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Abstract: Indoor positioning data reflects human mobility in indoor spaces. Revealing patterns of
indoor trajectories may help us understand human indoor mobility. Clustering methods, which
are based on the measurement of similarity between trajectories, are important tools for identifying
those patterns. However, due to the specific characteristics of indoor trajectory data, it is difficult
for clustering methods to measure the similarity between trajectories. These characteristics are
manifested in two aspects. The first is that the nodes of trajectories may have clear semantic
attributes; for example, in a shopping mall, the node of a trajectory may contain information such as
the store type and visit duration time, which may imply a customer’s interest in certain brands. The
semantic information can only be obtained when the position precision is sufficiently high so that the
relationship between the customer and the store can be determined, which is difficult to realize for
outdoor positioning, either using GPS or mobile base station, due to the relatively large positioning
error. If the tendencies of customers are to be considered, the similarity of geometrical morphology
does not reflect the real similarity between trajectories. The second characteristic is the complex
spatial shapes of indoor trajectory caused by indoor environments, which include elements such as
closed spaces, multiple obstacles and longitudinal extensions. To deal with these challenges caused
by indoor trajectories, in this article we proposed a new method called E-DBSCAN, which extended
DBSCAN to trajectory clustering of indoor positioning data. First, the indoor location data were
transformed into a sequence of residence points with rich semantic information, such as the type
of store customer visited, stay time and spatial location of store. Second, a Weighted Edit Distance
algorithm was proposed to measure the similarity of the trajectories. Then, an experiment was
conducted to verify the correctness of E-DBSCAN using five days of positioning data in a shopping
mall, and five shopping behavior patterns were identified and potential explanations were proposed.
In addition, a comparison was conducted among E-DBSCAN, the k-means and DBSCAN algorithms.
The experimental results showed that the proposed method can discover customers’ behavioral
pattern in indoor environments effectively.

Keywords: indoor positioning data; spatial–temporal mobility; weighted edit distance; E-DBSCAN;
trajectory clustering

1. Introduction

In urban life, humans spend more than 80% of their time in houses, offices, shopping
malls and other indoor spaces [1,2]. Understanding and mastering the motion pattern of
indoor activities of human are conducive to urban management and better services for
people. In recent years, the rapid development of indoor positioning technologies and
location services, such as radio frequency identification (RFID) [3,4], Wi-Fi [5,6], ultra-
wideband [7] and Bluetooth [8,9] have been used to extract accurate location of items
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or people. These trajectory data record human mobility in indoor spaces and contain
information on people’s behavior, interests, location preferences and mobility modes,
which are very helpful for understanding human indoor mobility [10]. Therefore, studying
a method for mining human behavior patterns from indoor trajectories is very important
and necessary.

Currently, trajectory clustering is a useful approach for analyzing human’s behav-
ioral patterns [11–13]. It aggregates similar trajectories and mines the behavior pattern of
humans. The trajectory clustering methods include partition-based (e.g., k-means and k-
medoids) [14,15], density-based (e.g., DBSCAN, OPTICS) [16–18], hierarchy-based [19,20]
and other method types. These methods take a whole trajectory as a clustering object
and define a suitable similarity measurement (e.g., dynamic time warping, edit distance,
Hausdorff distance, etc.) [21–23] between different trajectories based on the characteristics
of the trajectory data. At present, these clustering methods are mainly based on mobile
terminal equipment and GPS positioning and are often applied in outdoor environments.
However, compared with outdoor trajectories, indoor trajectories have some special char-
acteristics. First, indoor spaces are multi-layer structures (different floors) with many
obstacles and no obvious road network, so the indoor trajectory has three-dimensional
features, strong randomness and more complex geometry shape. This characteristic makes
similarity measurement of indoor trajectories difficult, because previous efforts on tra-
jectory similarity research focus on outdoor spaces (e.g., Euclidean and road-network
spaces) [24–26]. Secondly, the topological relationships between the indoor trajectory and
points of interest (POI) visited are relatively explicit. POIs have rich semantic information,
such as name, type, location, etc. The semantic information reflects people’s interest in
activities. Thus, leveraging the information contained in these attributes to improve the
accuracy of clustering is also a challenge. Considering the above factors, the traditional
trajectory clustering methods cannot be directly applied to indoor environments. Therefore,
it is necessary to study new methods suitable for indoor trajectory clustering.

In this paper, we propose a new cluster method called E-DBSCAN for indoor trajectory
clustering. In the method, a trajectory is considered as a sequence of residence points with
rich semantic information, and the distance between two trajectories is calculated based
on the weighted edit distance. The operating cost of Weighted Edit Distance is based
on semantic trajectory information, such as the POI type, stay time and located floor.
Then, an experiment is conducted to verify the correctness of E-DBSCAN with a trajectory
dataset and mall map from Joy City mall, located in Beijing, china. The trajectory data
are collected using WiFi access point (AP). The trajectory dataset provides an extensive
amount of customer trajectory data, phones’ MAC addresses, geo-location, timestamp and
floor. The mall map not only shows the spatial layout of the mall, but also describes the
POIs’ attribute information, such as the name, store type, store number, etc. In addition,
we further analyze customers’ spatiotemporal behavior based on the experiment result,
discover five shopping behavior patterns and provide possible explanations as to the
causes. In summary, the main contributions of this work are as follows:

(1) The indoor spatial trajectories are transformed into semantic trajectory by extracting
the user’s stay points. We propose a Weighted Edit Distance method to calculate semantic
trajectories similarity.

(2) Based on the principle DBSCAN, we redefine the concepts of core point, directly
density-reachable and density-connected for relevance to indoor environments, and pro-
pose the E-DBSCAN algorithm to realize indoor trajectory clustering.

(3) We apply the E-DBSCAN method to the analysis of user behavior patterns in malls,
and five shopping behavior patterns are found.

The rest of this article is structured as follows: In Section 2, the related work on
spatio-temporal behavior analysis and trajectory clustering using indoor position data is
reviewed. In Section 3, the proposed methodology is introduced in detail. In Section 4,
an experiment on customers’ trajectory clustering and shopping behavior patterns using
the E-DBSCAN algorithm is presented and the results are compared with those obtained
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through the commonly used methods DBSCAN and k-means. In Section 5, the research
results and the advantages of our method compared to existing methods are discussed.
Finally, this work is concluded in Section 6 and directions for future research are provided.

2. Related Works
2.1. Indoor Positioning Data Application

In previous studies, indoor positioning data have been applied in the field of analyzing
users’ spatio-temporal behavior patterns and mining users’ mobility rules. The trajectory
data are mainly collected via Bluetooth, RFID and WiFi [3–9], and applications have been
proposed for many different domains, such as museums, shopping malls and airports. For
example, Yoshimura et al. [27,28] obtained the sequence of visitors in the Louvre Museum
using Bluetooth data and analyzed the number of visitors, the time of stay and the spatial
layout in order to clarify the behavioral features of visitors in the museum and improve
the museum’s environment and visitor experience. Delafontaine et al. [29] used sequence
alignment methods to examine the behavioral patterns of visitors tracked at a major trade
fair in Belgium and demonstrated a Bluetooth-based tracking method for collecting data
from visitors at mass events and extracting insightful information. Kholod et al. [30] also
applied RFID trajectory data to evaluate the shopping behaviors of customers and their
relationship with indoor furnishings quantitatively. Using position data collected through
RFID, Syaekhoni et al. [31] analyzed customers’ behavior using a clustering algorithm
and proposed the operational edit distance to measure the distance between different
trajectories. In an application using WiFi indoor positioning data, Shu et al. [32] proposed
a novel method to estimate and predict queuing times in airport environments. In order
to improve both the accuracy and the response time of indoor positioning, Li et al. [33]
proposed a two-level WiFi fingerprinting algorithm and used this method to monitor
dangerous factory areas. Using WiFi trajectory data, Zhou et al. [34] used clustering
algorithms to extract temporal visiting patterns of crowds and revealed movement trend
changes over time. The above research shows that different types of indoor positioning
data or trajectories are attracting more and more attention for indoor applications.

2.2. Trajectory Similarity Measures

One of the most important parts for clustering trajectories is the similarity measure-
ment between different trajectories. The methods of similarity measurement can be divided
into spatiotemporal-based and semantic-based [35,36]. The methods of Euclidean dis-
tance [18], Hausdorff distance [23], dynamic time warping (DTW) [21], edit distance [22]
and longest common subsequences (LCSS) [37], etc. are spatiotemporal-based. The Eu-
clidean distance is the classical distance metric, easy to implement and parameter-free.
However, it is poor processing for the noise data existing in trajectories, and the trajectories
must have the same number of dimensions and equal length. In practical applications, dif-
ferent trajectories often have different lengths, and the trajectory points are different floors
in multilayered structures, so the Euclidean distance’s applicability for indoor trajectories
measurement is limited. The Hausdorff distance measures the maximum mismatch degree
between two trajectory segments better. But it is sensitive to noisy data and does not take
into account the structural relationship between different trajectories. The DTW distance is
suitable for measuring the similarity of two time series with different lengths [21]. How-
ever, DTW is also sensitive to noise and cannot be used to determine the distance between
two trajectories that are completely dissimilar over a small range. The LCSS distance
is the length of the longest common sub-sequence existing in two trajectory sequences
composed by charters, and has very good efficiency for practical application [37]. Kang
et al. extended the LCSS method for measuring similarity between indoor trajectories [18].
However, their methods ignored the spatial distance between mismatched points. Edit
distance, also known as the Levenshtein distance, is a method for calculating the distance
between strings [22]. Wang et al. proposed a distance called the edit distance combined
with Euclidean distance (EDEU) to measure the similarity of RFID indoor trajectories [19].
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However, the EDEU does not consider indoor movement constraints and the Euclidean
distance is not accurate for indoor moving objects. The basic idea of semantic-based is
to transform raw trajectories into semantic trajectories, and then calculate similarity by
traditional methods (e.g., LCSS, DTW and Levenshtein). A semantic trajectory is a raw
trajectory combined with related contextual information, such as POIs, land use, and
weather. Ying et al. proposed the maximal semantic trajectory pattern (MSTP) similarity [6].
Frequent semantic trajectories are first mined from raw trajectories, and a modified LCSS
is then applied to calculate the MSTP similarity. Dodge et al. introduced an improved
method called the normalized weighted edit distance (NWED) as a similarity measure [38].
They separated trajectories into segments with specific movement parameters (MPs), such
as speed, acceleration and direction, then denoted different MP classes (MPCs) using
alphabetical letters, and converted the raw trajectories to string sequences. Finally, the MPs
of string sequences were used as weights to calculate the costs of the edit operations. Jin
et al. introduced an indoor trajectory similarity based on spatial and hierarchical semantic
similarity [2]. The spatial similarity is measured using a distance in three-dimensional
space and the hierarchical semantic similarity is computed using a semantic classification
tree. From above research shows that it is difficult for the method of spatiotemporal-based
similarity to meet the requirements of similarity measurement between indoor trajectories.
The method of semantic-based similarity provides a new way. However, when an indoor
trajectory is transformed into a semantic trajectory, what kind of semantic information can
better reflect the characteristics of trajectory is also a problem to be considered. Therefore,
we propose a new way to extend edit distance, which will be discussed in Section 3.1.

2.3. Indoor Trajectories Clustering

Trajectory clustering is the most popular method for trajectory data mining. Methods
of this type assign similar trajectories into the same group to determine the most common
movement behaviors [15,38]. The relevant clustering methods can be classified into five
categories: partition-based (e.g., k-means and k-medoids), hierarchy-based (e.g., balanced
Iterative reducing and clustering using hierarchies), density-based (e.g., DBSCAN and
OPTICS), grid-based (e.g., STING and CLIQUE) and model-based (e.g., COBWEB) [38,39].
The methods of trajectory clustering are mainly extended from these traditional cluster-
ing algorithms, and are widely used for outdoor trajectory clustering. At present, some
scholars have paid attention to the research of indoor trajectory clustering. To analyze the
behavioral properties of customers in the store, Hui et al. [40] took k-medoids clustering
method to detect the main shopping path patterns from indoor RFID positioning data. The
similarity between trajectories used the Euclidean distance. Sano et al. also employed the
k-medoid method to cluster RFID-based shopping trajectories collected from a grocery
store in Japan, and identified nine typical movement patterns based on the KL statistics [41].
However, their method of trajectory clustering based on Euclidean distance can reduce its
accuracy due to obstacles such as sales stands and shelves in the actual store environment.
In order to solve this drawback, Jung et al. calculated trajectory similarity between trajecto-
ries extending LCSS method, and developed the main-shopping-path-pattern clustering
method to determine the K main shopping path in store [42]. This method is similar to
k-means and requires the initialization parameter k. Then, they collected user trajectory
data by RFID technology in an actual large discount store located in Seoul, Korea, and did
an experiment for verifying the correctness of their clustering algorithm. The above indoor
trajectory clustering methods all use RFID positioning data, and there is only one floor
in the indoor space, so there is no impact of trajectory across floors on clustering. Wang
et al. proposed a new clustering method of indoor spatiotemporal density-based spatial
clustering of applications with noise (Indoor-STDBSCAN) to detect the stay points in an
indoor trajectory and convert them into a location sequence [43]. The indoor trajectories
consist mainly of Wi-Fi positioning data from a shopping mall in Jinan City, China. There
are eight floors in the shopping mall. The Indoor-STDBSCAN algorithm is developed from
STDBSCAN [44], and divided the individual user trajectory into k disjoint order clusters.
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Each cluster was considered as a stay point. Considering the three-dimensional characteris-
tics of indoor trajectory, the Indoor-STDBSCAN added floor and order constraints. This
algorithm can effectively identify user’s stay points. However, the algorithm only clusters
the positioning points of the trajectory itself, rather than clustering multiple trajectories.
Therefore, it is necessary to study new methods suitable for indoor trajectory clustering.

In summary, we find that spatial-temporal behavior analysis using indoor position
data has been applied in some fields (e.g., museums, markets, and airports). Some scholars
also have used k-medoids, indoor-STDBSCAN and other algorithms for indoor trajectory
clustering. However, these methods are only for a single indoor trajectory or the trajectories
on the same floor. The similarity measurement and clustering between trajectories across
floors are still challenges. Therefore, in Section 3, we present a new clustering method,
called E-DBSCAN, to solve the problems associated with analyzing human behavior
patterns from indoor positioning data.

3. Methodology

This section provides a concise description of E-DBSCAN. Before the details of the
algorithm are described, two parameters and four basic concepts must be defined. We first
use two parameters to define density: The search radius, denoted as ε, and the minimum
number of trajectories within a circular area defined by the radius, denoted as minL. The
parameters ε and minL are clustering thresholds. These two values need to be preset and
are subjective.

Definition 1. Core trajectory: If the distance between the current trajectory and another trajectory
in the trajectory set is less than ε, and the number of trajectories that are similar to the current
trajectory is greater than minL, then this trajectory is considered as the core trajectory.

Definition 2. Directly density-reachable: In a trajectory set, if trajectory m is the core trajectory
and the distance between trajectory n and trajectory m is smaller than ε, then trajectory m is said to
be directly reachable from trajectory n.

Definition 3. Density-connected: There is a cluster O composed of a core trajectory m and a
trajectory set with its direct density, and there is a cluster U composed of a core trajectory n and a
trajectory set with its direct density. If trajectory nß ∈O and the repeated trajectories in O and U
are greater than r of each other, then the two clusters’ densities are said to be connected.

In definition 3, parameter r is a threshold, which represents the repetition rate of the
trajectory in the two trajectory clusters O and U. The r value is an empirical value, and
its value is determined as follows: firstly, preset some values, such as 40%, 50% and 60%,
and then conduct experiments based on the preset values, and finally select the r value
by analyzing the coincidence between the experimental results and the actual situation.
Compared with the density connection of DBSCAN, definition 3 describes the update of
the condition for merging points to avoid trajectories being clustered into mistaken classes
due to the length of trajectory being too short.

Definition 4. Intra_cluster trajectory similarity: This is defined as the reciprocal of the lowest
average of the weighted editing distance between any trajectory L in the trajectory set and the rest of
the trajectories in the trajectories cluster. The calculation equation is as follows:

dis(i,j) = distance
(
trji, trjj

)
, ∀trji ∈ cluster ∩ ∀trjj ∈ cluster ∩ trji 6= trjj (1)

In Equation (1), dis(i,j) refers to the Weighted Edit Distance of any two trajectories in the
trajectory set.

disavg(i) =
∑n

j=1 dis(i, j)

n− 1
, j = 1 . . . n, i 6= j (2)
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In Equation (2), it calculates the average distance between any a trajectory and other trajectories
in the cluster. Here, the parameter i is the index of any a trajectory in the cluster, j is the index of
trajectory other than i, and n is the number of trajectories in the cluster.

Intracluster =
1

min
{

disavg(i)
} , i = 1 . . . n (3)

The value of Intracluster is defined by Equation (3), and can reflect the similarity degree of
trajectories in the cluster set. Larger values correspond to higher similarity between trajectories in
the cluster, and correspond to a better clustering effect.

The basic idea of E-DBSCAN is that a user’s spatial trajectory is expressed as a
chronological sequence of POIs with rich attribute information (i.e., the type and spatial
distribution of the POIs and the user’s duration of stay). Then, similarity calculation
and clustering are performed. The process flow of the main methodology used in this
work is shown in Figure 1. There are two main processes to consider. The first step is
trajectory transformation, which filters out incorrect or non-logical track points, extraction
of user-visited POIs and conversion of the customer’s indoor physical positioning data
into characters with POI sematic information. Then, the E-DBSCAN algorithm is applied,
which involves obtaining a Weighted Edit Distance between two trajectories, optimization
of the rule of density association for merging trajectories and improvement of the difference
between clusters.

Figure 1. A procedure for trajectories clustering by E-DBSCAN.

3.1. Trajectory Transformation

In practical applications, a human’s trajectory is a sequence of position points, which is
usually expressed as Ptrj = < mac, x, y, f , t >. In this quintuple, mac is the Wi-Fi adapter’s
address of the user’s mobile phone, f represents the floor where user is located, x and y are
the user’s coordinates on this floor and t is timestamp of this point. This representation
is more complex in indoor environments, because of their multi-layer structure and lack
of obvious road networks. However, a person’s trajectory is also a sequence of locations
visited by himself. Therefore, we can extract the sequence of POIs visited by humans from
their physical trajectory as a characteristic trajectory for clustering, as shown in Figure 2.

Figure 2. (a) Schematic diagram of a trajectory in three-dimensional space; (b) schematic diagram of POI sequence.
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To transform a trajectory to POI sequence, two key processes need to be applied:
trajectory preprocessing and stay-area extraction.

(1) Positioning data preprocessing. To ensure that the positioning data are valid
and reasonable, trajectory preprocessing is applied, which mainly deals with abnormal
conditions, such as missing values, hops, and points whose coordinates coincide. During
this sub-process, the main methods adopted are indoor data stratification and heuristic
filtering. A detailed analysis of these methods is omitted, as these methods are not the
focus of this article.

(2) Stay-areas extraction. The purpose of stay-area extraction is to obtain the POIs vis-
ited by users and transform the user’s physical position point sequence to a POI sequence.
In theory, we can topologically intersect the mall map (where each store is represented as a
polygon) with the points of the trajectory to obtain the POIs visited by users. However,
some POIs, such as tea and fruit drink stands, jewelry stores, etc., have areas that are too
small, and the users do not access their interiors; these areas cannot be identified through
topological intersection. To mitigate this problem, we modified the mall map and expanded
the polygon scope of such POIs so that it can be determined whether users have visited or
not through the corresponding topological relations. By transforming a trajectory to a store
sequence, a user’s trajectory can be expressed as:

trjpoi = {(poi1, tin, tout), (poi2, tin, tout), . . . , (poin, tin, tout))}

On this basis, we eliminate and merge POIs in the sequence. POIs with short access
time should be removed by setting a time threshold and then the adjacent POI points
should be merged. The final POI sequence of a user trajectory is shown as follows:

trjpoi = {(poi1, staytime1), (poi2, staytime2), . . . , (poin, staytimen)}

We take Figure 3 as an example to illustrate how to extract stay points. As shown
in Figure 3a, the user’s trajectory is recorded in time series. Figure 3b shows the spatial
distribution of user trajectories according to time series. First, by intersecting the trajectory
with the polygon of POI, it shows that the trajectory stays in the two areas of POIa and
POIb, and the resulting trajectory sequence is as follows:

trjpoi =
{(

poib, tp2, tp3
)
,
(

poia, tp4, tp5
)
,
(

poib, tp6, tp7
)}

Figure 3. (a) Trajectory list display; (b) trajectory spatial display.

Then, the adjacent POI is merged or the POI set is deleted based on the time threshold
θt, which is the minimal amount of time for staying in POI. It is generally considered
that the staying points with the residence time less than θt are invalid and can be deleted.
However, due to the error of the indoor positioning data, transboundary of positioning
points may occur at the boundary of POI, as points of p4 and P5 in Figure 3b, so it is
necessary to determine whether to merge with the adjacent set. In Figure 3b, if the interval
between p4 and p3 and the interval between p6 and p5 are all less than the threshold t, this
proves that points P4 and p5 are drift points. Then sets of

(
poib, tp2, tp3

)
,
(

poia, tp4, tp5
)

and(
poib, tp6, tp7

)
can be combined into a set, that is, trjpoi =

{(
poib, tp2, tp7

)}
.
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3.2. E-DBSCAN
3.2.1. Weighted Edit Distance

In interior spaces, it is not appropriate to calculate the similarity between two trajec-
tories only through the spatial form of the trajectory because of the characteristics of the
indoor trajectories. To solve this problem, we treated a semantic trajectory as character of a
string by POI subcategory, and developed an improved version of the edit distance as a
similarity measure, called Weighted Edit Distance. It is modified from the edit distance for
a string sequence. The classic edit distance is that seeks the minimum number of opera-
tions that transfer one string to another. These operations include insertion, deletion, and
substitution, which costs are all 1. However, POI in the sequence contains rich semantic
information, such as the type of POI, stay duration, and floor location of POI (to express
the spatial correlation among different POIs). The method of Weighted Edit Distance took
the semantic information as weight information during the edit operation.

First, the type of POI is taken as a weight of the operation cost. The parameter costtype
is related to the number of customer visits of different POIs. The calculation method of this
weight’s value is shown in Equation (4).

cos ttype(p, q) =


(

1− numtpq
NTpq

)
p.T = q.T, p.t = q.t

1 p.T = q.T, p.t 6= q.t(
1 + numtpq

NTpq

)
p.T 6= q.T, p.t 6= q.t

(4)

where the parameters T and t are the categories of POI type. The types of POIs generally fall
into two levels of categories with T being the first-level category and t being a sub-category,
and each first-level category containing several subcategories. For example, restaurant
is the first-level type of POI, and its subclasses include Chinese restaurant and Western
restaurant. NTpq is the number of customers who have visited POIs of the p first-level
type and the q first-level type. numtpq refers to the number of customers visiting POIs of
the p subcategory type and the q subcategory type. In Equation (4), the value of costtype
is calculated by considering three situations. When p.T = q.T and p.t 6= q.t, the users have
similar propensity but are do not follow exactly the same direction in details. At this
time, the original cost operation value of 1 is retained. When p.T = q.T and p.t = q.t, the
visiting inclination of the users is very similar. Therefore, the cost of editing is relatively
low and is set equal to the original cost minus the ratio of numtpq to NTpq. When p.T 6= q.T
and p.t 6= q.t, the inclination of the two users is fundamentally different and there is no
correlation. In this situation, the weight value is increased and set equal to the base weight
plus the ratio of numtpq to NTpq. The above three cases cover the occurrence of all types
of POIs, and can distinguish effectively the contribution of the POI type in the semantic
trajectory for calculating distance.

Secondly, the spatial distance is also an important factor in determining the similarity
of two trajectories. However, there is no obvious road network in the indoor space, so it is
difficult to calculate the spatial distance accurately. The floor of the POI in the semantic
trajectory reflects the spatial difference of different trajectories to some extent. POIs on the
same floor are more correlated than those on different floors. Therefore, in this paper we
regard the floor of the POI as an important factor for calculating the cost of editing; the
specific calculation method is shown in Equation (5). In Equation (5), it is shown that the
calculated cost between POIs on the same floor in different trajectories is 1, and that of
POIs on different floors is the ratio of the floor difference between the POIs and the number
of floors.

cost f loor(p, q) =

{
1 p. f loor = q. f loor

1 + abs(p. f loor−q. f loor)
f loortotal

p. f loor 6= q. f loorj
(5)

Thirdly, the stay time in a certain space reflects the customer’s interest in that space,
where longer stay times correspond to increased interest. Therefore, the residence time in a
store, which is part of the POI sequence in a trajectory, can be taken as a distance factor
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to calculate for assessing trajectory similarity. However, different people have different
staying times at the POIs, so their preference cannot be determined simply using the
absolute staying time in the POI, but also by the ratio of the duration of stay to the total
duration of the sequence. In this paper, the intersection of the customer’s stay duration
ratios in the same types of shops is taken as a weight for the calculation of the edit distance,
as shown in Equation (6).

Tw(trja, trjb) = (A1 ∩ B1) + (A2 ∩ B2) + . . . + (An ∩ Bn) 1 ≤ n ≤ N (6)

In Equation (6), parameter Tw represents the intersection of the proportion of time
spent by two people in the same subcategory of POIs, and An and Bn are, respectively, the
proportion of time spent by person A and person B in the same category of POIs to the
total length of time spent in their respective POIs. Its use will be described in detail in
Section 4.2.

Based on the original edit distance equation and Equations (4)–(6), the Weighted Edit
Distance equation is obtained as follows:

leva,b(i, j) =



ifmin(i, j) = 0 max(i, j)
i f ai = bj leva,b(i− 1, j− 1)

othervise min


leva,b(i− 1, j) + costtype

(
pi, qj

)
∗ cost f loor

(
pi, qj

)
leva,b(i, j− 1) + costtype

(
pi, qj

)
∗ cost f loor

(
pi, qj

)
leva,b(i− 1, j− 1) + costtype

(
pi, qj

)
∗ cost f loor(pi ,qj)

(7)

levcos t = leva,b ∗ (1− TW) (8)

In Equation (6), the parameter costfloor represents the different costs incurred by the
spatial distince, and costtype is the cost of the store category. In Equation (8), levcost refers to
the final weighted marginal distance value of two semantic trajectory sequences.

In order to better explain the parameters in the equations, we described the parameters
in a table, as shown Table 1.

Table 1. The terminology illustration of weighted edit distance.

Terminology Description Equation

costtype The POI type weight for edit distance operation. Equation (4)

p,q The parameters p and q are, respectively, the POI entities in the
semantic trajectory.

Equation (4),
Equation (5)

T The parameter of T is the category of POI and p.T represents the
category of POI p. Equation (4)

t The parameter of t is the subcategory of POI and p.t represents
the subcategory of POI p. Equation (4)

costfloor The spatial weight for edit distance operation. Equation (5)

floor The floor where the POI is located.
The floor where p is located. Equation (5)

floortotal The total number of indoor floors. Equation (5)

Tw The time weight for edit distance operation. Equation (6),
Equation (8)

trja,trjb
The parameters trja and trjb are the semantic trajectories

participating in the comparison, respectively. Equation (6)

leva,b
The Weighted Edit Distance between two semantic trajectories

considering POI type and spatial factors.
Equation (7),
Equation (8)

i,j i is the index of the POI in the semantic trajectory a.
j is the index of the POI in the semantic trajectory b. Equation (7)

levcost
The final Weighted Edit Distance between two semantic

trajectories considering factors such as POI type, space and time. Equation (8)

3.2.2. Description of E-DBSCAN

DBSCAN is a classical density clustering algorithm [17]. The density of a current
point is measured by the number of points within a certain distance from the current point.
E-DBSCAN refers to the combination of the weighted editing distance with the DBSCAN
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algorithm. In our work, we regarded a semantic trajectory as a point, and the set of semantic
trajectories as a point set. Then, the concepts of core point, directly density-reachable and
density-connected were redefined for relevance to indoor environments. These concepts
are definition 1, definition 2 and definition 3, respectively. In E-DBSCAN, the weighted
editing distance is used to measure the distance of two customers’ trajectories, which is
also the distance between two points in density. Similarly to the DBSCAN algorithm,
E-DBSCAN also requires initialization of the two parameters ε and the minL threshold
for trajectory clustering. There is no specific method for assigning values to these two
parameters, and they should be initialized according to the experimental situation. We
described the E-DBSCAN algorithm for customer trajectory clustering in a structured
pseudocode form as shown Algorithm 1. It mainly includes two steps and generated the
sets of clusters.

Algorithm 1 E-DBSCAN Clustering

Input: a trajectory dataset trajectorySet = {trjString1, trjString2, . . . . . . , trjStringn}; ε, minL
Output: trajectory cluster dataset clusterSet = {cluster1, . . . , clusterk}
1. initializeNull(clusterSet, coreTrajectorySet, coreTrjDensitySetList);
2. curTrajectory←trajectorySet [0];
Step1: Counting Core trajectory and direct accessible density
3. repeat
4. nLCount← 0; curDensitySet← Φ;
5. FOR EACH trajectory in trajectorySet DO
6. IF (trajectory <> curTrajectory) THEN
7. dist = levabw (curTrajectory, trajectory);
8. IF (dist <E) THEN
9. nLCount++;
10. curDensitySet.add(trajectory);
11. END IF
12. END IF
13. END FOR
14. IF nLCount > minL THEN
15. setCoreFlag(curTrajectory,trajecctorySet);
16. coreTrajectorySet.add(curTrajectory);
17. coreTrjDensitySetList.add(curDensitySet);
18. ELSE
19. setNoCoreFlag(curTrajectory,trajecctorySet);
20. END IF
21. curTrajectory←next(trajecctorySet)
22. until all trajectory objects have been processed
Step2: Merging clusters according to the density connection rule
23. curCoreTrj← coreTrajectorySet[0];
24. repeat
25. custerA← getDesitySetbyCoretrj(curCoreTrj, coreTrjDensitySetList);
26. FOR EACH nextTrjk in coreTrajectorySet DO
27. IF nextTrjk <> curCoreTrj THEN
28. culsterB← getDesitySetbyCoretrj(curCoreTrj, coreTrjDensitySetList);
29. IF clusterB <> null and isRepetitiveRate(clusterA,clusterB)> 50% THEN
30. clusterA← mergeCluster(custerA, culsterB);
31. removeTrajectories(clusterA, coreTrjDensitySetList);
32. END IF
33. END IF
34. END FOR
35. clusterSet.add(clusterA);
36. curCoreTrj←next (coreTrajectorySet);
37. END FOR

The input parameters of algorithm 1 include trajectorySet, ε and minL. The parameter
of trajectorySet is the set of the set of user semantic trajectories, as shown in Table 5; ε is a
search radius of domain; minL is the threshold of the number of trajectories, which is used
to determine the core trajectory. The output of algorithm 1 is the set of clusters represented
by parameter of clusterSet.

Lines 3–22 implement the first step of algorithm 1, and perform the loop to count
core trajectory and get direct accessible density trajectories of core trajectory. The logical
judgment for core trajectory is based on definition 1, and the judgment basis of direct
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accessible density trajectory is defined 2. Lines 5–13 calculate the distance between the
current trajectory and other trajectories in the set of trajectorySet, count the number of
trajectories less than the threshold ε, and add them to the set of curDensitySet. In line 14,
the current trajectory (marked as curTrajectory) is judged whether the core trajectory by
comparing whether the number of trajectories less than the threshold ε is greater than
threshold minL. If curTrajectory is a core trajectory, lines 15–17 mark it as the core trajectory
and add it to the core trajectory set. Meanwhile, curdensityset as a direct accessible density
set is added to the set list (marked as coreTrjDensitySetList), laying a data foundation for the
second step.

Subsequently, lines 13–30 realize the second step of algorithm 1 and generate the set
of clusters according to the density connection rule in definition 3. The flow of second step
is to obtain the direct accessible density set of each core trajectory, which is recorded as
clusterA. Then clusterA is compared with other direct accessible density set (recorded as
clusterB) in coreTrjDensitySetList and judged whether can merge to generate new clusters
according to definition 3. In Line 25 and Line 28, the function getDesitySetbyCoretrj is
used to obtain the direct accessible density set. In line 29, the isRepetitiveRate is used to
analyze the repetition rate of culsterA and culsterB to determine whether the two sets can be
combined. If they can be merged, a new cluster is generated by the function mergeCluster
in line 30. To avoid double counting, the trajectories in the new cluster are removed from
the set list by the function removeTrajectories in line 31.

4. Experiments and Result Analysis
4.1. Experimental Area and Computing Environment

In this case study, the research area was the Joy City shopping mall in Beijing, China,
which comprises 306 stores distributed on ten floors. The stores were divided into six
classes and each class was divided into different types, as shown in Table 2. The user’s
indoor positioning data were collected by a passive WiFi sensor network, which composed
by many APs. The APs were installed in the mall with two principles [45]. One is that the
Aps were deployed with a maximum distance of 10 m between each other, and the other is
that in each store, at least one AP was installed. For screening the signal of handsets from
the floor above, each AP was installed under the ceiling with a metal mask. In theory, the
user’s mobile phone signal is received by at least two APs, and then the user’s location can
be calculated. In this paper, we used the fingerprinting method because of its high position
accuracy [46,47]. This method uses a unique combination of signal intensity to represent
any cell in the area and establishes a fingerprint lookup table [48]. Then a handset can be
located if its combination of received signal intensity finds its match in fingerprint table.
For matching between the recorded intensities and the predefined fingerprinting lookup
table, we used the k-Nearest Neighbor (KNN) method. Each user dataset included MACId,
timestamp, location (Xaddress,Yaddress) and floor, etc., recorded at least once every 10 s.
The field ‘MACId’ represents the WiFi address of the user’s mobile phone, which was used
as the unique identifier of that user. The field ‘timestamp’ indicates the time at which the
record was collected. The field ‘floor’ represts the user’s floor from where the data were
collected. The fields ‘Xaddress’ and ‘Yaddress’ represent the user’s position on a floor. Five
days’ worth of customer trajectories data were used, corresponding to the period from 1
January to 5 January 2018, which included 138,449,060 positioning records.

In the experiment, a system with an Intel Core i7 CPU with a main frequency of
2.6 GHz, 8 Gb RAM and Windows 10 64-bit OS was used for coding. Data processing,
clustering and analysis algorithms were run on Hadoop clusters consisting of eight servers
with 128 Gb memory size each, 72 Tb of storage space, Hadoop version 2.7.3 and Spark
version 2.1.1. The programming languages used in this experiment were Java and Scala,
and the development tool was IntelliJ IDEA. The trajectory data and mall maps were sorted
in HDFS (Hadoop Distributed File System) on the Hadoop cluster, and the trajectory data
were organized in Hive for track query, extraction and analysis.
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Table 2. Store categories.

Category Category Symbol Subcategory Subcategory Symbol

Restaurant A
Chinese restaurant a
Western restaurant b

Asian cuisine c

Daily necessities B

Electronic products d
Toy store e

Young element f
Lifestyle department

store g

Beauty and fitness C Jewelry store h
Beauty salon i

Clothing D

Sleepwear store j
Stylish clothing k

Sportswear l
Fine ladies’ clothing m

Luxury E
Cosmetics store n

Jewelry shop o
Coffee shop p

Desserts and drinks F
Tea and fruit drink

shop q

Dessert shop r

4.2. Trajectory Preprocessing and Transformation

Before the data were used to infer the profiles, they were cleansed to remove noise.
There were three types of noise in our dataset: invalid MAC addresses, data generated by
the shop assistants, and data generated by fixed devices (e.g., mobile phones and other
mobile devices for sale) [49].

(1) In order to produce a network device, the manufacturer first needs to apply for
a MAC address from the Institute of Electrical and Electronic Engineers (IEEE), which
is headquartered in New York, USA. An invalid MAC address can be distinguished by
determining whether the MAC address is in the IEEE MAC list.

(2) For removing the data generated by the shop assistants, we consider that a MAC
presents at least three days in five days for more than 5 h each day.

(3) If a MAC is present for more than 8 h a day within the same store, we treat these as
data generated by fixed devices (e.g., mobile phones). Thus, these data were removed.

In addition, there were some outliers of positioning points from the WiFi data, such as
jump points caused by signal drift. This is called the “ping-pong” effect. It may cause an
illusion that a customer moves quickly between stores, but in fact he/she is always in the
same store. To solve this problem, we took 10 s as threshold time to cleanse these cases [50].
If duration was less than 10 s, it was considered as signal drifting.

Then, the customers’ stay-areas were calculated by exploring the topological relation
between the intersections of POI geometry, as explained in Section 3.1. However, some POIs,
such as tea and fruit drink and jewelry shops, etc. had too small areas with limited access for
customers, so it was difficult to establish whether these had been visited through topological
intersection analysis. To mitigate this problem, the mall map was modified and the polygon
scope of such POIs was expanded so that it could be determined whether customers
had visited or not through the topological relations. Through the above processing, the
customers’ spatial trajectories were converted into semantic trajectories.

To better explain the method of data preprocessing and stay-areas extraction, we chose
the trajectory processing process with MAC 94D029*** as an example to introduce. In order
to protect the privacy of the user, the last six digits of user’s MACId are represented by
***. The trajectory was collected from 19:17:11 to 19:59:59 in 2018. The trajectory contained
121 positioning points, involving floors 3 and 4, as shown in Table 3. We mainly described
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the processing process of trajectory on the third floor, and the processing flow is shown in
Figure 4.

Table 3. Sample of raw trajectory.

MACId Time Floor X Y

94D029*** 2018-1-2 19:17:11 20,030 112,000 35,000
94D029*** 2018-1-2 19:18:48 20,030 112,000 35,000

... ... ... ... ...
94D029*** 2018-1-2 19:39:29 20,040 138,000 71,000
94D029*** 2018-1-2 19:39:59 20,040 65,000 89,000

... ... ... ... ...
94D029*** 2018-1-2 19:59:49 20,030 86,000 130,000
94D029*** 2018-1-2 19:59:59 20,030 90,000 129,000

Figure 4. Trajectory preprocessing and transformation. (a) The raw trajectory segments on the third Floor; (b) the trajectory
display after preprocessing; (c) the positioning points display after topologically choose the trajectory intersection; (d) the
points of stay-areas on the third Floor.

As shown in Table 3, where MACId is the unique identifier of the user, Time is the
record upload time, X,Y are the user’s X,Y coordinates, and Floor is code of user located
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floor. Figure 2a shows the distribution of the user’s raw trajectory on the third floor. The
red line and the blue line are the trajectory segments of the user in the time periods of
19:17:11 to 19:36:12 and 19:46:55 to 19:59:59 respectively, which were drawn according to
the time sequence of positioning points. By the method of indoor trajectories preprocessing,
we first preprocessed the trajectory and removed the drift points in the raw trajectory, as
shown in Figure 4b. Then, we topologically intersected the polygon of each store with
the points of the trajectory to obtain the positioning points inside the shop, as shown in
Figure 4c. Repeating the above operation, we preprocessed and topological intersected
the trajectory segment on fourth floor for obtaining positioning points of the trajectory in
the shops. After the processing of the trajectory segments of each floor was completed,
we sorted the positioning points inside the shop according to the chronological order to
judge the entry and departure time of user. Finally, the positioning points in the shops
were merged and the stay user’s stay-areas were extracted, as shown in Figure 4d, and the
customers’ spatial trajectories were converted into semantic trajectories. Table 4 shows the
semantic trajectory of a customer after processing.

Table 4. Detailed semantic trajectory sequence data.

MACId ShopName BeginTime FinishTime Floor

94D029*** Map by BeLLE 2018-1-2 19:18:48 2018-1-2 19:22:44 F3
94D029*** ISERIES 2018-1-2 19:24:24 2018-1-2 19:30:43 F3
94D029*** initial 2018-1-2 19:32:22 2018-1-2 19:33:15 F3
94D029*** PLAY LOUNGE 2018-1-2 19:38:56 2018-1-2 19:42:39 F4
94D029*** SYNG TEA 2018-1-2 19:47:50 2018-1-2 19:48:37 F3
94D029*** ZARA 2018-1-2 19:52:45 2018-1-2 19:56:12 F3
94D029*** adidas Originals 2018-1-2 19:56:51 2018-1-2 19:59:59 F3

On the basis of Table 4, we calculated the customers’ residence times in the shops and
added information of the shop type to the nodes of the customers’ trajectory sequences
to enrich the semantic information of each trajectory point. The final user of 94D029***
semantic trajectory is shown in Table 5. Only stores where the user stays for more than
3 min are reserved in the table. In Table 5, where MACId represents the identification
number of the moving customer, ShopName represents the name of the store, StayTime
represents the duration of the customer’s stay in the store in seconds, Category represents
the major category classification of the store, Subcategory represents the minor (subcategory)
classification of the store, Floor represents the floor where the shop is located, and Letter
is the symbol of the store used to calculate the editing distance. After processing by
indoor location data preprocessing method, we selected 1000 high quality trajectories. The
condition of trajectory selection is that customers stay in stores for more than three minute
and browse at least five stores.

Table 5. Extended semantic trajectory sequence.

MACId ShopName StayTime (s) Category Subcategory Floor Letter

94D029*** Map by BeLLE 236 clothing stylish clothing F3 k
94D029*** ISERIES 379 clothing fine ladies’ clothing F3 m
94D029*** PLAY LOUNGE 223 clothing fine ladies’ clothing F4 m
94D029*** ZARA 207 clothing stylish clothing F3 k
94D029*** adidas Originals 188 clothing sportswear F3 l

4.3. Similarity Measurement of Trajectories

In order to explain similarity measurements of sematic trajectories with the Weighted
Edit Distance algorithm (Section 3.2.1), three customer trajectories were chosen from the
experiment data, two of which had similar spatial forms and similar types of visited POIs.
The spatial distribution of the three trajectories is shown in Figure 5, where (a) shows the
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distribution of trajectories A, B and C in the three-dimensional market space. The red,
green and blue lines represent trajectories A, B, and C, respectively. Figure 5b shows the
action path of trajectory A and B on the same floor.

Figure 5. Trajectories diagrams. (a) Three-dimensional schematic; (b) trajectory plane schematic.

The semantic trajectories of three users are shown in Table 6. The tuples in a trajectory
sequence, such as {POIA1,F3,182000,F,q}, express POI information and customer stay times.
POIA1 is the name of a POI visited by customer, F3 is the floor where the POI is located,
the number 182000 is the customer’s stay time in POI. The characters F and q represent the
classification of the POI.

Table 6. Semantic trajectories of three users.

Object POI Sequence

TrjA
(POIA1,F3,182000,F,q),(POIA2,F3,436000,F,p),(POIA3,F3,320000,D,k),(POIA4,F3,204000,E,o),(POIA5,F3,330000,D,k),
(POIA6,F3,470000,D,k),(POIA7,F1,222000,D,k),(POIA8,F1,340000,E,o),(POIA9,F1,370000,D,k),(POIA10,
F1,475000,E,o),(POIA11,F1,290000,D,k)

TrjB

(POIB1,F3,263000,D,m),(POIB2,F3,220000,D,m),(POIB3,F3,158000,E,n),(POIB4,FB3,182000,E,n),(POIB5,
F3,420000,D,k),(POIB6,F3,190000,D,m),(POIB7,F3,382000,D,k),(POIB8,F3,376000,D,k),(POIB9,F3,134000,E,n),(POIB10,
F1,453000,D,k),(POIB11,F1,315000,E,o),(POIB12,
F1,428000,E,o),(POIB13,F1,280000,D,m),(POIB14,F1,203000,E,o),(POIB15,F1,472000,D,k),(POIB16,
F1,362000,D,m),(POIB17,F1,421000,D,k)

TrjC
(POIC1,B1,318000,B,g),(POIC2,B1,336000,F,r),(POIC3,B1,309000,D,j),(POIC4,B1,218000,B,f),(POIC5,
B1,325000,B,g),(POIC6,B1,320000,F,r),(POIC7,B2,237000,B,f),(POIC8,B2,348000,E,n),(POIC9,B2,201000,B,f),(POIC10,
B2,298000,B,g),(POIC11,B2,348000,B,d),(POIC12,B2,332000,B,g)

We now consider the edit distance of trajectories A and B as an example to explain the
calculation process of trajectory similarity. The calculation of the weighted editing distance
between two trajectories includes three steps: Cost matrix calculation, editing distance
calculation and distance calculation taking visit time durations into account. First, the
distance cost matrix is initialized according to the number of POIs in each trajectory. For
example, costAB(1,1) refers to the distance between the POIs in the first row and in the first
column, which in turn correspond to the first point of trajectory A and the first point of
trajectory B. We represent these two points as A1 and B1. The quintuple representation
of A1 is {POIA1, F3, 182,000, F, q}, while that of B1 is {POIB1, F3, 263,000, D, m}. It can
be seen from the A1 and B1 quintuples that the character of the first type of POIA1 is F,
while that of POIC1 is D. When the substitution operation cost of A1 and B1 is calculated
using Equation (4), the result is costtype(A1, B1) =

(
1 + numqm

NTFD

)
= 13

646 = 1.02. Here, NTFD

the number of customers who have visited the “desserts and drinks” stores and “daily
necessities” stores, while numqm refers to the number of customers visiting stores which
include the types “tea and fruit drink” and “fine ladies’ clothing”. We also see that POIA1
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and POIB1 are on the same floor, so the value of costfloor(A1,B1) is 1 due to Equation (5).
Thus, the final cost(A1,B1) = costtype((A1,B1) × costfloor(A1,B1) = 1.02. Then, according to the edit
distance equation, the initialization values of editAB(0,0), editAB(0,1) and editAB(1,0) in the
edit distance matrix are 0, 1 and 1, respectively. Due to Equation (1), the value of edit(1,1)
is obtained from minMum{editAB(0, 0) + 1, editAB(0, 1) + 1, editAB(0, 0) + cost(A1,B1)

}
,

and is 1.02. Using the above calculation rules and steps, we can easily calculate the values
of other elements in the editAB matrix.

Considering the factors of POI type and POI spatial distance, the edit distance of
trajectories A and B is 11.95. We further considered the time factor and added the stay
time in POI as a weight to optimize the results. First, the time ratios of the POIs involved
in trajectory A and trajectory B respectively were calculated using Equation (6). The
calculation process is as follows:

Sumtime_A =
n

∑
i=1

ti = 182, 000 + 436, 000 + . . . + 290, 000 = 3, 639, 000

ratioA_k =
i=m

∑
i=1

staytime_kA_i/sumtime_A = (320, 000 + · · ·+ 290, 000)/3, 639, 000 = 0.55

Using the ratioA_k calculation method, we calculated that the stay time proportions of
POIs with subcategory types o, p and q in trajectory A, were 0.28, 0.12 and 0.05, respectively.
The calculation results for trajectories A and B are shown in Table 7.

Table 7. Stay time ratios of trajectories A and B.

User Poi Second Type Stay Time Ratio

trajectory A k 0.55
trajectory A o 0.28
trajectory A p 0.12
trajectory A q 0.05
trajectory B k 0.48
trajectory B o 0.18
trajectory B k 0.25
trajectory B n 0.09

As can be seen from Table 7, there are two POIs of the same type in the two trajectories,
so the time weight is equal to |0.55− 0.48| + |0.28− 0.18| = 0.17. The final distance
between trajectory A and trajectory B is 11.98 × (1 − 0.17) = 9.91. Using the above
calculation steps, we can calculate the distances between trajectories A–C and B–C, as
shown in Table 8.

Table 8. Distances between trajectories A, B and C.

Trajectory A B C

A 1 9.91 18.22
B 9.91 1 22.96
C 18.22 22.96 1

As can be seen from Table 8, although the geometry of trajectories A and C are similar
in 3D space, the distance between the two tracks is greater than the distance between
trajectories A and B. It can be seen that, in indoor space, when the trajectory is transformed
from a spatial geometry to a semantic trajectory, the trajectory distance is determined by
three factors: POI type, floor and visit duration.
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4.4. Trajectory Clustering
4.4.1. Trajectory Clustering by E-DBSCAN

Same as the DBSCAN algorithm, the E-DBSCAN algorithm requires two parameters
for trajectory clustering, which are the distance threshold ε and the trajectory number
threshold minL. We determined the values of ε and minL mainly based on the length of
the semantic trajectory sequence and the total number of trajectories. Since the length of
the store trajectory sequences selected for the experiment is generally between 5 and 10, if
the selected distance threshold ε is greater than 5, semantic trajectories that are not closely
related will be clustered into the same category, but if the value of ε is too small, a large
number of partially linked trajectories will not be assigned to the same category. Therefore,
for this experiment, ε values of 2, 3 and 4 were investigated. At the same time, considering
that the total number of trajectories is 1000, if the value of minL is too small, the number of
resulting trajectory clusters will increase. However, small clusters do not provide sufficient
information to establish behavior patterns. Therefore, for this experiment, we selected 4%,
5% and 6% of the total data as values for parameter minL, corresponding to 40, 50 and 60.
Using the above two sets of parameter values, clustering experiments were carried out
using Algorithm 1. The results of trajectory clustering are shown in Table 9.

Table 9. Intra-cluster trajectory similarity results for different parameter values.

ε minL Number of
Cluster

Number of
Trajectories

Intracluster Trajectory
Similarity

2 40 2 85 0.28
2 50 0 0 Null
2 60 0 0 Null
3 40 16 951 0.17
3 50 13 908 0.21
3 60 9 857 0.24
4 40 18 972 0.15
4 50 15 954 0.16
4 60 13 942 0.18

From Table 9, we see that when ε is equal to 2, the mean value of intra-cluster trajec-
tory similarity is 0.28, which is the highest among the calculation results. However, the
clustering result contains only 85 trajectories, and much trajectory information has been
lost excluded, so this result does not reflect the behavior patterns of customers. When ε
is 3, we also find that as the value of minL increases, the numbers of resulting clusters and
trajectories are decreased, but the intra-cluster trajectory similarity is increased. When
the value of ε is 4, we find that as minL increases, intra-cluster trajectory similarity also
increases, but the increase range is relatively small, and the number of trajectories does not
change significantly. This indicates that noisy data are not eliminated effectively when ε
is 4. In summary, the clustering result obtained when ε is 3 and minL is 60 is considered the
optimal solution.

4.4.2. Algorithm Comparison

To further validate the performance of the E-DBSCAN algorithm, we compared its
performance with the plain DBSCAN and the k-means algorithms. In this experiment,
the Weighted Edit Distance was used for DBSCAN and k-means to measure the distance
between trajectories. Appropriate parameters were selected for clustering, according to the
total number of trajectories and clustering principle. The corresponding results are shown
in Tables 10 and 11.
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Table 10. DBSCAN clustering results.

ε minL Number of
Clusters

Total Number
of Trajectories

Intracluster
Trajectory Similarity

2 40 1 128 0.22
2 50 1 105 0.22
2 60 1 96 0.23
3 40 11 973 0.19
3 50 9 961 0.18
3 60 8 952 0.18
4 40 8 996 0.15
4 50 8 976 0.17
4 60 7 957 0.18

Table 11. k-means clustering results.

Number of Clusters Total Number of
Trajectories Intracluster Trajectory Similarity

8 1000 0.15
9 1000 0.16
10 1000 0.17
12 1000 0.17
14 1000 0.18

It can be seen from Table 10 that the DBSCAN algorithm generated fewer clusters and
the similarity of the trajectories within the cluster was lower. However, more trajectories
were included when the parameters of DBSCAN and E-DBSCAN were the same. This
difference is mainly due to the different definitions of density connections between the two
algorithms. This also reflects that the DBSCAN algorithm cannot identify noisy trajectories
well, and instead includes them into the clustering process. This results in clusters with
low intra-cluster similarity, which are unsuitable for extracting the behavior patterns and
shopping habits of customers.

From the clustering result in Table 11, when the k-means algorithm also splits the
trajectory set into eight clusters, the intra-cluster similarity of the trajectories is much lower
that obtained using the E-DBSCAN algorithm. This indicates that the k-means algorithm
is seriously affected by noisy data. It can also be seen from Table 11 that the intra-cluster
trajectory similarity will increase as the number of clusters increases. When the number
of clusters is high enough, the intra-cluster trajectory similarity will certainly exceed that
of E-DBSCAN algorithm. However, the clustering rules of the k-means algorithm make
it impossible to cluster the trajectory data more uniformly. If the number of clusters is
increased to a certain extent, clusters consisting of only a few trajectories will also be
generated, and these clusters will not reflect the behavior patterns of customers.

To compare the efficiency of the k-means, DBSCAN and E-DBSCAN algorithms,
calculations were carried out with 1000, 2000, 3000, 4000 and 5000 trajectories. In order to
avoid results obtained when the k-means algorithm fell into a local optimum, the running
time value was the average of three runs. The DBSCAN and E-DBSCAN algorithms used
5% of the number of trajectories as the value of minL, and the values of ε were set to 2, 3
and 4. The running times of the three algorithms are shown in Figure 6.
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Figure 6. Efficiency comparison.

As we can see from Figure 6, the curve corresponding to k-means algorithm increases
sharply, while the curves corresponding to DBSCAN and E-DBSCAN are similar and
far lower than that of k-means. Theoretically, the complexity of the k-means algorithm
is O(n) while that of DBSCAN is O(n2), so the efficiency of k-means is higher than that
of DBSCAN. However, the method of choosing new centroid in k-means algorithm for
semantic trajectories clustering is different from the general point data. In the general
point data, the new centroid in the cluster is determined by the vector mean, and the point
with the smallest mean is selected. In this article, we drew on the centroid calculation
method of k-medoids [51]. The method is as follows: In each cluster, the trajectory is selected
in sequence, and the average value of the distance between the trajectory and all other
trajectories in the current cluster is calculated, and the trajectory with the smallest average
distance is selected as the new centroid. Therefore, for each clustering the distance between
trajectories needs to be calculated, so the actual complexity of k-means for clustering
trajectories is O(n2). This demonstrates that k-means is not suitable for dealing with indoor
trajectories. E-DBSCAN is an improvement of the traditional DBSCAN algorithm, and its
time complexity is also O (n2). However, in E-DBSCAN the definition of density connection
is improved compared to the traditional DBSCAN. When a core trajectory is merged into a
cluster, the trajectory will no longer participate in the next clustering operation, thereby
reducing the total number of clustering operations required and improving the efficiency
of E-DBSCAN.

4.5. Shopping Preference Analysis

According to the above analysis, the best clustering effect is obtained when ε is 3 and
minL is 60. Therefore, the corresponding clustering results were used to analyze customers’
behavior patterns. By analyzing the frequency of shop occurrence in each trajectory of a
cluster, we can discover some stores that customers are interested in. These visited stores
reflect the shopping habits and behavior patterns of people in the shopping mall. The
specific information in each cluster is shown in Table 12, where it can be seen that this
clustering divides the 1000 trajectories into nine clusters, while 857 trajectories remain
after removing noisy trajectory data. Each cluster in the results represents the shopping
preferences and behaviors of a group of people. There are 184 trajectories in cluster 1,
which is the cluster with the largest number of trajectories. In this cluster, ZARA, Uniqlo
and adidas Originals are the three main shops, all of which belong to the clothing category.
ZARA and Uniqlo show a relatively high frequency of visits, mainly because the two shops
occupy a larger area. The main stores in trajectory cluster 6 were YSL and SEPHORA,
which were two high-end cosmetics stores. It can be inferred from this cluster that this kind
of consumer group should be mainly female, who focus on the brand and have certain
purchasing power. From the ninth cluster, we see that the main shops are MUGIWARA
STORE, MTEE and Chitianshousi. MUGIWARA STORE and MTEE are stylish clothing
stores addressed mostly to younger people. Chitianshousi belongs to the Asian cuisine
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type, which is also loved by young people. Therefore, we can infer that this group is mainly
composed of young people, who are avant-garde in consumption and pursue fashion.

Table 12. Main characteristics of E-DBSCAN clustering results.

Cluster ID Number of Trajectories Sequence of Stores Intracluster
Trajectory Similarity

1 184 ZARA, Uniqlo, adidas Originals 0.21
2 119 JACK JONES, GAP, ONLY 0.22
3 62 Mint Restaurant, Charme, NIKE 0.25
4 75 Cosil, NA DU, Starbucks 0.23
5 91 BHG, Mr.Pizza 0.24
6 112 SEPHORA, YSL 0.24
7 61 MUJI, Nordic 0.27
8 54 Mr. Eel’s Love, Mannings, CameraVideoCity 0.27
9 99 MUGIWARA STORE, Chitianshousi, MTEE 0.25

On the basis of Table 12, we further analyzed the spatiotemporal behavior patterns
of customer groups in shopping malls using the two parameters of percentage of stay
duration and shop type. The percentage of stay duration refers to the proportion of time
that a customer spends in each store compared to his entire visit and reflects the degree of
the customer’s interest in the store. The shop type refers to the classification of shops. With
these two parameters, we converted Table 12 into Table 13, where Cluster ID denotes cluster
number, Category is the major category classification of the shop, and Subcategory is the
minor (subcategory) classification of the shop. Combining Table 13 with Tables 9 and 10,
we see that clusters 1, 2 and 9 all contain stylish clothing, and the duration time in shops
of this type is relatively high, while the number of trajectories in each of these clusters is
also larger. These phenomena show that the main purpose of these customers is to visit the
shopping mall for clothing shopping, and these customer groups also form the main part of
the shopping mall visitors. The main shop types of clusters 5, 7 and 8 were daily necessities
and restaurants. The stay duration of these clusters was relatively high but lower than
that of clusters 1, 2 and 9. Through further analysis of the subcategory type of these shops,
it can be seen that these shops’ types were mainly lifestyle department store, electronic
products, western foods, etc., reflecting the younger and more fashionable of consumers.
The main shops’ types of cluster 3 were restaurants and clothing; from the subcategory,
we see that clothing store type was mainly sportswear. Therefore, we can infer that this
type of customers should be mainly young male shoppers, and mainly aimed towards
catering, supplemented by shopping. The types of cluster 4 were dominated by restaurants
and cafes, and the stay duration was relatively low. These characteristics are indicative
of people visiting for dining purposes, not shopping. The shop types of cluster 6 were
mainly cosmetics. This cluster reflects the high consumption capacity of the population,
and probably consisted of mainly female customers. Although the stay time was short, the
shopping purpose of these customers was clear.

Through the above analysis, the customer behavior patterns from clusters can be
roughly divided into the following categories: (1) Those whose main visit purpose was
clothes shopping, which was the main part of the mall customer groups; (2) those whose
main visit purpose was catering, visiting mostly at noon or evening; (3) those whose main
visit purpose was shopping for luxury goods, comprising mainly women; (4) those whose
main visit purpose was shopping for lifestyle goods and electronic products, comprising
customers who were mainly young people; (5) those whose main visit purpose was for
sports clothes and catering, with catering and shopping as secondary purposes, also
comprising mainly young people.
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Table 13. Clustering results’ analysis.

Cluster ID Category Subcategory Percentage of Stay Duration

1 clothing stylish clothing, sportswear 72.8%
2 clothing stylish clothing, fine ladies’ clothing 67.7%
3 restaurant, clothing chinese restaurant, asian cuisine, sportswear 55.2%
4 restaurant, desserts and drinks asian cuisine, chinese restaurant, coffee shop 50.6%
5 restaurant, daily necessities western restaurant, lifestyle department 61.8%
6 luxury cosmetics store 48.6%
7 daily necessities lifestyle department store, electronic products 53.9%
8 restaurant, daily necessities asian cuisine, lifestyle department, young element 54.2%
9 clothing, restaurant stylish clothing, asian cuisine 63.5%

5. Discussion

The main goal of this study was to develop a new clustering method for analyzing
human behavior patterns based on indoor positioning data. The results of a case study at a
shopping mall in Beijing show that the proposed method is feasible for clustering indoor
trajectories and analyzing people’s behavior. We also compared the proposed method
with two commonly used methods, namely normal DBSCAN and k-means using the same
distance metric (weighted edit distance). From the clustering results in Tables 9 and 10,
it is evident that the DBSCAN algorithm produces fewer clusters than E-DBSCAN when
the same clustering parameters are used. The reason for this phenomenon is that the
definitions of density connection of the two algorithms are different. The definition of
density connection of E-DBSCAN is shown as definition 3 and is based on the core trajectory
definition. As the same time, the DBSCAN clustering results contained more trajectories,
but had lower intra-cluster trajectory similarity than the E-DBSCAN results. This shows
that the normal DBSCAN algorithm cannot recognize the noisy trajectories very well.
Instead, it includes them in the clustering process, which results in the merging of clusters
with low similarity and reduces the similarity of trajectories within the clusters. Based on
the above analysis, it is clear that the E-DBSCAN algorithm is more suitable for trajectory
clustering than the normal DBSCAN algorithm for indoor environments.

Compared with the results from Tables 9 and 11, we see that the value of intra-
cluster trajectory similarity obtained using the k-means algorithm is much lower than
the corresponding value obtained using the E-DBSCAN algorithm when the trajectories
are divided 9 clusters. At the same time, it can be seen from Table 11 that the value of
intra-cluster trajectory similarity will increase as the number of clusters increases. When the
number of clusters is high enough, the value of intra-cluster trajectory similarity achieved
using k-means will definitely exceed that of E-DBSCAN. However, the clustering rules of
k-means make it impossible to cluster the trajectory data more uniformly. If the number
of clusters increases to a certain extent, there will exist clusters composed of only a few
trajectories, which will not reflect the behavior patterns of the customer groups. This means
that k-means is more easily affected by noisy data.

Distance measurement is the key problem for clustering trajectories. Because there is
no obvious road network in indoor scenarios and the trajectories extend vertically (over
different floors), it is difficult to measure the distance between trajectories using shape-
based methods (classical Euclidean Distance, Hausdorff Distance, e.g.). To mitigate this
problem, the similarity among trajectories was calculated using a weighted edit distance,
which was based in the edit distance. In this study, the cost of the replacement operations
of the edit distance was assigned different weights according to the attribute information
related to the points, such as the type of POI, stay duration and floor location. The
type attribute embodies the nature of the POI, the location attribute reflects the spatial
correlation between different POIs and the stay duration reflects the user’s attention to the
POIs. Using these three parameters as weights, the POI information and the user’s own
interest points were organically combined to better reflect the similarities between different
trajectories. In a similar study, Dodge et al. introduced NWED as a similarity measure.
First, they separated trajectories into segments with specific movement parameters (MPs),
such as speed, acceleration and direction, and converted the trajectories to MP class (MPC)
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sequences. Then, the MPs of the MPC sequences were used as weights to calculate the
costs of the edit operations (i.e., insertion, deletion and substitution). Our method is similar
to Dodge’s, but it does not only consider the characteristics of the trajectory itself, but also
the characteristics of the POI in the indoor scene. In comparison, our approach is more
suitable for indoor scenes. Syaekhoni et al. also proposed a new distance measurement
method, called the operation edit distance, to calculate similarity of shopping paths using
RFID data in indoor markets. In their approach, the physical distance between each pair
of locations in the store was considered a weight for distance calculation and the physical
distance between two stores was measured beforehand. However, there was no indoor
router network, and measuring the physical distances between different stores was very
time-consuming.

Since the normal edit distance does not take into account the POI type associated
with the trajectory points, according to the rules of normal DBSCAN, when the length of a
trajectory is relatively short, the edit distance between the two trajectories will be smaller.
In this manner, the distance between trajectories that are unrelated trajectories in terms of
POI types may be smaller than that between two longer traces where some POI types are
the same. As a result, some unrelated tracks will be merged into a single cluster, which will
not reflect the diversity of trajectories and human behavior patterns. For this reason, in
this study the concept of the core trajectory is proposed, and the DBSCAN rule of density
connection was redefined for trajectory clustering, as shown from Definitions 1–4.

6. Conclusions

In this article, indoor spatial trajectories are transformed to POI or space entity se-
quences, which contain sematic information about the type of POI, stay time and spatial
location. A new clustering methodology, called E-DBSCAN, for trajectory clustering of
indoor positioning data is proposed, where the Weighted Edit Distance is the basis for
measuring the distance between two trajectories in indoor environment. In the process,
some initialization parameters and definitions of DBSCAN, such as core trajectory, direct
accessible density and density connection, were redefined. Moreover, experiments were
conducted using five days of users’ indoor positioning data to verify the correctness of
the algorithm. Based on clustering results, five shopping behavior patterns were obtained,
which provided potential explanations for consumers’ behavior. The main contribution
of this paper is that the proposed similarity assessment approach focuses on the semantic
information contained in the trajectory and the space entities instead of only considering
the similarity of geospatial or geometry-based similarities. The advances in this research
are evidenced from the following perspectives:

(1) A new trajectory distance measurement method is proposed, which incorporates
the POI type, user stay time, and location of POI in the operation cost of edit distance, and
is more suitable to the characteristics of indoor environments and people’s trajectories.

(2) An improved version of the DBSCAN clustering method is proposed with redefined
trajectory merging conditions based on density connection. This avoids merging trajectories
that have relatively short lengths or larges difference between lengths.

However, using the floor of POI located to express the spatial distance between POIs
is still not accurate enough to distinguish the similarity between indoor trajectories. While
it reflects the distance among different POIs qualitatively, it does not quantify it, which may
have some effect on the accuracy of trajectories’ similarity. In the future, we will study a
suitable method to construct a reasonable road network in indoor space for improving the
accuracy of the distance metric. In definition 3, the threshold value of density-connected
also needs to be improved. In the future, we will try to design an adaptive threshold
selection method based on machine learning, that is, to train the optimal weight using
machine learning method, and then use the weight as the threshold of density connection.
The threshold values of ε and minL are empirical values which depend on the cluster
situation and are subjectively chosen; poor choices of these values will affect the clustering
results adversely. For this problem, we will study how to automate the determination
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of these two thresholds. In this paper, three parameters are extracted about the type
of POI, stay duration and floor location, and these parameters represent the most basic
semantic trajectory and POI information. If we want to improve the accuracy of trajectory
similarity calculation, research into defining more parameters that express trajectory and
POI characteristics may be another future research direction.
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