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Abstract: The paradigms of taxis and ride-hailing, the two major players in the personal mobility
market, are compared systematically and empirically in a unified spatial–temporal context. Supported
by real field data from Xiamen, China, this research proposes a three-fold analytical framework
to compare their mobilities, including (1) the spatial distributions of departures and arrivals by
rank–size and odds ratio analysis, (2) the statistical characteristics of trip distances by spatial statistics
and considering distance-decay effect, and (3) the meta-patterns inherent in the mobility processes
by nonnegative tensor factorization. Our findings suggest that taxis and ride-hailing services share
similar spatial patterns in terms of travel demand, but taxi demand heterogenizes more quickly
with changes in population density. Additionally, the relative balance between the taxi industry
and ride-hailing services shows opposite trends inside and outside Xiamen Island. Although the
trip distances have similar statistical properties, the spatial distribution of the median trip distances
reflects different urban structures. The meta-patterns detected from the origin–destination-time
system via tensor factorization suggest that taxi mobilities feature exclusive nighttime intensities,
whereas ride-hailing exhibits more prominent morning peaks on weekdays. Although ride-hailing
contributes significantly to cross–strait interactions during daytime, there is a lack of efficient services
to maintain such interactions at night.

Keywords: personal mobility; ride-hailing; spatial analysis; tensor factorization; traditional taxi

1. Introduction

The past decade has witnessed an increase in online ride-hailing as a predatory
competitor to the traditional taxi industry. In contrast to taxis, ride-hailing services are
usually offered via smartphone platforms that directly connect users to rides provided by
non-professional drivers using their personal vehicles [1]. It is no exaggeration to suggest
that taxis and ride-hailing services now comprise two polarities of the commercial personal
mobility market [2]. Despite certain heterogeneity, their common attributes (e.g., point-to-
point delivery, pricing strategies, and flexible operation modules compared with public
transit) should have generated extensive academic comparisons by now. However, such
cases are not found in the literature. Instead, most relevant studies have focused on single
types of mobility data, such as taxi trajectories. A basic but vital question is, “Do taxis
and ride-hailing services show homogeneity or heterogeneity in terms of their mobility
patterns?” The answers remain poorly understood. Moreover, ride-hailing comprises an
emerging form of personal mobility, and its providers (e.g., Uber) are privately operated.
This allows researchers rather limited access to the detailed records of ride-hailing trips,
not to mention analyzing them alongside taxi service records under the same spatial–
temporal contexts.
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Nevertheless, the time is nigh for scholars to produce a comprehensive comparison
between the taxi industry and ride-hailing services. This will not only reveal the possi-
ble deviations when single types of personal mobility data are utilized to depict urban
dynamics, but it will also inspire further investigations into the socioeconomic processes
involved in their dynamics. Supported by real field data from a Chinese city, our work
attempts to fill this research gap by fully responding to the quandary of the similarities
and dissimilarities between the mobilities of taxis and ride-hailing services in terms of user
travel demands, trip distances, and spatial–temporal variations.

The origin–destination (OD) trip records of taxis and ride-hailing services both cov-
ered 5-day periods in Xiamen City, China, for which this study performed a tripartite
comparative analysis. First, the spatial heterogeneity of travel demands that comprise
departures and arrivals was quantified and analyzed using rank–frequency distribution
and odds ratio (OR). Second, the statistical properties and spatial variations of trip dis-
tances were examined to distinguish the service ranges of these two mobility modes. Third,
context-dependent meta-patterns were extracted from the complete mobility picture us-
ing nonnegative tensor factorization to identify the inherent regularity that forms the
spatial–temporal features of the mobilities.

The remainder of this paper is organized as follows. Section 2 reviews related studies
and identifies the research gaps that we seek to bridge. Section 3 provides basic information
about the research area, briefly compares the characteristics of the two different mobility
data, and structures the data; hence, it establishes OD matrices and OD–time (ODT) tensors
for experiments. In Section 4, the approaches for the three-fold comparative experiments
are introduced, followed by Section 5, which reports and analyzes the experimental results.
In Section 6, we conclude this paper, discuss our findings, and provide an outlook for
future research.

2. Literature Review

Despite obsessive media coverage and online debates regarding the competition be-
tween the taxi industry and ride-hailing services in recent years, few scholarly studies
have completed a unified comparison between these two mobility modes in a unified
spatial–temporal context. The most relevant research was performed by Nie [2], who stud-
ied the influence of ride-hailing on the taxi industry by analyzing the Global Positioning
System trajectory data from Shenzhen City, China, and investigating the spatial–temporal
circumstances under which taxis could compete more effectively. His research was based
on the statistical descriptions of taxi and ride-hailing trips and comparisons between the
attributes of these two (e.g., hourly trip counts and traveling distances). Although the
competitive status between taxi and ride-hailing was clearly demonstrated, it was far from
a complete comparison. For example, Nie’s analysis was based on a large granularity of
time and space (i.e., three time periods during a day and two subareas of a city). Hence,
detailed spatial–temporal dynamics remain hidden. Because Nie’s comparison criteria
were preset, the inherent laws of the mobility patterns were neglected. Moreover, much
information could be discovered outside of Nie’s framework.

Other studies concerned with taxi and ride-hailing comparisons were mainly per-
formed from marketing and commercial perspectives. For example, by applying an inter-
cept survey to ride-hailing users in San Francisco and comparing the survey results with
taxi-trip logs, Rayle et al. [3] discovered that ride-hailing satisfied some latent demands for
traveling, and it especially appealed to younger and more educated users who were look-
ing for fewer waiting times and faster point-to-point services. In at least half of the cases,
ride-hailing trips replaced non-taxi trips, indicating that taxis and ride-hailing services had
overlapping but different markets. He and Shen [4] did not directly compare taxis and
ride-hailing services in the real world, but they analyzed the influence of ride-hailing apps’
extended use on the regulated taxi system. Thus, the question, “What would happen if
traditional taxis were equipped with the same e-hailing smartphone apps?” was asked. The
researchers proposed a spatial equilibrium model that balanced the supply and demand
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of taxi services in an e-hailing taxi market. Through simulation experiments, they found
that e-hailing could reduce average taxi waiting times, thereby promoting its capacity uti-
lization; however, it would inevitably increase the average waiting time for users who hail
taxis on the street. Their research discussed the underlying interactions between ride- and
taxi-hailing, but the focus was on service features rather than travel demands. Moreover,
their results were not calibrated to real field data, nor did they consider the coexistence of
taxis and ride-hailing services as separate markets. Based on this, it is apparent that their
findings do not answer the questions raised by our research.

Despite the scarcity of bilateral comparisons, other studies have separately focused on
their mobilities and were qualitatively or statistically correlated with other urban factors.
For example, Liu et al. conducted a series of urban studies using weekly taxi trajectory
data of Shanghai, including identifying different types of source–sink relationships within
the city by analyzing the dynamic equilibria between departures and arrivals at different
locations [5], quantifying the distance–decay effect inherent in taxi travel using an exponen-
tially truncated power law [6], revealing sub-regional urban structures with community
detection methods [7], and more. They also called attention to the problem of lopsidedness
resulting from data bias, suggesting that different data sources should be combined to
achieve a comprehensive understanding [7]. In contrast, research based on ride-hailing
data has been conducted more recently. For example, Zhang et al. [8] examined the sta-
tistical correlation between ride-hailing trip intensity and points-of-interest (POIs) using
data acquired in Chengdu, China. The study area was partitioned into equal-sized cells;
then, pick-ups and drop-offs and categorized POIs in each cell were counted. Correlations
were estimated using an ordered logistic regression. Their research suggested a feasible
method for quantifying and investigating the correlation between ride-hailing and the
built environment.

Regardless of data type, some studies have been devoted to extracting patterns from
big mobility data. One typical method is to detect the community structure inside a
complex network with locations forming nodes and trips between locations constituting
network edges [7,8]. Community detection is efficient in revealing the internal spatial
interactions among urban sub-regions. However, locations and inter-location traffic matters
the most; temporal variation is only a weak factor in this process. Another methodology is
clustering, which overlaps community detection. For example, hierarchical clustering is
essentially a method involved in community detection. Notably, density-based clustering
with strong constraints in both time and space (e.g., spatial–temporal density-based spatial
clustering of applications with noise) was originally proposed by Birant and Kut [9],
and several approaches were extended from it [10–12]. However, the extent to which
these collective patterns (i.e., clusters) represent the original and complete mobility picture
remains unknown. Trips within the same cluster have spatial–temporal similarity; however,
trips belonging to different clusters can make equal contributions to the formation of
pooled mobility. In this respect, bioinformatics researchers [13] have noted that classic
clustering has certain deficiencies that enforce a regimented tree structure upon the data and
sensitively depends on the criteria used to evaluate similarity, which eventually requires
a subjective judgment to define the clusters. Considering these limitations, various self-
organized dimensionality reduction methodologies typified by matrix factorization have
been introduced [14,15]. These approaches are applicable to two- or more-dimensional
data structures and are less sensitive to a priori knowledge or an initial condition, and they
are capable of extracting significant context-dependent information from complex systems.
However, they are rarely noticed by transportation researchers.

With that being said, we still lack a good understanding of the homogeneity or
heterogeneity between the mobility patterns of taxi and those of ride-hailing, although
these two players of the personal mobility market [2] should have been compared under
a unified context, considering that either (e.g., just taxi [7] or just ride-hailing [8]) has
frequently been investigated alone to interpret the full picture of urban dynamics. The
only existing studies on such comparisons are either restricted by pre-defined conditions
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(e.g., time periods and subareas [2]), or subject to the lack of mobility data [3,4]. As a
result, the inherent regularities hidden in the mobilities of these two services are not clearly
revealed. Despite the more fruitful research on either taxi or ride-hailing [5–8], comparative
conclusions between them can hardly be drawn across different literature, not to mention
under a unified spatial–temporal context.

Given sufficient data for the comparative analysis, appropriate methodologies are
worth more attention. The dynamics over both space and time should be unraveled, but in
this respect, community detection is too weak to capture changes over the timeline—the
algorithms are simply iterated for each time period [7,8] without connecting the time slices
of the static communities. In contrast, clustering approaches require certain compactness
for clusters [9–13]. Such perimeter control may destroy the natural structure and the
context-dependent patterns inherent in the data [13]. Given these concerns, this research
presents a dimensionality-reduction methodology to extract the alternative structures
from a three-dimensional origin-destination-time system, to gain insight into the spatial-
temporal processes underlying the big mobility pictures of taxi and ride-hailing. Besides,
basic characteristics of these two services, e.g., travel demands and trip distances, should
be compared using representative methods.

3. Data Preparation
3.1. Xiamen City and Personal Mobility

Xiamen is a famous tourist destination and an economically developed city located on
the southeast coast of Fujian Province, China (Figure 1a). It covers a land area of more than
1700 km2 and comprises 35 towns (i.e., basic administrative units; see Figure 1b). In June
2020 when the data were collected, its permanent population was 4.29 million. Xiamen
Island, located to the southeast of the mainland and connected with five bridges (Figure 1a)
is the highest-density part of the city with a population density of 11,782 persons/km2,
whereas that outside the island was only 1576 persons/km2. The northern part of the city is
covered by forested and agricultural lands (Figure 1c) with few urban features (Figure 1d).

Figure 1. Cont.
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Figure 1. Basic information about Xiamen: (a) location and administrative boundary; (b) ID and population density of each
town (persons/km2); (c) land-cover classification in 1-km resolution; and (d) heat map (relative density) of points of interest.
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In Xiamen, street-hailing taxis (Chinese official name: Xun You Che) is an affordable
choice for personal mobility, unlike in some developed countries (e.g., Japan), where the
pricing strategies of taxis are premium. In 2020, a taxi ride cost $1.4 for the first 3 km, and
$0.29 for each additional kilometer. In contrast, the price for regular ride-hailing (Chinese
official name: Wang Yue Che) (e.g., the economic service option of DiDi mobility) was $2.0 for
the first kilometer and $0.36 for each additional kilometer during normal hours (9:00–17:00).
Although it seems that ride-hailing is costlier, users do not actually pay much more because
of the promotional coupons provided by the transport network companies (TNCs), such as
DiDi. Overall, from the pricing perspective, neither significantly dominates.

3.2. Data Preparation

The dataset contains all trip records from street-hailing taxi services and online ride-
hailing services in Xiamen City from 20 June 2020, to 24 June 2020. This duration covers a
complete weekend and the subsequent three weekdays. Each trip record contains infor-
mation on vehicle identification (ID), timestamp, locations of departure and arrival, and
trip length.

By distinguishing vehicle IDs within the data, we found that there were 5285 taxis and
22,224 ride-hailing vehicles that had contributed during the observation days. Figure 2 com-
pares the temporal variations of their trips. For taxis and ride-hailing, the trips exhibited a
certain level of regularity on weekdays and weekends. The morning-peak characteristics
were most prominent for ride-hailing on weekdays, suggesting that people are more likely
to utilize ride-hailing for going to work. However, during the late evenings, ride-hailing
drops significantly, whereas taxi trips reach a remarkable peak, probably because taxi
drivers are full-time professionals working through fixed day–night shifts. A large pro-
portion of ride-hailing drivers work part-time, and there are no replacements at night.
Slight peaks can be noticed immediately after noon (~14:00) on weekdays for both taxi and
ride-hailing, and during the afternoon rush hours (~18:00) for ride-hailing. Overall, taxi
trips have similar temporal variations between weekdays and weekends, whereas those of
ride-hailing vary in the presence of a morning peak.

Figure 2. Hourly variation of the numbers of (a) taxi trips and (b) ride-hailing trips.

3.3. Uniform Cell Partition and ODT Tensor Establishment

The study area was partitioned into uniform small cells with a longitude and latitude
granularity of 0.01 approximately corresponding to 1 km from east to west and 1.2 km from
north to south (Figure 3). The literature [5] suggests that this granularity is appropriate
for representing the basic unit of a city structure and depicting the spatial variations of
socioeconomic characteristics.
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Figure 3. Uniform cell partition: (a) study area and cell partition; (b) close shot at the Xiamen Island.

Based on the partitioned cells, we constructed an hour-by-hour OD matrix for taxi
and ride-hailing each day, established as:

M(t) =


m11(t) m12(t)
m21(t) m22(t)

· · · m1K(t)
· · · m2K(t)

...
...

mN1(t) mN2(t)

. . .
...

· · · mKK(t)

 (1)

where K is the number of uniform cells (K = 1806 in our case), and mij(t) reflects the
number of trips from cell i to cell j within the time slot, t, t ∈ [0, 1, . . . , 23]. With this
method, matrix M(t) describes a directed network with cells as nodes and taxi or ride-
hailing trips as edges. Several properties of M(t) are noteworthy. First, although the cell
size was small, we could not assert that there are no trips within one cell. Hence, mii(t)
is not necessarily zero. Second, as the mobility network is directed, M(t) is naturally
asymmetric. Thus, mij(t) does not necessarily equal mji(t).

We hope to detect the context-dependent patterns [13] of trips on a 24-h basis. A
primary step is to establish the ODT tensor. Note that the tensor in this research is not to be
confused with a stress tensor in engineering disciplines; the latter is normally a tensor field
in mathematics [14]. The ODT tensor, X , which is essentially a third-order array, comprises
T (T = 24 in our case) pages of matrix M with time slot t as the third index, as illustrated
in Figure 4.

Figure 4. Establishment of the ODT tensor.
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The above logic applies to all OD trips for both taxis and ride-hailing. Considering
the temporal regularity of trips shown in Figure 2, to simplify the analysis, we calculated
the daily average ODT tensor based on the day category (i.e., Monday, Tuesday, and
Wednesday belong to “weekday”; Saturday and Sunday belong to “weekend”). Therefore,
we eventually obtained four tensors for later experimentation: taxi-weekday tensor, taxi-
weekend tensor, ride-hailing-weekday tensor, and ride-hailing-weekend tensor. Each
tensor is K× K× T in size.

4. Methods

To gain an insight into the similarities and differences between taxi and ride-hailing,
their mobility patterns were compared through three aspects: (1) the spatial differentiation
of travel demands, (2) the spatial and statistical variation of trip distances, and (3) the
context-dependent components that can be extracted from the origin–destination–time
system of each. As mentioned in Section 3.2, four combinations of mobility type and day
category, that is, taxis/ride-hailing mobilities during weekdays/weekends, were analyzed
and compared in our research; in other words, the following methods were applied to all
four cases.

4.1. Rank–Size and Odds Ratio Analysis on Travel Demands

As shown in Figure 2, trips by taxi and trips by ride-hailing vary significantly in scale.
Hence, we consider the rank–size distribution of particular interest to describe the spatial
heterogeneity of each type of trip. The literature demonstrates that the rank–size rule,
whose resultant graph shows a log-linear pattern, depicts significant regularity in many
natural phenomena, such as the differentiation of city populations [16].

For our case, given a certain uniform cell, i, and a certain trip category, we define the
indegree, d(in)i , and the outdegree, d(out)

i , as the average daily incoming and outgoing trips
of the cell, respectively. The calculation can be given by:

d(in)i =
T−1
∑

t=0

K
∑

j=1
mij(t)

d(out)
i =

T−1
∑

t=0

K
∑

j=1
mji(t)

(2)

Apparently, the accumulation of indegrees and outdegrees equals the daily average
demand, E, throughout the entire research area. Thus:

E =
K

∑
i=1

d(in)i =
K

∑
i=1

d(out)
i (3)

From the angle of destinations, the size of cell i is calculated as the percentage of
incoming trips compared with E:

size(in)i = d(in)i /E (4)

Similarly, the size of cell i in terms of outgoing trips from origin is calculated as:

size(out)
i = d(out)

i /E (5)

With this analogy, we can generate the rank–size distribution for each combination of
day type and mobility category and fit it with a proper model. The faster the size decays
with rank, the more significant the spatial heterogeneity in that case, and vice versa.

Rank–size analysis holistically reveals how the departures and arrivals of the two
kinds of mobilities are distributed across space. However, the question remains, “How
do they compete in the same spatial context?” To answer this, we used odds ratio (OR)
to quantify the wax and wane between these two mobility layers. For incoming trips, the
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OR of cell i is the log ratio of the percentage of taxi indegree in pooled demand to the
percentage of ride-hailing indegree:

OR(in)
i = log10

(
d(in)i of taxi/Epo

d(in)i of ride− hailing/Epo

)
= log10

(
d(in)i of taxi

d(in)i of ride− hailing

)
(6)

where Epo denotes the pooled average daily demand. Epo = E of taxi + E of ride− hailing.
Similarly, for outgoing trips, the OR of cell i is calculated as:

OR(out)
i = log10

(
d(out)

i of taxi

d(out)
i of ride− hailing

)
(7)

An OR value greater than zero suggests that the usage of taxi services surpasses those
of ride-hailing at a given location, and vice versa. Note that to make these calculations
feasible, cells with no travel demands were not involved.

4.2. Statistics and Spatial Distribution of Trip Distances

Both types of rides provide pricing-by-distance mobility services; hence, they should
have specific interests in terms of their travel distances. In addition, median trip distance is
considered as an important metric in depicting the spatial structure of urban mobilities [7,8].
The trip distance–decay effect of each also indicates how these two services facilitate urban
travels at different ranges, and how individuals’ tendency for each service changes with
distance [6]. Providing that taxi and ride-hailing had significant differences in these
respects, there would be certain biases when using one single dataset to summarize urban
dynamics, especially the dynamics of the personal mobility market.

In this research, the spatial characteristics of trip distances were summarized and
visualized at the cell level, with the median distance of the outgoing or incoming trips
at each cell being the quantitative indicator. The distance–decay effect in each case was
investigated by plotting the probability of travels occurring at different distance levels,
and noticeable thresholds (e.g., quartiles) in the decay process were compared with sig-
nificant urban scales (e.g., the distance from urban center to urban periphery) to infer the
relationships between taxi and ride-hailing trips and urban morphology.

4.3. Factorization of ODT Tensor

As discussed in the literature review section, matrix factorization is a powerful method
for robust pattern discovery [13]. Tensor factorization is a higher-dimensional general-
ization of matrix factorization. It has certain advantages over community detection in
revealing temporal dynamics and classic clustering approaches for capturing the full
structure inherent in the data.

The idea is to decompose the ODT tensor into a canonical combination of vectors. The
factorization procedure decouples underlying factors along different ways of the tensor.
More specifically, the third-order ODT tensor, X ∈ RK×K×T , established in Section 3.2, is
approximated as:

X ≈
R

∑
r=1

or ◦ dr ◦ tr (8)

where ◦ calculates the outer product of vectors; R is a positive integer, denoting the
total number of components factorized from X ; or ∈ RK, dr ∈ RK, and tr ∈ RT for
r = 1, 2, . . . , R, denote the origin vector, destination vector, and (departure) time vector in
each component, respectively. Equation (8) can be written in an elementwise format as:

mij(t) ≈
R

∑
r=1

oirdjrttr for i = 1, 2, . . . , K; j = 1, 2, . . . , K; t = 0, 1, 2, . . . , T − 1 (9)
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This process is illustrated in Figure 5.

Figure 5. Factorization of the ODT tensor.

The vectors from the rank-one components, as shown in Figure 5, constitute the
factor matrices:

O = [o1 o2 · · · oR] =


o11 o12
o11 o22

· · · o1R
· · · o2R

...
...

oK1 oK2

. . .
...

· · · oKR

 (10)

This also applies to D and T. Thus, Equation (8) can now be written in an unfolding
manner with respect to the factor matrices:

X(1) ≈ O(T�D)ᵀ

X(2) ≈ D(T�O)ᵀ

X(3) ≈ T(D�O)ᵀ
(11)

where � denotes the Khatri–Rao product of the matrices [17], and X(n) represents the
mode-n unfolding of tensor X . Unfolding refers to rearranging the elements of a tensor
into a matrix, and mode-n unfolding makes the mode-n fibers of the tensor become the
columns of the resulting matrix. The mode-n fibers disassemble the tensor into vectors
according to different dimensions. For example, the mode-n fibers of a third-order tensor,
Y ∈ R3×4×2, are illustrated in Figure 6.

Figure 6. Illustration of mode-n fibers of a tensor: (a) example tensor Y ; (b) mode-1 (column) fibers of Y ; (c) mode-2 (row)
fibers of Y ; and (d) mode-3 (tube) fibers of Y .

Using factor matrices, the model described by Equations (8) and (9) can be concisely
written as:

X ≈ [[O, D, T]] ≡
R

∑
r=1

or ◦ dr ◦ tr (12)
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To make the components comparable, columns O, D, and T are normalized to length
one with the weights absorbed into a contribution vector, λ ∈ RR. Hence, we have:

X ≈ [[λ; O, D, T]] ≡
R

∑
r=1

λr or ◦ dr ◦ tr (13)

where λr can be considered a contribution of each specific component: how much each
extracted pattern (referred to as the meta-pattern in Section 5.3) contributes to forming the
original ODT tensor. or, dr and tr denote the normalized vectors of each component.

A significant property of third- or higher-order tensors is that their factorizations are
unique given a certain number of components [18,19], whereas matrix factorizations do
not. Thus, the initial conditions seldom influence the factorizations. Analogous to the
alternating least-squares (ALS) methodology in matrix factorization, the objective here is
to calculate a decomposition, X̂ , with R components that best approximates X :

min
X̂
‖X − X̂ ‖ with X̂ =

R

∑
r=1

λr or ◦ dr ◦ tr = [[λ; O, D, T]] (14)

The approach begins by randomly initializing factor matrices O, D, and T; then, it
fixes O and D to solve for T, O and T for D, and D and T for O; it repeats this fixing
process until a certain convergence criterion is satisfied. Providing that the factor matrices,
O and D, are fixed, the minimization problem in Equation (14) is reduced to a linear
least-squares problem:

min
^
T

‖X(3) −
^
T(D�O)ᵀ‖F (15)

where ‖·‖ F is the Frobenius norm of the matrix, and
^
T = T·diag(λ). The optimal solution

to the above problem is given by:

^
T = X(3)[(D�O)ᵀ]

† (16)

where † calculates the Moore–Penrose pseudoinverse of a matrix [20]. Finally, the columns

of
^
T are normalized to obtain T, i.e., to let λr = ‖

^
tr‖ and tr =

^
tr/λr for r = 1, 2, . . . , R.

The stopping condition for the above iterative process is triggered when no improve-
ment occurs in the objective function. In our experiments, this condition occurred with no
changes in the factor matrices, which again demonstrated the uniqueness of the factoriza-
tions. Moreover, the physical meaning of the ODT tensor requires nonnegative results. To
this end, we introduced the nonnegative controlling approach proposed by Welling and
Weber [21] and realized the entire process using MATLAB.

5. Results
5.1. Spatial Differentiation of Travel Demands

From Figure 7 and Appendix A, it can be visually observed that taxis and ride-hailing
services exhibit similar spatial characteristics in terms of their OD distribution. More
specifically, areas having a higher level of taxi usage (Figure 7a) will likely generate a larger
number of ride-hailing outgoing trips (Figure 7b). This similarity also applies to other
cases (Appendix A). The highest density of travel demands, including departures and
arrivals, occur around the center of Xiamen Island alongside mainland subareas that are
closely linked to the island across bridges. Considering the land-use patterns shown in
Figure 1c, it is clear that urban built-up areas, followed by rural residential and industrial
areas, contribute most to the generation of travel demands.

Nevertheless, a significant difference can be identified by how ride-hailing demand is
more spatially homogenous, considering its lower extreme values and larger spatial range
(Figure 7 and Appendix A). This is also evidenced by the rank–size analysis. As illustrated
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in Figure 8, for any situation, the size declines with ranking at a rate proportional to its
current value. This process is subject to exponential decay [22], which can be symbolically
expressed as Y(x) = Y0e−λx, where Y(x) is the size at rank x, Y0 is the initial size at
rank zero, and λ is the decay constant. We fit all the log-linear graphs in Figure 8 to the
exponential decay model, where it can be observed that despite the day type, the size
of ride-hailing decays with almost the same patterns for both departures and arrivals.
Although the fit line for taxi deviates at the tail, regarding the general trend at the cell level,
the size for taxi decayed faster than that for ride-hailing; thus, the spatial differentiation of
taxi demand was more significant.

Figure 7. Spatial distribution of average daily outgoing trips of taxis (a) and ride-hailing services (b) on weekdays.

Figure 8. Rank–size distributions for each case by origin and destination.
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From Figure 8, a more significant spatial heterogeneity can be observed when taxi
origins are compared with taxi destinations. This is understandable considering the
dominant role of street-hailing taxis in the demand–supply relationship wherein customers
must appear along major streets or at busy locations in order to be noticed and picked
up by taxis, even if the customers’ destinations are much more scattered beyond such
places. In contrast, ride-hailing demands show similar decays by origin and destination.
Customers enjoy more initiative in a ride-hailing service, wherein the service suppliers
must be obedient to the customers’ proposed origins and destinations. In this respect, ride-
hailing data represent the precise places where travel demands are originally generated.
Nevertheless, a slight difference exists between ride-hailing origins and destinations,
probably because a few requests proposed from remote places are unlikely to be accepted
by ride-hailing suppliers.

The tradeoffs between taxis and ride-hailing services across cells were examined using
the OR calculation, with a positive OR value suggesting a preference for a taxi surpassing
that for ride-hailing, and negative denotes the opposite. From Figure 9, it can be observed
that people from Xiamen Island prefer taxi services for outgoing trips (Figure 9a,c) and
arriving at a wider area beyond the island (Figure 9b,d). Predilections for ride-hailing,
expressed by negative ORs, were mainly distributed throughout the mainland part of the
city. Interestingly, there are certain locations with lower taxi preferences, marked by blue
in Figure 9a,c. When they attract a higher volume of taxi trips, they eventually change to
purple, as in Figure 8a,c.

Figure 9. Odds ratio (OR) distributions for each day-trip combination.
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Rural residential areas and industrial and mining areas (Figure 1c) are more likely to
experience a relative balance between taxis and ride-hailing services. On the contrary, all
urban built-up areas exhibit a clear tendency, either for taxi on the island or for ride-hailing
on the mainland. It is also noticeable that OR patterns do not change significantly from
weekdays to weekends, suggesting that the day category is not a key factor influencing
people’s preference for mobility type. Instead, it might be land-use patterns and urban
structures that make a bigger difference.

5.2. Spatial Differentiation of Trip Distances

Figure 10 shows the spatial distribution of the median distances of outgoing trips on
weekdays. It can be seen that short-distance taxi trips are mainly generated at the island
center, whereas those of ride-hailing occur at several additional subareas on the main-
land, forming one prominent center on the island and three sub-centers on the mainland.
The same situation also applies to other mobility-day-trip combinations (Appendix B).
Additionally, with the day type fixed, the incoming and outgoing trips of ride-hailing
yielded similar spatial patterns, with Pearson correlations of 0.62 and 0.64 for weekdays
and weekends, respectively. In contrast, correlations in taxi-trip distances were much
weaker (Appendix C). It is likely that the usage of taxis is more asymmetrical. For example,
a home-to-work trip by taxi is not necessarily concomitant with a returning trip from work
to home.

Figure 10. Median distances (km) of outgoing trips of taxi (a) and ride-hailing (b) on weekdays.

The distance–decay effect is calculated as the probability of trips that can reach a
certain distance. As shown in Figure 11, the day category has no significant impact on the
distance decays. In contrast, it is the mobility type that matters. Hence, trips observed
from taxi services always decayed faster than those from ride-hailing within 8 km. For
distances larger than 8 km (upper quartile of ride-hailing trip distances on weekends), the
probability for both mobility types became small but stable.

As measured from the base map, the shortest distance from the urban built-up area of
the island to that of the mainland (i.e., from town #20 to town #33) is 2.4 km. In contrast,
the shortest distance from the center of the island to the mainland (i.e., from town #22 to
town #33) was ~8 km. These two figures approximately correspond to the quartiles of
trip distances, indicating that the trips served by taxis and ride-hailing services within
this range satisfy a large proportion of personal mobility demands in the high-density
areas of the city, whereas long-distance trips (e.g., from the island to the hinterland) were
infrequent. Additionally, considering that the upper quartile of taxi-trip distances is about
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6.5 km, which equals the average radius of Xiamen Island, it can be inferred that taxis
mainly contribute to serving the demands of users within the island.

Figure 11. Distance decay of trips for each mobility-day combination.

5.3. Meta-Patterns within the ODT Tensor

Inspired by the concept of metagenes in bioinformatics, which refer to a group of
genes behaving in a functionally correlated manner within the genome [23], we defined
the components decomposed from the ODT tensor as meta-patterns. Each meta-pattern
comprises three vectors (i.e., origin, destination, and departure time) and represents a
collection of closely related trips along with their spatial–temporal information. Each
meta-pattern contributes significantly to the formation of a complete mobility picture of
the corresponding day.

The problem of determining R (i.e., the total number of components factorized from a
third or higher-order tensor) is NP-hard [24], and there is no straightforward algorithm for
doing this [14]. Nevertheless, the fitness of the factorization (i.e., the extent to which the
original tensor, X , is described by the approximated tensor X̂ ) can be measured by:

Fitness = 1− ‖X − X̂ ‖ F
‖X ‖ F

(17)

where ‖·‖ F denotes the Frobenius norm, and a fitness value closer to one indicates a better
approximation [25]. We examined the fitness using different R settings, and the changes in
each case are summarized in Figure 12.

It can be observed that R = 3 was the turning point for all four cases, where the
magnitude of the fitness stopped its fast growth and became stable, and more than 63%
of the data can be described by the factorization model. Additionally, according to our
experiments, when R = 3, the extracted components were clearly distinguishable without
much overlap in terms of physical meaning. Therefore, we factorized each ODT tensor into
three meta-patterns.

Figure 13 summarizes the meta-patterns of taxi mobility on weekdays. From left to
right, the four columns correspond to the contribution vector, λ, and the factor matrices,
O, D, and T in Equation (15), respectively. One row represents one component, or in
other words, one M.P. (meta-pattern) from the factorization. For easy understanding, O
(Origin) and D (Destination) are visualized on the map, showing the normalized departures
and their concomitant arrivals. T depicts the normalized intensity of the travel demands
generated in each time slot. λ denotes the contribution of each meta-pattern. For example,
in Figure 13, the three meta-patterns contribute 42, 30, and 28% to constituting the entire
ODT system of taxi mobilities on weekdays.
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Figure 12. Fitness of tensor factorization by different R settings in each case.

As shown in Figure 13, taxi mobility on weekdays is characterized by late-night
vitality (M.P.1), weak morning peaks (M.P.2), and stable daytime activities (M.P.3). All
are concentrated within Xiamen Island alongside some weak scatterers in the nearby
subareas. Jointly considering the land-use distribution shown in Figure 1c, it can be seen
that the concentration and scatters all occur within the urban built-up area. Countryside
and industrial zones are rarely patronized by taxis, not to mention agricultural lands.
Furthermore, when accounting for urban activities (Figure 1d), it can be inferred that
movements with nighttime vitality (M.P.1) mainly originate from leisure places and are
destined for residences, whereas those with morning-peak characteristics (M.P.2) are from
residences to workplaces and schools, and regular daytime movements (M.P.3) are among
business districts.

In contrast, ride-hailing on weekdays does not have nighttime intensity. As shown in
Figure 14, it features fluctuating daytime activities (M.P.1), strong morning peaks (M.P.2),
and weak morning-and-evening double peaks (M.P.3). The first two meta-patterns are still
highlighted on the island where residences and companies are concentrated and scattered
in some mainland spots; however, the third covers a much wider range with two dense
spots (i.e., one in the north of the island and another in the south of the mainland) closely
connected by the bridges. Unlike taxi meta-patterns, those of ride-hailing services cannot
be clearly identified in terms of urban activities. Instead, they are complementary in
forming the big picture of daytime movements. The mobilities with the strongest morning
peaks were identified in the northeastern part of the island, where the walking and public
transit (i.e., bus) accessibilities are the lowest on the island [26,27], suggesting that ride-
hailing functions as an important complement to public transit in terms of going-to-work
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commuting. Apart from cross–strait interactions, most travels are bounded by the radius
of Xiamen Island, which is consistent with the findings from Figure 11.

Figure 13. Meta-patterns (M.P.) of taxi mobilities on weekdays. Maps in top right are rendered using graduated colors
based on natural breaks.

It is highly likely that people use ride-hailing to commute to and from work on
weekdays, considering the double-peak characteristics. Moreover, ride-hailing significantly
contributes to the interactions between the two sides of the strait. It transcends the limits of
urban built-up areas; hence, more rural and industrial zones are taken care of. Nevertheless,
owing to the part-time property of drivers, ride-hailing services are not widely available
during the late night. Taxis fill this temporal gap in densely populated zones. However,
for the vast mainland, there remains a vacancy. Although it is natural for experienced taxi
drivers to work more often on the island, considering the opportunity cost (e.g., late-night
demand), the shortage of personal mobility services on the mainland should not be ignored
at the policy level.
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Figure 14. Meta-patterns of ride-hailing mobilities on weekdays.

On weekends, morning peaks seldom occur. However, increases in travel in the
afternoon are observable for both taxi (Figure 15) and ride-hailing (Figure 16). Moreover,
taxis remain the major supplier of late-night mobility within the island (Figure 15, M.P.1),
with origins centered at leisure places. Alternatively, the temporal fluctuations of all other
meta-patterns are relatively paralleled, suggesting that travels to and from weekend activi-
ties by different means share similar schedules, all starting to grow at 8:00 and reaching
a peak at around 18:00. The service ranges of ride-hailing do not change significantly
from weekdays to weekends; all are combined to cover the island and cross-strait hotspots.
However, the daytime meta-patterns of taxis become fuzzier in terms of spatial distribution
and movements, showing no obvious functional orientations. Overall, Xiamen is a compact
city with a high level of land-use integration. In built-up areas, especially on the island,
working and leisure activities cannot be clearly separated in the narrow spaces.
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Figure 15. Meta-patterns of taxi mobilities at weekends.

Figure 16. Meta-patterns of ride-hailing mobilities at weekends.



ISPRS Int. J. Geo-Inf. 2021, 10, 690 20 of 25

6. Conclusions and Discussion

The emergence of big mobility data has significantly facilitated transportation and
urban studies in recent years. However, the two major players in the personal mobility
market (i.e., traditional taxis and ride-hailing services) have not been systematically and
empirically compared in the literature until now. This research was designed to fill this
gap by using real field datasets to cover both situations within a unified spatial–temporal
context. First, rank–size distributions were calculated to examine the spatial heterogeneity
of travel demands, and people’s preferences for each mobility type were quantified using
OR. Trip distances were then analyzed statistically to determine how taxiing and ride-
hailing facilitate human movements within different ranges. Finally, we used nonnegative
tensor factorization, an approach that is novel to transportation research, to interpret the
datasets to gain insight into the processes and mechanisms involved in these two types of
mobility services.

Generally, although both serve as a point-to-point and pricing-by-distance personal
mobility services, taxiing and ride-hailing show certain heterogeneity in time and space.
Additionally, noteworthy information can be inferred from our research. First, it is true
that travel demand is driven by population density, but such driving mechanisms may
function differently between taxis and ride-hailing services. Considering the faster decay
in the rank–size distribution of taxi trips and the priority of taxi usage on the high-density
island, it can be inferred that taxi travel is more affected by the variation in population
density. This mechanism presents two aspects. First, high population density has a stronger
attraction for taxiing than for ride-hailing. Second, low population density has a stronger
expelling power for taxiing than for ride-hailing. It is also true that taxi drivers can choose
where to hunt passengers; however, they cannot choose the destinations. As a result, we
witnessed the priority of taxi usage in terms of destinations in some lowly populated areas
(Figure 9b,d).

Second, because travel demands for ride-hailing are distributed over a much wider
area, short-distance ride-hailing trips are naturally found to fall into a broader range.
Nevertheless, they have no significant differences in terms of statistical distribution of trip
distances; most trips are within 8 km. According to the literature [8], the mapping of the
median travel distance can reflect certain structures of the city. Interestingly, in our case, the
different mobility datasets presented different urban structures. If we solely emphasized
taxi mobilities, Xiamen would absolutely be seen as a concentric city. However, when
taking ride-hailing into consideration, the city appears polycentric with a strong center on
the island, and three sub-centers on the mainland. This reminds us that certain biases may
occur when a single data source is used to depict a complex urban system.

More policy implications could be drawn from the third-part experiments: The spatial–
temporal dynamics interpreted by tensor factorization suggested that taxis and ride-hailing
services contribute to different types of travel needs, especially on weekdays. Taxis solely
support the personal mobility market late at night, but its service area is very limited. To
this end, we strongly recommend promoting some forms of nighttime transportation on the
mainland to protect people’s mobility rights. In contrast, it is likely that ride-hailing serves
more people who commute to and from work, considering its prominent peak during
morning rush hours. On weekends, taxis and ride-hailing services share similar temporal
dynamics, apart from the nighttime intensity of taxi travel. Additionally, on both weekdays
and weekends, ride-hailing functions as a crucial bond for cross-strait interactions, but
this is limited to the daytime. During the nighttime, there is a lack of commercial mobility
services that connect the two parts of the city, which may be a problem to be considered
by policymakers.

Apart from the local policy suggestions for Xiamen city, a more global contribution is
that the methodology of ODT tensor factorization could enable policy makers and traffic
planners to quickly extract the essence out of large amounts of trip observations, thereby
revealing a comprehensive but previously hidden picture of urban dynamics at free time-
space scales. Such advantage is even more prominent in this big data era, since almost all
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trip observations in personal mobilities could be structured as sparse matrices (the ODT
tensor is essentially stacked with sparse matrices). Due to the computational efficiency of
sparse matrices [28], our methodology makes it possible to grasp the most significant but
time-sensitive information from complex mobility phenomenon, which lays a foundation
for subsequent work including traffic condition prediction, service vehicle allocation, traffic
infrastructure planning, etc.

Back to the comparison between taxi and ride-hailing, although significant similarities
and differences have been identified, there remain some limitations to be filled in next
stages. First, the future trend of this comparison can hardly be asserted from current
outputs, since only five-day data have been investigated. Nevertheless, considering the day-
by-day regularity of personal mobilities (Figure 2, [29]) and the relative balance between
these two services (Figure 9), it can be inferred that the current delicate equilibrium
would exist for the foreseeable future, until it is severely disrupted by the increase of
ride-hailing resources during the late night, or by the improvement of taxi services in
urban periphery. Second, the relationship between the extracted meta-patterns and socio-
demographic factors [30,31] can be examined given sufficient data support, so that how
diversified human groups are involved in different meta-patterns could be identified. Such
examination will definitely facilitate our understanding of the underlying socio-economic
mechanisms behind the traffic dynamics.

After all, this research has empirically accentuated the importance of the integration
of multi-source datasets in understanding complex urban dynamics. The methodologies
introduced here could immediately apply to other regions that provide OD-like mobility
data sources to get a well-rounded view of the big mobility picture. Although not all
possibilities of comparative analytics are exhausted, this three-step framework should
be representative and of wide interests to urban researchers. In addition, although this
research is merely based on departures and arrivals of taxi and ride-hailing, researchers
should not ignore the value of complete trajectories, wherein interesting knowledge may
be learned from comparisons between the routes directed by the navigation of ride-hailing
apps and those performed by experienced taxi drivers.
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Appendix A. Spatial Distribution of Travel Demands

Figure A1. Spatial distribution of average daily trips of taxi and ride-hailing: (a,b) incoming trips on
weekdays; (c,d) outgoing trips at weekends; and (e,f) incoming trips at weekends.



ISPRS Int. J. Geo-Inf. 2021, 10, 690 23 of 25

Appendix B. Spatial Distribution of Median Trip Distances

Figure A2. Median trip distances of: (a,b) incoming trips of taxiing and ride-hailing on weekdays;
(c,d) outgoing trips of taxiing and ride-hailing at weekends; and (e,f) incoming trips of taxiing and
ride-hailing at weekends.
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Appendix C. Correlations between Median Trip Distances

Figure A3. Pearson correlations between median trip distances by origin and destination: (a) taxiing on weekdays;
(b) ride-hailing on weekdays; (c) taxiing on weekends; and (d) ride-hailing on weekends.
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