
 International Journal of

Geo-Information

Article

Which Gridded Population Data Product Is Better? Evidences
from Mainland Southeast Asia (MSEA)

Xu Yin 1,2,† , Peng Li 1,2,† , Zhiming Feng 1,2,*, Yanzhao Yang 1,2, Zhen You 1 and Chiwei Xiao 1

����������
�������

Citation: Yin, X.; Li, P.; Feng, Z.;

Yang, Y.; You, Z.; Xiao, C. Which

Gridded Population Data Product Is

Better? Evidences from Mainland

Southeast Asia (MSEA). ISPRS Int. J.

Geo-Inf. 2021, 10, 681. https://

doi.org/10.3390/ijgi10100681

Academic Editor: Wolfgang Kainz

Received: 23 August 2021

Accepted: 4 October 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China; yinx.19b@igsnrr.ac.cn (X.Y.); lip@igsnrr.ac.cn (P.L.); yangyz@igsnrr.ac.cn (Y.Y.);
youz@igsnrr.ac.cn (Z.Y.); xiaocw@igsnrr.ac.cn (C.X.)

2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: fengzm@igsnrr.ac.cn; Tel.: +86-010-6488-9393
† Co-first author, these authors contributed equally to this work.

Abstract: The release of global gridded population datasets, including the Gridded Population of the
World (GPW), Global Human Settlement Population Grid (GHS-POP), WorldPop, and LandScan,
have greatly facilitated cross-comparison for ongoing research related to anthropogenic impacts.
However, little attention is paid to the consistency and discrepancy of these gridded products in
the regions with rapid changes in local population, e.g., Mainland Southeast Asia (MSEA), where
the countries have experienced fast population growth since the 1950s. This awkward situation is
unsurprisingly aggravated because of national scarce demographics and incomplete census counts,
which further limits their appropriate usage. Thus, comparative analyses of them become the priority
of their better application. Here, the consistency and discrepancy of the four common global gridded
population datasets were cross-compared by combing the 2015 provincial population statistics (census
and yearbooks) via error-comparison based statistical methods. The results showed that: (1) the
LandScan performs the best both in spatial accuracy and estimated errors, then followed by the
WorldPop, GHS-POP, and GPW in MSEA. (2) Provincial differences in estimated errors indicated
that the LandScan better reveals the spatial pattern of population density in Thailand and Vietnam,
while the WorldPop performs slightly better in Myanmar and Laos, and both fit well in Cambodia.
(3) Substantial errors among the four gridded datasets normally occur in the provincial units with
larger population density (over 610 persons/km2) and a rapid population growth rate (greater than
1.54%), respectively. The new findings in MSEA indicated that future usage of these datasets should
pay attention to the estimated population in the areas characterized by high population density and
rapid population growth.

Keywords: gridded population data; population estimation; consistency and discrepancy assessment;
human-environment interrelationships; Mainland Southeast Asia (MSEA)

1. Introduction

Global gridded population datasets have become one of the most essential inputs
for quantifying the impacts of human beings on the Earth and understanding the human-
nature interrelationship in the face of climate change, disaster risk and epidemic spread-
ing [1–3]. World Population Prospects 2019 showed that the global population is projected
to reach approximately 9.7 billion by 2050, with a net increment over 1/4 [4]. The booming
population not only puts increasingly intense pressure on the Earth, but also requires
timely and updated accurate demographics for different purposes at various scales. For
example, the demographics serve as the fundamental data for fulfilling the Sustainable
Development Goals (SDGs) and evaluating the mankind’s impacts on the planet [5,6].
Ever since the first release of the Gridded Population of World (GPW) version 1.0 in
1995 [7], several continental to global gridded population datasets were successively publi-
cized. Among them, four of them are commonly applied in well-known academic journals
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and thematic reports or books, including the GPW [8], the Global Human Settlement
Layer-Population (GHS-POP) [9], the WorldPop program [10] and the LandScan [11].
These spatially-explicit demographics were widely utilized in the studies of nature and
humanities, e.g., environmental change and sustainable development [12,13], urban ex-
pansion and planning [14,15], household surveys and public health management [16,17],
and disaster risk assessment and reduction [18,19], despite the critical significance of the
national census.

Data comparison always comes along with the release of new datasets of gridded
population density. For example, the Web of Science (WoS) shows that hundreds of peer-
reviewed journal papers used the datasets, but only a few focus on comparative analysis
of dataset itself. In fact, huge differences in input data and modeling approaches make
these raster population datasets vary prominently in accuracy, quality and timeliness,
hence the limitation of appropriate usage of them [7,20]. Leyk et al. [20] further pointed
out that none of them fits for entire situations of varied population development. Then,
it would not be surprising that researchers make informed decisions according to their
needs. Usually, empirical research at the country level collects and utilizes population
counts from census and/or yearbooks as actual value to assess the accuracy of gridded
population datasets [18,21–24]. For example, Bai et al. [21] evaluated the data accuracy
of the GPW, Global Rural-Urban Mapping Project (GRUMP), Worldpop, and China 1 km
Gridded Population (CnPop) datasets in China, and found that the Worldpop had the
highest estimation accuracy. Also, Sweden, as the case by comparing five global gridded
population datasets, was used to show that highly modeled datasets exhibited lower
errors, e.g., the Worldpop and LandScan [22]. Additionally, Mohanty et al. [18] compared
four datasets in understanding population flood exposure in Canada, and noticed that the
Worldpop and LandScan had an excellent performance. In their pursuit of robust and
reliable comparison, however, previous studies tended to be conducted under the context
of stable population countries (e.g., Canada [18], China [21], and Sweden [22]). In contrast,
the gridding estimation or modeling of population density for a dynamic population
generally incurs discrepancy. Differing from the stable type of population development,
the dynamics featured by rapid population growth particularly in the regions with high
population density, e.g., Mainland Southeast Asia (MSEA), can provide a better angle for
cross-comparison and accuracy assessment.

MSEA is experiencing rapid population changes with a high population growth rate
and accelerating urbanization since the 1950s [25–27]. A two-decade (2000–2019) average
of total population increment in Cambodia, Laos, Myanmar, Thailand, and Vietnam were
35.6%, 34.67%, 15.68%, 10.6%, and 20.71%, respectively. In addition, Thai and Vietnamese
capitals and their big cities (e.g., Ho Chi Minh) as well as their counterparts (i.e., Phnom
Penh, Vientiane, Naypyidaw and Yangon) in Cambodia, Laos, and Myanmar underwent
extensive urbanization and rapid population growth or immigration [28–31]. For example,
Vietnam, the most populous country in MSEA, is experiencing rapid population migration
from rural to urban areas [32], which greatly elevates the urbanization rate from 23.7%
(1999) to 34.4% (2019), or a growth rate of nearly 50%. What’s more, MSEA is also a
poor-data area, especially for Cambodia, Laos, and Myanmar. For example, Myanmar has
only conducted three censuses since 1948 (i.e., 1973, 1983, and 2014), which has brought
great challenges to the study of population changes of this country, so, time-series raster
population data can cover this shortage to a great extent.

Thus, MSEA serves as one of the most ideal regions for exploring and assessing the
consistency, discrepancy and suitability of various gridded population datasets in the set-
ting of rapid changing population. In combination with the provincial statistical population
data in 2015 from national census and yearbooks, the error-comparison statistical methods,
including the mean absolute error (MAE), root mean squared error (RMSE), and error rate,
were used for comparative analysis. In particular, we explored the error characteristics of
the datasets in the provinces of different population densities and growth rates. We try to
answer the following questions: (1) Do variations in the accuracy and suitability of gridded
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population datasets exist within countries in MSEA? (2) Where and why do variations and
discrepancies (e.g., estimation errors) across gridded population datasets occur in MSEA at
the provincial level? The results and conclusions may provide necessary guidance for the
usage of gridded population datasets in the ongoing impact-response analyses related to
climate change, disaster risk and epidemic spreading.

2. Materials and Methods
2.1. Study Area

Mainland Southeast Asia (MSEA), in this study, refers to the five countries including
Cambodia, Laos, Myanmar, Thailand, and Vietnam, with a topography (Figure 1a) dom-
inated by mountains and plains [33]. The nearly dichotomous landforms play a crucial
role in population distribution, migration and development. As a typical region of tropical
monsoon climate, terrain can be viewed as a decisive physical factor for sparse and dense,
rural and urban, and lowland and upland population. The densely populated regions of
MSEA are mainly concentrated in the coastal plains and delta areas of the four major rivers,
such as the Chao Phraya, Irrawaddy, Mekong and Red River. For instance, more than 80%
of the gridded population of MSEA settles in the elevation range below 200 m. The sparse
population is closely related to remote mountains and/or isolated plateaus, such as the
Annamite Chain, the Cardamom Mountains, the Shan Highland, and the Thanon Thong
Chai mountain range, etc. In recent times, the ethnic majority groups such as the Kinh
(Vietnam), the Thai (Thailand), the Burma (Myanmar), the Khmer (Cambodia) and the Lao
(Laos) dominantly inhabit the lowlands across each country, whereas the minority and/or
border-crossing ethnic ones including the Hmong-Mien, Ahka, Khmu, Lahu, and Lisu still
dwell in the upland environments.
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MSEA, occupying a land area of 1.93 million km2, had a population of 239.3 million
by 2019, with the population density of 124 people/km2, or more than twice as much as the
world average (58 people/km2). This is a densely populated region, however, the national
variations in population density are huge, with the population density of Cambodia,
Laos, Myanmar, Thailand, and Vietnam equaling to 93, 30, 80, 135, and 293 people/km2,
respectively. In terms of population counts and growth rate, Vietnam ranks the first with
96.2 million and an annual population growth rate of 0.96%, followed by Thailand with
68.7 million and 0.28%, Myanmar with 52.4 million and 0.63%, Cambodia with 15.3 million
and 1.46%, and Laos ranks the last with 6.9 million but with the largest growth rate of
1.53%. However, national urbanization rates are much lower than that of global average
(55.72%) in 2019, or 51%, 39.4%, 36%, 34.4% and 31% in Thailand, Cambodia, Laos, Vietnam
and Myanmar, respectively.

2.2. Data
2.2.1. National Statistical Data and Its Pre-Processing

As a data-poor region, MSEA lacks long-term or time-series datasets available from the
World Bank (https://data.worldbank.org/ (accessed on 3 October 2021)) in the low-income
countries (Cambodia, Laos, and Myanmar). Despite this, the provincial statistics, including
total population and land area, were collected from the official statistical websites of each
country (with the exception of Cambodia) in 2010 and 2015. Regarding Cambodia, the
corresponding data in the census years of 2008 and 2019 were applied as alternatives. The
two-stage data was also used to calculate the average annual population growth rate for
each province for the correlation analysis with estimated errors of gridded population.
In consideration of the accessibility, availability and feasibility, all statistical data were
gathered, processed and analyzed at the provincial level. It should be noted that some
provincial administrative units were newly established in the early 2010s. They were:
(1) Bueng Kan province in Thailand was separated from Nong Khai Mansion in 2011;
(2) Teben Kemun province in Cambodia was precipitated from Kampong Cham province
in 2013; and (3) Xaysomboon province in Laos was separated from Vientiane and Xieng
Khouang provinces in the same year. We interpolated the population data of these three
provinces in 2010 based on the governmental statistical bulletin to obtain continuous data
from 2010 to 2015. Figure 1b displays the distribution differences in population density
at the provincial level. There are 198 provincial units in MSEA regardless of land area,
including 25, 18, 15, 67 and 63 in Cambodia, Laos, Myanmar, Thailand and Vietnam,
respectively. Additionally, the administrative (e.g., provincial to national) boundaries of
MSEA and its five countries are freely available from the Database of Global Administrative
Areas (GADM) version 3.6 (https://gadm.org/ (accessed on 3 October 2021)).

2.2.2. Four Gridded Population Datasets

The scientific community has made great effort to disaggregate census data at the pixel
level, based on different modeling methods and auxiliary data to generate several global
and regional gridded population data products. According to the complexity of modeling
methods and auxiliary input data, these datasets can be divided into unmodeled (e.g., the
GPW), lightly modeled (e.g., the GHS-POP), and highly modeled (e.g., the WorldPop and
LandScan). Although the similarities among them are apparent, their differences are sub-
stantial and have critical implications for ongoing research involving the datasets. Table 1
presents the primary characteristics (including methods, input data, geographical reference,
and spatial-temporal resolution) of the four gridded population datasets. We noticed that
these datasets all have gridded population results in 2000 and 2015, for which both can
be considered for cross-comparative years because of the data consistency. However, as
previously stated, earlier (2000 and before) statistical data from census and/or yearbooks
is either unavailable or inaccessible. Considering the availability and timeliness of gridded
and/or statistical population data, the year 2015 was finally selected as the base year for
further analysis in this study. For spatial resolution, in Section 3.1, we used 30 arc seconds

https://data.worldbank.org/
https://gadm.org/
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(approximately 1 km at the equator) of all datasets, while in order to compare the highest
accuracy of the four datasets, the finest resolution was adopted in the Sections 3.2 and 3.3,
that is 100 m for the WorldPop and 250 m for the GHS-POP, respectively.

Table 1. Characteristics of the four gridded population datasets used in this study.

Version Producers Spatial
Resolution Years Simulation

Methods

Population
Sources and

Auxiliary Data

Publications
Indexed by the
WoS (as of 27

September
2021)

Unmodeled

GPW v4.11
UNWPP-
adjusted

population
count

Columbia
University and

Center for
International
Earth Science
Information

Network
(CIESIN)

1 km
2000, 2005,
2010, 2015,
and 2020

Areal
weighting

Census,
administrative

boundaries, and
World

Population
Prospects (2015

Revision)

31

Lightly
modeled

GHS-POP
R2019A

European
Commission

250 m and
1 km

1975, 1990,
2000, and

2015

Dasymetric
refinement

GPW v4 and
remote sensing

imagery
72

Highly
modeled

WorldPop
population

count

University of
Southampton

and other
organizations

100 m and
1 km

2000–2020
(time
series)

Multivariate
dasymetric

Census,
geographic data,

night-time
lights, and
volunteer

geographic
information

70

LandScan
Oak Ridge
National

Laboratory
1 km

1998 and
2000–2019

(time
series)

Smart inter-
polation

Census,
geographic data,

and remote
sensing imagery

133

2.3. Methodology
2.3.1. GIS-Based Consistent Spatial Comparison

Geographic Information System (GIS) based methods (e.g., overlay analysis, spatial
statistics analysis) were adopted to visually cross-compare the spatial performance of
accuracy among the four gridded population datasets with the same coordinate system
and spatial resolution across MSEA. Next, a wall-to-wall comparison of spatial differences
in population density of the major cities (e.g., Bangkok and Phnom Penh) was also carried
out in Section 3.1. Moreover, the zonal statistics tool via the ArcGIS10.2 software was used
to count total population or its density at provincial and national levels in Section 3.2, so
as to make comparison with statistical data. Moreover, when a grid cell spans multiple
provinces, the principle to allocate the population is based on the tool’s default to assign
pixels only to the boundary in which the pixel’s centroid resides.

2.3.2. Estimated Errors Comparison

Error comparison statistical methods were used to calculate the errors between the
statistical and gridded population at the provincial level in MSEA. Ratio error (RE) is one
of the most common indicators to estimate forecasting accuracy [21]. MAE and RMSE can
be used to measure the difference between the actual and estimated population. Smaller
values of MAE and RMSE represent a better quality of gridded population datasets. In
contrast, RMSE focuses more on individual outliers when compared with MAE, while
MAE would be better in delineating the average error among the four datasets [34]. Finally,
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the correlation coefficient (CC) is used to analyze the correlation of the actual and estimated
populations. The formulas of RE, MAE, RMSE and CC are given as follows.

RE =
fi − ri

ri
(1)

MAE =
1
N

N

∑
i=1
| fi − ri| (2)

RMSE =

√√√√ 1
N

N

∑
i=1

( fi − ri)
2 (3)

CC =
cov( f , r)

σf σr
(4)

where fi is the statistical population of province i, ri is the estimated population of province
i, N is the number of provinces in Mainland Southeast Asia (MSEA), cov (f, r) is the
covariance of the statistical and estimated population, σf is the standard deviation of the es-
timated population, and σr is the standard deviation of statistical population. Furthermore,
RE was classified into seven types according to the distribution of their values, including
±20%, ±10%, and ±5%. Those above 20% or below −20% are defined as extreme outliers.

3. Results
3.1. Spatial Differences in the Four Gridded Population Datasets

Figure 2 presents the differences in the spatial distribution of the four gridded pop-
ulation datasets across MSEA, using the same classification scheme. Visual comparison
indicates that the GPW has the roughest spatial performance. With respect to the un-
populated areas (or population density <1 person per km2), the LandScan has the best
performance. The GHS-POP clearly overestimates the area of the depopulated zone, indi-
cating that the estimation of sparsely populated areas is rough, as well. This may relate
to the auxiliary data input (i.e., built-up area) of the GHS-POP dataset. The distribution
and its weight of built-up area have direct contribution to the insufficient accuracy for low
population density. The WorldPop dataset seems to underestimate the area of uninhabited
land, with a poor recognition of sparsely populated areas. It may have a close relation to
the spillover effect of night time light (NTL) as auxiliary input data of the WorldPop [7,10].
In addition, in terms of unpopulated areas (e.g., mountainous regions), the LandScan has
the best performance, followed by the WorldPop, GHS-POP and GPW.

Furthermore, two typical areas in MSEA were selected to compare the variations in the
densely and sparsely populated area among the four gridded population datasets (Figure 2).
The Bangkok metropolitan area, where most pixels contain more than 500 people, was
selected as the densely populated case area. In contrast, the border area of Cambodia,
Laos and Vietnam, where most pixels contain less than 50 people, was selected as the
sparsely populated case area. First, the GPW shows obvious influence of the administrative
boundaries on the gridded population estimation. Second, the impacts of varied man-made
construction (including infrastructure) on gridded population estimates are very notable.
For example, the WorldPop has the larger population density due to expanded urban
extent because of the spillover effect of NTL [7,10]. Similarly, the LandScan tends to reveal
the variations because of the roads, settlements and small towns or villages in the suburbs
of the cities, while the GHS-POP maintains a high consistency with the built-up area.
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Figure 2. Differences in the spatial distribution of the four gridded population datasets in MSEA in 2015. Note that the two
satellite images are sourced from Google Earth (2015).

3.2. The Consistency and Discrepancy of the Four Datasets at the Provincial Level

Table 2 shows the results of accuracy assessment between statistical and gridded
population datasets. First, the MAE and RMSE fluctuated in the ranges of 12~14 and
30~34, respectively, while their correlation coefficients were consistently greater than
0.95 (Figure 3). In particular, although the GHS-POP and WorldPop use higher spatial
resolutions (e.g., 250 m for the GHS-POP and 100 m for the WorldPop), the LandScan has the
smallest estimated errors (e.g., MAE and RMSE) and a slightly larger correlation coefficient
(CC), showing the best performance among them. From the perspective of relative error
distribution (Table 3), more than 60% of the number of provincial administrative regions
and approximately 70% proportion of the total population have relative errors within
±10%, indicating that the estimation of the four datasets perform well in the majority of
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provinces. In terms of the difference in four datasets, the LandScan and WorldPop have
the largest number of provinces within a relative error of ±10%, then followed by the
GHS-POP and GPW, while the LandScan has the smallest proportion of total population,
showing its lowest accuracy within a relative error of ±10%. On the other hand, for large
errors (beyond±20%), the LandScan has the lowest proportion of total population (12.28%),
especially for the lowest underestimation (4.13%), but the other three are not much different
(i.e., the proportion of total population of the WorldPop, GHS-POP, and GPW is 15.98%,
16.45%, and 16.6%, respectively). Overall, the WorldPop performed the best in terms of
small error rates, but the LandScan performed the best in terms of large error rates.

Table 2. Accuracy assessment between gridded and statistical population datasets.

Datasets MAE RMSE CC

GPW 13.74 33.18 0.973
GHS-POP 13.78 33.52 0.973
WorldPop 13.29 33.80 0.971
LandScan 11.88 29.74 0.978
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The provincial distribution of ratio errors among the four gridded datasets are huge
(Figure 4). First, all provinces in the MSEA are divided into high, medium and low errors
with the breakpoints of 10% and 20%. Moreover, in terms of ratio errors in different
countries, the LandScan is significantly better than the other three in Thailand, with the
proportion of total population beyond the range of ±20% is 18.96%, comparing to the GPW
(43.8%), GHS-POP (42.64%), and WorldPop (43.9%), respectively), while in Myanmar and
Laos, the WorldPop performed best (the proportion of total population within the range of
±10% is 78.57% and 95.78%, respectively). For Vietnam and Cambodia, the four datasets
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did not show significant differences. On the other hand, Figure 5 showed the MAE and
RMSE of the four datasets in these countries. According to Figure 5, in different countries,
the MAE and RMSE of the four datasets in Cambodia and Laos are much close. However,
for Myanmar and Vietnam, the WorldPop performed better, and the LandScan may be
a better choice for Thailand because of the smallest RMSE. To sum up, the LandScan is
relatively more suitable for Thailand and Vietnam, and the WorldPop performs well in
Myanmar and Laos, while for Cambodia, the accuracy of both LandScan and WorldPop
are acceptable.

Table 3. The ratio errors of the four gridded population datasets by different classification in MSEA.

Error
Rate/%

GPW GHS-POP WorldPop LandScan

Number
of

Provinces

Proportion
of Total

Population/%

Number
of

Provinces

Proportion
of Total

Population/%

Number
of

Provinces

Proportion
of Total

Population/%

Number
of

Provincse

Proportion
of Total

Population/%

<−20 21 9.19 22 9.48 20 9.22 9 4.13
−20~−10 22 5.68 22 6.27 21 5.61 23 8.01
−10~10 125 71.82 125 68.41 130 72.32 131 65.70
10~20 12 5.90 13 8.87 11 6.09 22 14.01
>20 18 7.41 16 6.97 16 6.76 13 8.15
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3.3. Large Errors in Different Population Density and Changing Area

Estimated errors of the four gridded datasets increase with the increment of population
density and population growth rate, with the key threshold values of approximately
610 persons/km2 and 1.54% (Figure 6, Table 4), respectively. There is a consistent tendency
of the errors rising with the increase of population density among the four datasets, and the
ratio errors of the four datasets are very small for the Type A, especially for the WorldPop
and LandScan. When the population density is over 610 persons/km2 (usually considered
to be densely populated [4,22], Type B), the errors of the gridded population datasets
increase significantly which clearly shows an overestimated population. It is worth to note
that ratio errors of the LandScan dataset is significantly smaller than those of the other three
datasets, although the GHS-POP and WorldPop use higher spatial resolution (e.g., 250 m
for the GHS-POP, and 100 m for the WorldPop). Similar change features are also seen in the
estimated errors of the four gridded datasets along with the increase of population growth
rate (the right panels in Figure 6), and the ratio errors of the four gridded datasets are very
small (Table 4). However, as the population growth rate exceeds 1.54% (usually considered
to be rapid population growth [4,22], Type D), the errors gradually increase, showing the
poor estimation of the gridded population datasets. Also, the LandScan performed slightly
better than the other three datasets.

Next, we further discussed the spatial distribution of outliers. Firstly, this research
defined the provinces with estimated errors exceeding±20% as outliers, and assigned them
with value “1”; if not, it was assigned with “0”. Secondly, the four datasets were summed
and analyzed for consistency, that is, when the sum equaled “1~3”, it was classified
as “medium consistency”, while those equaling to “4” were considered as “complete
consistency”. Finally, a map for spatial distribution of underestimation and overestimation
outliers was generated. From Figure 7a, the provinces with underestimating outliers
account for 14.14%; and those of “medium consistency” occupied 10.61% are mainly
concentrated in the northeast Thailand. Regarding the type of “complete consistency”,
the provincial proportion was merely 8.08%, showing a scattered distribution in border
and coastal areas. For overestimating outliers (Figure 7b), the proportion is about 9.6%.
The provincial ratios of both “medium consistency” and “complete consistency” are about
5.05%. Spatially, the former shows dispersed distribution, while the latter are mostly
concentrated on the Bangkok metropolis.
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Table 4. Accuracy assessment of the four gridded datasets in the high and low-to-medium population density.

Classification Datasets MAE RMSE CC

Population
Density

(People per sq. km.)

Type A
(≤610)

GPW 10.25 19.44 0.980
GHS-POP 10.20 19.37 0.980
WorldPop 9.65 18.60 0.980
LandScan 9.49 21.16 0.982

Type B
(>610)

GPW 37.84 78.15 0.927
GHS-POP 38.49 79.38 0.928
WorldPop 38.46 81.56 0.924
LandScan 28.44 62.51 0.932

Population growth rate/%

Type C
(≤1.54)

GPW 10.43 30.56 0.958
GHS-POP 10.45 30.92 0.958
WorldPop 10.14 31.66 0.955
LandScan 9.22 26.33 0.975

Type D
(>1.54)

GPW 25.30 41.06 0.965
GHS-POP 25.41 41.36 0.965
WorldPop 24.32 40.39 0.964
LandScan 21.19 39.42 0.964

Notes: We defined the population of more than 610 persons per sq. km. as the low-to-medium category (Type A), otherwise as the
high-density category (Type B), followed by the slow—(Type C) and fast—(Type D) growth categories according to the threshold (1.54%) of
population growth rate.
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4. Discussion
4.1. Comparative Summaries with the Previous Studies

With the continuous enrichment of gridded population products and increasing
application fields, accuracy assessment of the datasets has become the focus of current
research. Leyk et al. [20] reviewed the fitness of many gridded population datasets in
the perspective of methods for population redistribution and input data. Their results
indicate that data users should fully consider the differences according to one’s purposes,
for instance, the spatial and temporal resolution, urban or rural and residential or ambient
population, etc. Our research is an empirical study echoing their appeal by assessing the
errors between statistical population and the four estimated gridded population datasets
in MSEA in 2015, which also supports their viewpoints. Similar results were also presented
in Archila Bustos et al. paper [22] in Sweden, which further gave an in-depth analysis of
data accuracy, and pointed out that even the highly modeled datasets had certain errors
showing trade-offs of accuracy and suitability. Our findings also showed that the datasets
employed highly complex modeling techniques present lower errors. This is in line with
the conclusions that the LandScan and WorldPop, which are highly modeled, have smaller
errors than the GPW and GHS-POP [18,22,23,35].

Compared with the earlier research, however, the novelty of this research is reflected
in the following two parts: firstly, the cross-comparison of the gridded datasets is an
important attempt in MSEA, or a demographics-poor area accounting for rapid popu-
lation change. Through the cross-comparison of the four datasets for five countries in
MSEA, we found that the two highly modeled datasets, the WorldPop and LandScan,
have different suitable countries, this finding is instructive for exploring the best fitting
gridded population datasets in different regions. Secondly, the exploration of large error
characteristics deepens existing research. Through evaluating the accuracy of gridded
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population datasets at the provincial level, we were able to quantify the consistency and
discrepancy in different population density and growth rate areas, and explored where the
over- or under-estimation errors were relatively larger.

4.2. Outlook for Future Cross-Comparison and Applications of the Gridded Datasets

Expanding the focus much more broadly, we discussed future cross-comparison and
application of the gridded datasets because of the large estimation errors. As previously
revealed, the errors rose accordingly along with the increase of population density and
growth rate for all gridded datasets, with two key thresholds of 610 persons/km2 and 1.54%.
Of course, we believe that these thresholds would be diverse at various spatio-temporal
scales, which alert us in actual applications.

For the sake of better understanding the discrepancy of the existing gridded popula-
tion datasets, this study provides a reference for similar cross-comparative analysis in other
countries, especially the densely populated ones, such as Indonesia, India, and Mexico. It
is highly recommended to pay attention to two potential challenges. One is to collect statis-
tical census or yearbooks (true values) as much as possible, and the finer statistical units
(e.g., a county or district level), the better. The fact that only provincial level census and/or
yearbooks can be available in 2015, as well as the Modifiable Area Unit Problem (MAUP)
caused by provincial administrative units [36], limits the finer and in-depth investigation in
this study. Thus, further research in other demographics-rich countries can be an optimum
choice. We note that time-series finer statistical population data can produce much better
results. The other, also a pressing issue at present, would be the mechanism research on
the causes, extent, and countermeasures of the endless estimation errors. In the regions of
rapid changing population like MSEA, why large errors (either over- or under-estimation)
of the gridded datasets occur in the parts of high population density and rapid growth;
such uncertainties are very worthy to study in the future.

4.3. Suggestions for the Gridded Datasets’ Producers and Users

For data producers, they might pay more attention to the modeling in areas with high
population density and growth rate. Large errors increase significantly when the population
density and growth rate are higher than 610 persons/km2 and 1.54% in this research,
respectively. Similarly, another study also confirmed that the GHS-POP underestimates
the population in densely populated regions [26]. Therefore, we appeal that the gridded
population data producers would value highly the high population density and growth
rate regions when they distribute the population. Moreover, future exploration of the
drivers and/or causes are needed, so as to modify the models or add or remove auxiliary
input data for better estimation of gridded population.

For data users, they might had better choose the most suitable datasets instead of the
most accurate one. As Leyk et al. [20] pointed out, no single gridded population dataset
can satisfy all application scenarios. In addition, more ancillary data and more complex
modeling methods would incur unexpected errors. Thus, the GPW seems to be more appro-
priate because it does not use any ancillary data [22]. So, the user community might adopt
the lens of the “fitness for use” concept, and choose the appropriate gridded population
datasets based on their actual demand. For example, if one is more concerned about the
urban population rather than rural population, the GHS-POP, which uses information on
built-up areas in the modeling, would be a better choice.

5. Conclusions

Human beings are the key factor of climate change, disaster risk and epidemic spread-
ing, and global gridded population datasets have become the foundational data source for
conducting research on the human-nature interrelationship. Thus, reliable and suitable
gridded population datasets are very important for the academic community. However,
from the perspective of existing research, the applicability of data in areas with rapidly
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changing populations has received little attention, which is of great significance for im-
proving the quality of datasets.

In this study, Mainland Southeast Asia (MSEA), or a typical area of rapid changing
population, was selected to evaluate the accuracy assessment among the four most com-
monly used datasets, e.g., the GPW, GHS-POP, WorldPop, and LandScan and statistical
population (census and/or yearbooks). We found that: Firstly, the LandScan performs the
best both in spatial fineness and estimated errors, followed by the WorldPop, GHS-POP,
and GPW in the whole region. In regard to an individual country, the LandScan is the best
choice in Thailand and Vietnam. The WorldPop better suits the situation for Myanmar and
Laos. Similarly, both the LandScan and WorldPop are suitable for Cambodia. Moreover,
the analysis of relative errors show that the high population density and rapid population
growth area have larger errors for the gridded population datasets. Specifically, when
the population density and growth rate are higher than 610 persons/km2 and 1.54%, re-
spectively, the errors of the population raster datasets increase significantly, but for four
datasets, the LandScan performs better than the others.
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