factors for mining high IPs. The experimental results
showed that compared to Benchmark, Improved-1 and Improved-2 ran 23% and 32% faster,
respectively, on average.

• Effect of influential media amount on scalability

We ran experiments on the Syn-2 and Syn-7~10 datasets. Figure 9b shows that with
the rise of influential media within a numerical range of [10,000, 50,000], the time costs
of the algorithms rose at a quadratic rate. This was because the algorithms mined high
influencing patterns on the basis of semantic proximate relations, which were generated as
per the directed edges between influential instances. As up to C2

n edges could be created
for n nodes, thus the time costs of the algorithms rose at a quadratic rate as the influential
media increased. The experiment showed that compared to Benchmark, Improved-1 and
Improved-2 ran 24% and 33% faster, respectively, on average.

• Effect of feature amount on scalability

We ran experiments on the Syn-2 and Syn-11~14 datasets. Figure 9c shows that the
time costs of high IP mining algorithms increased cubically when the feature amount rose
within a numerical range of [20, 60]. The experiment showed that compared to Benchmark,
Improved-1 and Improved-2 ran 27% and 41% faster, respectively, on average.

• Effect of attribute dimensions on scalability

We ran experiments on the Syn-2 and Syn-15~18 datasets. Figure 9d shows that the
time costs of the high IP mining algorithms had an up to 69 s difference with the rise of
attribute dimensions, that is attribute dimensions had small effects on the scalability of
the algorithms. As attribute data were mainly used for calculating influences between
instances of distinct features, attribute-related computation used much less time than the
discovery of influencing patterns. This fact is conducive to research on the expansion of
attribute dimensions in the field of pattern recognition. The experiments showed that
compared to Benchmark, Improved-1 and Improved-2 ran 26% and 31% faster, respectively,
on average.



ISPRS Int. J. Geo-Inf. 2021, 10, 696 23 of 28
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 23 of 29 
 

 

 
(a)                                                (b) 

 
(c)                                                (d) 

Figure 9. Comparison of the scalability of high IP mining algorithms with variations of: (a) instance amount, (b) influential 

media amount, (c) feature amount, and (d) attribute dimensions. 

 Effect of influential media amount on scalability 

We ran experiments on the Syn-2 and Syn-7~10 datasets. Figure 9b shows that with 

the rise of influential media within a numerical range of [10,000, 50,000], the time costs of 

the algorithms rose at a quadratic rate. This was because the algorithms mined high influ-

encing patterns on the basis of semantic proximate relations, which were generated as per 

the directed edges between influential instances. As up to 𝐶𝑛
2 edges could be created for 

n nodes, thus the time costs of the algorithms rose at a quadratic rate as the influential 

media increased. The experiment showed that compared to Benchmark, Improved-1 and 

Improved-2 ran 24% and 33% faster, respectively, on average. 

 Effect of feature amount on scalability 

We ran experiments on the Syn-2 and Syn-11~14 datasets. Figure 9c shows that the 

time costs of high IP mining algorithms increased cubically when the feature amount rose 

within a numerical range of [20, 60]. The experiment showed that compared to Bench-

mark, Improved-1 and Improved-2 ran 27% and 41% faster, respectively, on average. 

 Effect of attribute dimensions on scalability 

We ran experiments on the Syn-2 and Syn-15~18 datasets. Figure 9d shows that the 

time costs of the high IP mining algorithms had an up to a 69 s difference with the rise of 

attribute dimensions, that is attribute dimensions had small effects on the scalability of 

Figure 9. Comparison of the scalability of high IP mining algorithms with variations of: (a) instance amount, (b) influential
media amount, (c) feature amount, and (d) attribute dimensions.

6. Discussion and Conclusions

The authors of this study used influential medium flows rather than spatial distance
to create semantic proximate relations between instances of distinct features, which over-
came the shortage of existing approaches that mine high influence co-location patterns
with spatial distance. Accordingly, we cancelled the distance threshold to reduce human
interference in the mining process. Experiments verified that our methods are feasible to
discover high influencing patterns that cannot be found by HICP mining, and they are also
more efficient than HICP mining, whose efficiency is much similar to the classic join-less
algorithm [28]. As such, our methods can be considered an effective extension of existing
high influence co-location pattern mining approaches, especially for pattern discovery in
an influence propagation process.

As this study was focused on realizing high influencing pattern discovery in an
influence propagation process by establishing semantic proximity based on influential
medium flows between instances and using non-spatial attributes to evaluate influences
of influencing pattern, our method does not emphasize efficiency boosts and operates on
instances to calculate influences of features via star table instances. In the future, we will
try to improve the efficiency of our methods from two promising directions.

One direction is the application of unsupervised clustering technologies. Clustering
analysis has the advantages of automatic processing and fast speed, and Huang et al. [50]
first discussed the relationship between clustering and spatial co-location pattern; they
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mainly divided clustering into layer-based clustering (i.e., instances of distinct features
are clustered on different layers) and hybrid clustering (i.e., instances of distinct features
are clustered on the same layer). Usually, clustering is performed based on instances,
but the number of instances is far greater than the number of features in space; therefore,
the researchers proposed a clustering idea based on features. Wang and Lei et al. [26,51]
followed this idea and defined fuzzy proximity relations on instances before deriving fuzzy
proximity relations on features and successfully applying clustering methods, i.e., fuzzy
c-medoids clustering, fuzzy hierarchical clustering, and fuzzy density peak clustering,
to mine prevalent co-location patterns. Although the clustering methods ran fast, it was
difficult and time-consuming to determine the optimal number of clusters and remove
outliers. However, the authors of this study required instances to present in a star-shaped
structure and needed non-spatial attributes to evaluate influence, that are different from
what the traditional clustering methods can meet. There are still many problems to be
studied, such as how to deduce the semantic proximity of features from the semantic
proximity of instances and how to calculate the similarity and dissimilarity between
features based on influence.

Another direction is the use of self-learning methods. In recent years, machine learning
technologies have been widely studied and applied. Research on self-encoding learning and
attribute coupling analysis [52,53], as well as tensor-based computation and deep attributed
network embedding [54,55], has provided many new prospects for high influencing pattern
mining research. As our research involves semantic proximity and scalable non-spatial
attribute analysis, it will be exciting to apply new technologies here. This article provides
a basis for us to explore the interactive relationships between spatial features in attribute
and heterogeneous networks.

In other research directions, association rule mining may provide new ideas, as spatial
association rule mining is an important extension of association rule mining in traditional
transaction databases. Spatial co-location patterns are similar to frequent item sets in
transaction databases. However, the spatial co-location rule problem is different from the
association rule problem since there is no natural notion of transactions in spatial data sets
that are embedded in continuous geographic space. The methods of finding co-location
patterns from spatial data mainly include methods based on spatial statistics and data min-
ing. With the increasing number of spatial instances and features, the number of candidate
patterns to be tested by statistical method has exponentially increased. The method based
on data mining is the main spatial co-location pattern mining method because of its compu-
tational efficiency. We have noticed that GA-Apriori and PSO-Apriori [56] algorithms have
good results in association rule mining because the item sets in association rule mining
do not have spatial coordinates or attributes, there is no need to calculate the relations
between them except to identify whether they are in the same transaction, and the item sets
do not belong to distinct categories. The problems faced by association rules and spatial
co-location pattern mining are different, e.g., the genetic algorithm and the particle swarm
algorithm adopt the traversal method that the spatial co-location pattern mining tries to
reduce as much as possible. However, those algorithms could provide new prospects for
our research in the future.
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Appendix A

Table A1. Notation used in proposed Listing 1, Listing 3 and Listing 4 and called functions (in
alphabetic order).

Notation Description

Cs A set of all candidate patterns

HIPs A set of all high influencing patterns

HIPsk-1 A set of all size-k-1 high influencing patterns

IFIPc, fi
Influence of feature fi in pattern c

IPs A set of all influencing patterns

IPsk A set of all size-k influencing patterns

Ns A set of all star neighbor instance sets

SIIc Star influence index of pattern c

SIRc, f i
Star influence ratio of feature fi in pattern c

SPIc An upper bound index for star influence index of pattern c

SPInsc, fi
Star participation instances of feature fi in pattern c

SRIc, f i
Star row instances of feature fi in pattern c

Appendix B

Proof B1: proof is provided, the semantic proximity satisfies the properties of non-
negative bounded, symmetry, and reflexivity in Section 1.

Non-negative bounded proof: as the semantic proximity is assigned with a Boolean
value of 1 (or 0) when there is (or not) influential media flowing between instances oi
and oj, fi 6= f j, 0≤P(oi,oj)≤1, 0≤P(oj,oi)≤1, so the relationship is non-negative bounded.
Symmetry: as per Definition 1, two instances of distinct feature are proximate regardless
of the direction(s) of edge(s) between them, i.e., P(oi,oj) = P(oj,oi); thus, the relationship is
symmetrical. Reflexivity: as the relationship is based on influential media flowing between
instances of distinct features, there is no influential media flowing from instance to itself,
i.e., P(oi,oi) = 0; therefore, the proximity P is reflexive.

In summary, the semantic proximity satisfies the properties of non-negative bounded,
symmetry, and reflexivity, and it can be used as a relationship between instances.

Proof B2: proof is provided for Lemma 1 in Section 4.2.
Proof: As per Definition 8, given a size-k IP c = { f1, f2, . . . , fk}, k≥2, feature fi ∈ c,

the feature fi’s star row instance I = {o1, o2, . . . , ok}. The influence of feature fi in an IP c,
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i.e., IFIP(c, fi), is defined as the sum of the maximal influence that each central instance oi
of star participation instances SPIns(c, fi) receives from its neighbor instances in its star row
instances SRI(c, fi).

∵ All the influencing factors, i.e., Aoj , Beji , ωT
1 , ωT

2 are min–max normalized.
p ∈ [0, 1], and UII(oj, oi) = (1 – p)·Aoj ·ωT

1 + p·Beji ·ωT
2 ,

so 0 ≤ UII(oj, oi) ≤ {1− ∏
oj∈SRI(c, fi , oi), oj 6=oi

[
1−UII

(
oj, oi

)]}
≤ 1 holds.

∵I = {o1, o2, . . . , ok} denotes one star row instance of SRI(c, fi), IFIP(c, fi) =

∑
oi∈SPIns(c, fi)

max
oi∈SRIs(c, fi , oi)

{
1− ∏

oj∈SRI(c, fi , oi),oj 6=oi

[
1−UII

(
oj, oi

)]}
in Formula (5).

0 ≤ IFIP(c, fi) ≤ |SPIns(c, fi)| ≤ |Sin( fi)|, so 0 ≤ IFIP(c, fi)
|Sin( fi)|

≤ | SPIns(c, fi) |
|Sin( fi)|

≤ 1.

As in Formula (6), SIR(c, fi) =
IFIP(c, fi)
|Sin( fi)|

; in Formula (7), SII(c) = mink
i=1{SIR(c, fi)},

∴ 0 ≤ SIR(c, fi) ≤ |
SPIns(c, fi) |
|Sin( fi)|

≤ 1, => 0 ≤ SII(c) ≤ mink
i=1

{
| SPIns(c, fi) |
|Sin( fi)|

}
≤ 1.

Let SPI(c) = mink
i=1

{
| SPIns(c, fi) |
|Sin( fi)|

}
; thus, 0 ≤ SII(c) ≤ SPI(c) ≤ 1.

Suppose a k+1-size IP c′ = c∪{ fk+1},
∵Each instance of SPIns(c′, fi) has its star neighbor instance set containing instances

of all features in c′, so |SPIns(c′, fi)| ≤ |SPIns(c, fi)|, SPI(c′) = mink+1
i=1

{
|SPIns(c′ , fi)|
|Sin( fi)|

}
=

min{min k
i=1

{
|SPIns(c′ , fi)|
|Sin( fi)|

}
, |SPIns(c′ , fk+1)|
|Sin( fk+1)|

}
≤ mink

i=1

{
|SPIns(c′ , fi)|
|Sin( fi)|

}
≤ mink

i=1

{
|SPIns(c, fi)|
|Sin( fi)|

}
=

SPI(c), thus SPI(c′) ≤ SPI(c).
Therefore, Lemma 1 holds. �
Proof B3: proof is provided for Lemma 2 in Section 4.2.
Proof: ∵ c is a high IP, => SII(c, fi) ≥ SIIthreshold, and consider Definition 8.

SRI(c, fi) ⊆ SRI(c′, fi), => IFIP(c′, fi) > IFIP(c, fi), =>
IFIP(c′ , fi)
|Sin( fi)|

> IFIP(c, fi)
|Sin( fi)|

, ∴ SIR(c′, fi) > SIR(c, fi) ≥ SIIthreshold.
When SIR(c′, fl) < SIIthreshold, and

SII(c′) = min
{

mink
i=1{SIR(c′, fi)}, SIR(c′, fl)

}
= SIR(c’, fl) < SIIthreshold,

∴ SII(c′) < SIIthreshold.
and ∵ c is a high IP, => SII(c, fi) ≥ SIIthreshold, and consider Definition 8,

SRI(c, fi) ⊆ SRI(c′, fi), => IFIP(c′, fi) > IFIP(c, fi), =>
IFIP(c′ , fi)
|Sin( fi)|

> IFIP(c, fi)
|Sin( fi)|

, ∴ SIR(c′, fi) > SIR(c, fi) ≥ SIIthreshold.
When SIR(c′, fl) ≥ SIIthreshold, and
SII(c′) = min

{
mink

i=1{SIR(c′, fi)}, SIR(c′, fl)
}
≥ SIIthreshold,

∴ SII(c′) ≥ SIIthreshold.
Therefore, Lemma 2 holds. �
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