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Abstract: In the era of big data, mass customization (MC) systems are faced with the complexities
associated with information explosion and management control. Thus, it has become necessary
to integrate the mass customization system and Social Internet of Things, in order to effectively
connecting customers with enterprises. We should not only allow customers to participate in MC
production throughout the whole process, but also allow enterprises to control all links throughout the
whole information system. To gain a better understanding, this paper first describes the architecture
of the proposed system from organizational and technological perspectives. Then, based on the nature
of the Social Internet of Things, the main technological application of the mass customization–Social
Internet of Things (MC–SIOT) system is introduced in detail. On this basis, the key problems
faced by the mass customization–Social Internet of Things system are listed. Our findings are as
follows: (1) MC–SIOT can realize convenient information queries and clearly understand the user’s
intentions; (2) the system can predict the changing relationships among different technical fields
and help enterprise R&D personnel to find technical knowledge; and (3) it can interconnect deep
learning technology and digital twin technology to better maintain the operational state of the
system. However, there exist some challenges relating to data management, knowledge discovery,
and human–computer interaction, such as data quality management, few data samples, a lack of
dynamic learning, labor consumption, and task scheduling. Therefore, we put forward possible
improvements to be assessed, as well as privacy issues and emotional interactions to be further
discussed, in future research. Finally, we illustrate the behavior and evolutionary mechanism of this
system, both qualitatively and quantitatively. This provides some idea of how to address the current
issues pertaining to mass customization systems.

Keywords: big data; mass customization; technology application; intelligent system

1. Introduction

With the development of next-generation technology, such as cyber–physical sys-
tems [1], the Internet of Things (IOT) [2], data mining [3], and Industry 4.0 [4], producing
customized products in an industrial environment has arisen [5]. Mass customization (MC)
has reformed the service-oriented behavior of manufacturing enterprises, providing some
standard operating procedures for both the buyer and the seller [6]. It provides diversified
and inexpensive production modes [7], including modular products, service design, and
flexible manufacturing processes [8,9]. Therefore, it can provide customers with a conve-
nient shopping experience, as well as novel products and services [10,11]. This can urge a
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company to meet its customer’s needs [12] by improving their responsiveness in terms of
product design and manufacturing. Therefore, it can help manufacturing enterprises to
gain competitive advantages in the market [13].

In recent years, a large number of scholars have studied MC, which has become an
important driving force for competitive advantages in various industries [14], including
electronic products [15], large engineering products [16], personalized nutrition [17], home
building [18], and so on. However, in a traditional MC system, the collected data are not
available at a specific point in time, and cannot be read when humans or machines can
make the most use of them [19]. In addition, standard operating procedures cannot be as
smooth as usual with MC, and even face problems of internal and external interference
in a highly dynamic environment [20–22]. This inevitably causes the manufacturers and
customers involved in the MC system to feel uneasy. For these reasons, many scholars have
focused on this topic. For example, Larrea et al. [23] have analyzed the factors influencing
customer-driven production. Nemechansky et al. [24] have developed a customer-driven
model to view the enterprise cost structure. However, the above literature lacked an
in-depth exploration of the MC architecture. In the era of big data in particular, any MC
system is faced with complexities related to information explosion and management control.
Therefore, the existing system functions need to effectively connect people and things.

In the era of big data, IOT is being combined with social networks. Social networks
not only include the relationships between things, as well as those between things and
people, but also the relationships between people. They can better describe the world of the
“Internet of Everything”. Thus, the concept of the Social Internet of Things (SIOT) [25] has
been proposed. The SIOT goes beyond the traditional IOT and enhances environmental
awareness. In other words, context-aware services can be generated, according to the
user’s situational needs and environment [26]. The SIOT concept has recently attracted
considerable attention. For example, Nitti et al. [27] focused on how to deal with the
information provided by SIOT members, such that they could independently establish
a relationship network, while Chen et al. [28] regarded SIOT as a knowledge graph to
understand user preferences through potential variables. Son et al. [29] have proposed
a trust-aware recommendation system suitable for SIOT. It can more accurately predict
user preferences. However, the abovementioned literature lacked an exploration of the
combination of SIOT and an enterprise information system, such as specific technological
applications and key problems in its production process. Particularly: (1) In terms of
human-to-human interactions (HH), due to the various product information released by
enterprise personnel, it is difficult for customers to find the products they need [30]. At
the same time, employees cannot quickly process online reviews by customers; (2) In
terms of human-to-thing interactions (HT), the R&D department needs to design products
according to product innovation trends. If enterprises do not have an effective way to
obtain information, they will lack the ability to perceive internal and external product
innovation in time. This leads to backward product development and design and the loss
of potential customers [31]; and (3) In terms of thing-to-thing interactions (TT), with the
expansion of information system network space and physical space, equipment failure will
significantly affect the production progress of products. Therefore, equipment reliability
prediction is particularly important [32]. In short, it is necessary to effectively integrate
SIOT and MC systems to meet the above requirements.

To address these knowledge gaps, we constructed the MC–SIOT system architecture
from the perspectives of management and technology. According to the characteristics of
the MC–SIOT system, its main intended uses are introduced in detail, including application
scenarios and its application value. Then, the key problems of the system are listed, in terms
of data management, knowledge discovery, and human–computer interaction. Finally, to
deeply understand the system, we illustrate its behavior and evolutionary mechanism,
both qualitatively and quantitatively. This will serve to pave the way for coping with some
challenges of the MC–SIOT system from new perspectives.
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The rest of the paper is organized as follows: Section 2 provides an analysis of the
related literature. The following section introduces the architecture of the MC–SIOT system.
Its main technological applications are described in Section 4. Section 5 discusses the key
problems. Section 6 analyzes the MC–SIOT system, both qualitatively and quantitatively.
Section 7 discusses the research limitations and future directions. Finally, our conclusions
are presented.

2. Literature Analysis

To select relevant publications within the current research topic, we utilized the
reliable and comprehensive database Web of Science (www.webofscience.com, accessed on
24 September 2021). This database provided high coverage of articles related to our research.
Therefore, the chance of missing any relevant paper was reduced. The combination of MC
and SIOT is a new topic. Therefore, we used the following keywords as the primary factors
to control the search results: “IOT”, “deep learning”, “semantic analysis”, and “knowledge
graph”. To ensure that all relevant keywords were included, more than 20 of the most
relevant papers in the field were reviewed. This process is called a pilot review.

Due to the continuous progress of technology, the IOT field is booming [33]. Figure 1
shows that the use of the IOT involves different technologies, such as deep learning,
knowledge graphs, and semantics. These algorithms interact within the IOT. It is worth
noting that these algorithms often have different purposes. Some relevant studies are
briefly detailed in the following:
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Alzahrani [34] have proposed an IOT mining machine which uses a pre-programmed
raspberry Pi for emotion analysis and opinion generation on intelligent images. A naive
Bayesian classifier was used for opinion mining in IOT devices. Their experimental results
showed its feasibility and effectiveness. Based on the IOT architecture, Htet et al. [35] have
proposed a medical care system using the MaxEnt classifier. Specifically, the corresponding
feature set is added to the feature vector and stored in the cloud database server. It can
efficiently process massive user data. Psomakelis et al. [36] have proposed a platform based
on a service-oriented architecture, which can retrieve and analyze large data sets from
social network sites and IOT devices. Liu et al. [37] proposed a crowdsourcing-based topic
model framework, which extends the classical knowledge representation framework. It not
only improves the quality-of-service information extraction, but also improves the effective-
ness of service matching in IOT services. Bermudez-Edo et al. [38] proposed a lightweight
semantic IOT model. This model is an example of semantic sensor network ontology, which
can be used to describe the key concepts of IOT. It allows interoperability in heterogeneous
IOT platforms through lightweight semantics. Liu et al. [39] proposed a device-oriented
automatic semantic annotation method for IOT device information. This method can auto-
matically extract key information, partition information, expand equipment ontology, and
match concepts in equipment ontology. It can solve the problem of information interaction
between classified, heterogeneous, and distributed devices. Xie et al. [40] believed that the
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communication gap and heterogeneous access hinder the effective application of existing
IOT systems. They proposed a multi-layer IOT framework to bridge the gap between IOT
devices with different communication protocols. Gómez-Berbís et al. [41] have proposed
a semantic digital twin based on IoT data management and knowledge graphs, which
is compatible with various databases and different data structures. Khokhlov et al. [42]
have proposed a general framework to integrate data quality assessment into a wide
range of IOT applications. In the proposed framework, the knowledge graph plays a vital
role in connecting all framework components. Li et al. [43] have proposed a semantic
collaboration method based on the uniform knowledge graph. The semantic relationship
between two different data sets is obtained by constructing semantic links, and is combined
with the advantages of knowledge graphs in knowledge representation and processing,
which provides a useful data basis for semantic collaboration. This method can better
analyze and understand the semantics of user requirements. Liu et al. [44] have proposed a
Chinese medical knowledge graph method based on IOT and Web of Things concepts. This
method uses a deep neural network combined with self-attention to generate a knowledge
graph. Karim et al. [45] have proposed DESERT, a query engine that can decompose and
semantically enrich streaming data on demand. It can effectively integrate IOT data from
different streaming data sources. Yao et al. [46] have collected data using IOT technology
and used an SVM BiLSTM algorithm for fault detection. The operational data collected by
the system from the edge of the IOT gateway were compared with the human emotional
response data. The results showed that the algorithm can detect faults in an IOT system
effectively and accurately. Hou et al. [47] have applied a deep learning method to the
real-time monitoring of power IOT equipment, which helps staff to locate faults quickly
and accurately. Benkedjouh et al. [48] have used deep learning to improve the accuracy
of rotating machinery fault diagnosis in an Internet of Things framework. They consid-
ered how to select features from the STFT matrix by deep learning, in order to maximize
the accuracy of fault detection. Zhang et al. [49] have proposed a new transformer fault
diagnosis method based on an IOT monitoring system and ensemble machine learning.
The system extracts features using a deep belief network and uses restricted Boltzmann
machines to identify faults, according to their features. An effective combination strategy
can significantly improve the diagnostic performance. Chen et al. [50] have created a deep
learning model within an IOT framework to diagnose the faults in a wind power generation
system. It can realize undisturbed switching from normal system control to fault system
control. In the case of sensor failure, this method can carry out fault-tolerant control for the
system, allowing it to have good dynamic performance.

The applications of these technologies mainly involve data management, knowledge
discovery, and human–computer interaction (see Table 1). In terms of semantic analy-
sis, [34,39] used semantic technology to solve data management problems in the IOT
framework, such as data heterogeneity and fast retrieval. Regarding knowledge framework
and human–computer interaction, Liu et al. [37] extended the knowledge representation
framework by considering subject modeling and human cognition. Liu et al. [39] pro-
posed automatic semantic annotation of IOT devices, which solves the key problem of
interaction. Htet et al. [35] have proposed an IOT–big data framework which can mine
massive user information to understand the situations of users. It also belongs to the field
of knowledge discovery.

Table 1. Applications of technology in different fields.

Data Management Knowledge
Discovery

Human Computer
Interaction

Semantics analysis
√ √ √

Knowledge graph
√ √ √

Deep learning
√ √ √

Note: “
√

” stands for whether the technology is applied to this scenario.
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In terms of the knowledge graphs, the studies [40,45] have shown that, by gener-
ating various types of knowledge graphs, people can better analyze data and under-
stand user needs. The above literature also involves two other aspects; for example,
Gómez-Berbís et al. [41] have proposed SEDIT, based on knowledge atlas technology. It is
compatible with databases and different data structures, and can effectively manage IOT
data. Xie et al. [40] used an IOT knowledge graph to manage all IOT devices in a system,
which solved the communication gap and heterogeneous access problems in the system, as
well as facilitating interactions between the operator and the system.

In terms of deep learning, the studies [46,50] have shown that, in the IOT framework,
the faults of IOT devices can be found quickly through use of a deep learning algorithm.
This can help staff to quickly understand the status of equipment. It also involves data
management and knowledge discovery. For example, Zhang et al. [49] have proposed
EML, which can effectively extract feature information from data. This makes up for
the deficiency of traditional methods in extracting feature information. It belongs to the
problem of knowledge discovery. Yao et al. [46] have compared the operations data in
an IOT system with human emotional response data. By managing the above data, they
discovered the abnormal values in IOT system data and detected faults. This was also
a data management issue.

In summary, due to the continuous progress of technology, there has been an upsurge
of Internet of Things applications, which can combine various advanced technologies [33].
The IOT is a network of interconnected computing devices that can transmit valuable
data to each other through the Internet. It plays an important role in data management,
knowledge discovery, and user interaction. However, in the context of massive user
information, the traditional IOT cannot effectively manage customer data in the scenario
of MC. Therefore, SIOT has become an emerging trend. Through the integration of social
networks and IOT, the SIOT uses the social relationships between people and between
people and things. This can effectively connect the social network’s customer base with
the enterprise. It not only allows customers to participate in the MC production process,
but also allows enterprises to control all links through the whole information system. Key
aspects of SOIT are detailed in the following.

Technical models can be developed for customer service; for example, Li et al. [51]
have proposed a subscription model based on the mobile community by using the long-
term neighbor relationship between nodes to improve the service quality of a delay-tolerant
network. Based on the hyper-graph model, Jung et al. [52] used hyper-edges to describe a
variety of potential relationships between nodes, thus enriching the relationship model
of SIOT. Based on the interests of users and the mobility of nodes, Qureshi et al. [53] have
proposed an adaptive content sharing protocol, thus improving the content dissemination
effect of peer-to-peer mobile social networks.

Technical models can also developed for enterprise management; for example, consid-
ering various heterogeneous sensor networks, Qiu et al. [54] established the small-world
network topology model of SIOT, in order to ensure the normal operations of the data
nodes. Kang et al. [55] have proposed the SDIF framework, which makes collaboration
between devices easier by providing social relationships between devices. Lee et al. [56]
have combined the analysis of social networks and the social attributes of devices to realize
information sharing between devices. Turcu et al. [57] have proposed a cognitive robot
based on RFID technology, in order to realize specific behavior when interacting with
the environment.

Therefore, by introducing SIOT into the MC system, people and things can be effec-
tively connected. This can solve the problems relating to the complexity of information
expansion and management control.

3. The MC-SIOT System Architecture

The process of the MC–SIOT system is different from that of traditional MC systems,
as shown in Figure 2. All departments of the MC–SIOT system are interconnected and can
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exchange data at any time, through use of a huge computer system. According to customer
orders and market demand, the system carries out product design, ensures the production
schedule, and produces products for customers. It is worth noting that, if an enterprise
lacks cooperation initiatives and comprehensive knowledge at the department level, it will
not be able to achieve sustainable development [58]. To meet this challenge, enterprises
should apply the new system in line with the production process. In this paper, we describe
the MC–SIOT system architecture. The next two subsections analyze the MC–SIOT system
from the perspectives of organization and technology, respectively.
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3.1. The Organizational Architecture of the MC–SIOT System

The MC–SIOT system is composed of a series of inter-related value creation activities,
such as R&D design, production, processing, and sales. Data exchange and knowledge
integration among all links are the important premises of MC–SIOT system management.
On the basis of Song et al. [19] and Liang et al. [59], the organizational architecture of
the MC–SIOT system comprises two parts (Figure 3): A cloud platform and multiple
information systems (IS). The cloud platform mainly includes multiple high-performance
servers. Through the cooperation among the elements of cyberspace and physical space,
it can collect, organize, and analyze the data collected by the ISs, and virtualize all the
resources in the MC–SIOT into services. The ISs (belonging to different departments) cover
all information system elements (e.g., mobile terminals, software, and personnel). On
one hand, through the ISs, all departments cooperate and connect through the MC–SIOT
system. They can access the system anytime and anywhere through the cloud platform,
in order to realize information sharing. This will help to improve the phenomenon of
information islands within the enterprise. Additionally, the IS of each department is
independent; it has its own functions. These departments include the sales department,
the R&D department, and the manufacturing workshop: (1) Sales department—Through
negotiation and transactions with customers, employees can obtain sales data and market
feedback. By integrating them into the management of the product design process, the
employees can help the enterprise to design products, based on customer desires and
market alignment; (2) R&D department—On one hand, designers can query the product
opinions of the sales department, and design products by using computers to operate
machines and equipment. On the other hand, they can provide decision support for the
management of combinations of new products and existing products, as well as query
the patent data of existing products in the market through the Internet. It is helpful to
understand how products coexist for market portfolio management, and to effectively
grasp the product design situation to carry out innovative research and development; and
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(3) Manufacturing workshop—Employees query the product production requirements
of the R&D department, then operate machines and equipment through a computer to
produce products. Additionally, they can monitor the manufacturing equipment, in order
to ensure their normal operations and to avoid equipment failure.
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According to the organizational analysis, in the MC–SIOT system, the information
of each department will be transferred to the corresponding IS, and the database will
be backed up and uploaded to the cloud platform. This can track the work progress in
real-time, correct the deviations, and ensure product production efficiency.

3.2. The Technical Architecture of MC–SIOT System

A tremendous amount of real-time data are generated in the MC–SIOT system, where
the growth of such data is beyond any previous estimate. Therefore, enterprises need
to obtain data effectively and transform data into information through processing and
analysis. Then, the information is extracted into knowledge. Finally, it further assists
enterprise managers to make intelligent management decisions. This paper expounds on
the technical structure of the MC–SIOT system from the perspective of the information
value chain. As shown in Figure 4, the vertical conceptual framework of the MC–SIOT
system can be divided into four levels: Data level, information level, knowledge level, and
decision level. The bottom level is the data level, where the data may come from sensors,
mobile terminals, customer opinions, patent libraries, and so on. These data are stored
in the enterprise management system, and the enterprise status and customer status can
be perceived offline (e.g., production line equipment) and online (website platform). This
capability is rare in traditional MC systems. The second level is the information level.
The data generated by the MC–SIOT system exceed the storage and computing capacities
of traditional MC. Therefore, these data need to be extracted and analyzed, in order to
find the information contained within them. A data scientist (a new role) appears at the
information level, who uses various technologies to mine the corresponding information
from the data. The third level is the knowledge level. According to the business needs, all
staff will carry out further activities to extract valuable knowledge from the information
through multidimensional analyses. Knowledge can be presented in various forms, such
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as reports and queries. The top level is the management level. With the help of data
scientists, enterprise managers can make corresponding real-time management decisions
based on the knowledge acquired. Additionally, new requirements will be generated in the
implementation of decision making. In the meanwhile, the bottom layer will continue to
collect new data.
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According to the technical analysis, the MC–SIOT system is based on a data-driven
scientific decision-making management model. In this way, enterprises can handle massive
amounts of data and transform them into important knowledge. This knowledge can be
used to help entrepreneurs make decisions in a timely manner.

In summary, the overall architecture of the MC–SIOT system is shown in Figure 5.
The organizational architecture contains three parts—the sales department, the R&D de-
partment, and the workshop—while the technical architecture contains four parts—the
data level, the information level, the knowledge level, and the management level.
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4. Main Technological Applications

The MC–SIOT architecture integrates many technologies, as shown in Figure 5. In
this section, we elaborate on the main application scenarios, including semantic analysis,
knowledge graph, and deep learning.

4.1. Human-to-Human: Semantic Analysis

Due to the various product information released by enterprise personnel, it is difficult
for customers to find the products they need. At the same time, employees cannot quickly
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process online customer reviews. This makes it difficult for employees to communicate
effectively with customers. In the MC–SIOT system, engineers can use semantic analysis
technology to process the data of online reviews collected by the system, which can help
employees to understand the potential opinions of customers and better enable employees
to interact with customers. Semantic analysis [60] provides a way to extract features from
text and vectorizing them, in order to represent text information with vector data. In other
words, semantic analysis transforms the text content of an unstructured original text into
structured data that can be recognized by a program.

As a new means of word-of-mouth communication, online reviews break the temporal
and spatial restrictions of traditional word-of-mouth communication based on interper-
sonal diffusion. It enables potential consumers to improve their cognition of products by
reading reviews [61–63], and assists them in making purchase decisions [64]. Therefore,
online reviews are considered, in both academia and industry, as one of the key factors
influencing consumer purchasing intentions and, thus, product sales [65]. Reasonable use
of semantic analysis technology to extract user views from online reviews can not only help
enterprises understand the needs of customers, but can also help enterprises to improve
the quality of their products and services.

Promotion of sales—Numerous studies have shown that online reviews are related
to product sales [66–69], including those related to tea [70], movies [71], and electronic
products [72]. The content of online reviews can reflect a consumer’s deep understanding
of and detailed experience with the product, which often indirectly reflects the reasons
why the product is loved by users [73]. Additionally, as the customer’s sentiments are
reflected in the online review, on one hand, it is the unique cognitive evaluation of the
product by a consumer who has purchased the product and, as such, can provide useful
clues to the impressions of potential consumers [74,75]. On the other hand, it has the effect
of emotional contagion. Old users pass their feelings about the product on to potential new
users through positive or negative evaluations. Reviews affect the emotions of potential
customers [76]; for example, Banerjee et al. [77] have shown that the emotional content
of online reviews plays a very important role in building reputation and building mutual
trust between buyers and sellers. Lee et al. [78] used text mining technology to extract
comment emotion coefficients and further studied how online reviews affect product sales.
Additionally, online reviews can provide customers with real-time recommendations and
marketing services [79–81].

Promotion of R&D—With the increasingly abundant market supply, the personalized
demands of consumers have become a new competitive focal point of enterprises. Con-
sumer reviews are an important source of enterprise R&D [82]. The success of enterprise
R&D has become more and more closely related to the accurate analysis and prediction of
consumer demands [83–86]. Consumers are regarded as innovative individuals or groups,
which not only provide valuable information sources and creative designs for enterprise
R&D [87], but also have the willingness and ability to co-create R&D value with enter-
prises [88,89]. Big data technology can improve the visualization of consumer participation
behavior, making the data generated highly accessible and of high commercial value [90].
Therefore, enterprises can generate product ideas according to the mining of consumer
needs, thus forming new products that better match the needs of consumers [91].

4.2. Human-to-Thing: Knowledge Graph

When the R&D department carries out product innovation, it needs to expend a lot
of human resources to deal with cutting-edge technical information (possibly related to
patents). If there is no effective way to obtain technical information, enterprises lack the
ability to carry out internal and external product innovation in a timely manner. In the
MC–SIOT system, engineers can use knowledge graph technology to process the collected
cutting-edge technical information. The system presents technical information to employ-
ees in a concise, visual manner. This can help employees find key technologies more
efficiently, as well as enabling them to interact with the system efficiently. A knowledge
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graph [92] is a method of integrating scattered knowledge and visualizing its potential
internal structure with advanced information technology and statistics. It takes scientific
knowledge as the object and graphically expresses the relationships between the develop-
ment process and structure of scientific knowledge. In other words, the construction of
a complex knowledge network reveals the dynamic development law of knowledge in a
visual form.

The number of existing patents is huge, and their relationships are contained in a
semi-structured, high-dimensional knowledge unit relationship. Therefore, it is necessary
to use knowledge graphing and multidimensional scaling analyses to reduce the number
of dimensions. Through the knowledge graph analysis of patents, enterprises can focus
on the industrial technology’s development trends, hot-spots, evolutionary path, and
opportunities. These can provide technical development directions and a strategic basis for
manufacturing enterprises.

As a strategic resource for enterprises, patents possess the characteristics of hetero-
geneity and scarcity, which can bring sustainable competitive advantages for enterprises.
High-tech enterprises, in particular, have a higher demand for patents, but how to improve
technological innovation through effective patent management is a practical problem faced
by enterprises. Reasonable use of a patent knowledge graph method to explore new prod-
uct R&D hot-spots in the manufacturing field can improve the process of new product R&D
and technology development. The patent is a vital index for measuring the R&D invest-
ment and productivity of enterprises [93–95]. For enterprises, the goal of patent application
and authorization is to protect R&D achievements. This can provide technological competi-
tiveness [96,97], allow an enterprise to create a new technological market [98], and provide
more value [99]. In addition, a patent can effectively promote innovation among other
enterprises, thereby forming a virtuous circle. At present, patent analysis is becoming more
and more important in enterprise innovation activities [100]. Most scholars measure the
innovation activity of enterprises through patents [101]. For example, Ginarte et al. [102]
have used cross-border data to show that patent protection affects the innovativeness of
enterprises. Li et al. [103] believe that patents have become the main force promoting the
competitiveness of enterprises in emerging countries. Penin et al. [104] have pointed out
that patents can promote product innovation in enterprises. Most enterprises use patents
as a strategic tool for R&D cooperation. For example, Ernst et al. [105] determined the
adjustment of the R&D department by assessing the impact of patent output on company
revenue. Additionally, intellectual property has a very powerful impact on the competi-
tiveness of the manufacturing industry [106], and patents are an important embodiment of
intellectual property rights [107]. Manu et al. [108] pointed out that patents contribute to
how companies improve their competitiveness and performance. Yong et al. [109] believed
that patents have a positive impact on technological innovation. In the technological knowl-
edge ecosystem, enterprises can not only perceive internally, but also search externally.
Through searching and discovering existing patent knowledge, enterprises can design new
products. In other words, the separation and reorganization of existing patent knowledge
technology [110], through mining the connection strength between patent knowledge [111],
can be used as a main R&D strategy for enterprises.

4.3. Thing-to-Thing: Deep Learning

Equipment failure affects the production schedule of a product. Therefore, the equip-
ment reliability prediction is particularly important. In the MC–SIOT system, engineers can
use deep learning technology to process the information of various pieces of equipment. By
training the systems with historical or synthetic fault information and the current condition
information, the system can predict the failure times of the equipment. This ensures their
proper operation and allows for efficient interactions between devices. Deep learning [112]
enables machines to imitate human activities, in terms of solving many complex pattern
recognition problems, and has contributed to the great progress witnessed recently in
artificial intelligence technology. Deep learning techniques can discover distributed feature
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representations of data by combining low-level features to form more abstract high-level
presentation attribute categories (or features).

Equipment reliability prediction is a very important segment in the industry, which
directly affects the running time and work efficiency of the equipment. In order to avoid
equipment downtime in the production process, equipment faults need to be identified and
handled quickly; however, the information systems of small and medium-sized enterprises
are often open and complex systems affected by many uncertain factors. Therefore, it is
very important to use deep learning to explore the reliability of the MC–SIOT system.

The practical significance of equipment reliability prediction is to remind equipment
managers and maintenance personnel to eliminate the hidden trouble quickly, such that
the equipment can enter stable operations again. In the face of the complexity of complex
systems, the diversity of data types, and dynamic operation environments, deep learning
technology can be used to solve various related problems, such as deep reinforcement
learning [113], deep transfer learning [114], the deep belief network [115], and convolution
neural networks [116]. In this way, enterprises can achieve adaptive fault feature extraction,
complete independent analysis, explore fault mechanisms, and obtain high-value results.
For example, the operations of a large complex industrial system leads to the production
of numerous monitoring data every day. With the increase in the amount of data, the
requirements for the software, hardware, and computing time also increase [117]. On
one hand, through offline batch processing [118–120], deep learning can mine valuable
information from massive data to predict the reliability of equipment. On the other hand,
through real-time stream processing [121–123], deep learning can resolve the complex
and changeable operating conditions in order to monitor the equipment in real-time, thus
ensuring timely maintenance. In both cases, deep learning methods extract fault feature
representations and combine them with data- and knowledge-driven approaches. In this
manner, equipment maintenance can be carried out more accurately and scientifically, thus
ensuring their reliability [124]. From an economic point of view, accurate and effective
predictions reduce equipment downtime, improve the utilization rate of the equipment,
and ensure their continued use. For example, Hinton et al. [125] have proposed and
discussed the use of deep learning. By using such techniques, the collected detection
data could be transformed, and the fault features could be extracted adaptively without
relying on a manual design. Qi et al. [126] have proposed a hierarchical fault diagnosis
network using deep learning, and their results indicated that the expression of diagnosis
results in this way is detailed and reliable. Tamilselvan et al. [127] have presented a fault
diagnosis method based on deep learning. After the layered training of the whole network,
the parameters are then fine-tuned by another algorithm. Compared with the traditional
training model processing method, this method can more effectively and accurately solve
the problem of feature extraction from multi-sensor heterogeneous data. Feng et al. [128]
established a deep neural network model to realize intelligent fault diagnosis with massive
amounts of data. This not only eliminates the dependence of traditional methods on
signal processing technology and human experience, but also ensures that an enterprise
can complete the expected tasks within the specified time, thus improving customer
satisfaction and enterprise efficiency.

5. Key Problems

This section focuses on the key issues facing the MC–SIOT system, as shown in
Figure 6. (1) Data resources are very important resources in management. At the data level,
there are three problems: Data collection, data transmission, and data storage and queries.
(2) Effective knowledge discovery helps managers make decisions. At the knowledge level,
there are three problems: knowledge extraction, knowledge representation, and knowledge
updating. (3) The success or failure of management depends on making effective decisions.
At the management level, it mainly faces the problems of intelligence, efficiency, reliability,
and availability. At the end of this section, the key issues are summarized (as shown in
Figure 6) and future research directions are proposed.
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5.1. Data Management

According to the horizontal framework of the MC–SIOT system, the data level of
the MC–SIOT system involves multiple departments, where each department comprises
independent equipment, terminals, machines, and operators to generate the corresponding
data. Therefore, it is necessary for manufacturing enterprises to manage such data effec-
tively, giving full play to the role of data. It includes data acquisition, data transmission,
and data storage and query.

1. In terms of data collection, with the increasing application of intelligent equipment in
manufacturing enterprises, manufacturing enterprises can obtain large amounts of
data from intelligent devices and, thus, get rich data sets [129–131]; however, in the
process of massive data collection, the following problems arise:

(1) In terms of integrity, as the intelligent manufacturing enterprise has many
parts operating at the same time, its production equipment and control system
need to run for a long time; that is to say, data will be generated at every
moment and collected through the terminal for a long time. In the process
of data acquisition over such a long period of time [132], it is very important
to avoid missing important information, such as the important data relating
to customer design or the fault data of production equipment. Therefore,
ensuring normal operations is inseparable from the integrity of the data. In
order to effectively detect whether the data are complete, it is necessary to
label the data generated by all data sources.

(2) Ensuring data quality is an essential process [133,134]. Due to the different
scenarios faced by the different departments of the MC–SIOT system in a
manufacturing enterprise, the collected data cannot be of a unified specification
and type, and the associated amounts of data are huge. It is difficult to ensure
that the collected data are of high quality; that is, the collected data inevitably
will contain invalid data (i.e., noise). Therefore, to ensure the quality of data, it
is necessary to clean the data to ensure their integrity [135]. This can remove
the noise contained in the data.

2. Data transmission usually refers to the process of transferring data from one place to
another. Intelligent manufacturing enterprises produce a large amount of data, which
are transmitted between devices through the wireless network [136,137]. This can
effectively solve cross-organizational problems. Therefore, data transmission between
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manufacturing enterprises through large-scale wireless networks has become the
norm. However, this involves the following problems:

(1) The reliability of a large-scale data network is very important for industrial
production; however, packet loss is often inevitable in data transmission,
which is one of the main reasons for errors in the process of data transmission.
How to resolve the problem of packet loss and determining which data have
been lost has been the focus of many studies. On one hand, a real-time data
stream can be transmitted to the designated device within a specified time by
coordinating the network [138], which can effectively reduce the packet loss
rate in the process of data transmission [139]. This solution requires clearly
understanding what data are transmitted (i.e., data annotation), in order to
arrange the transmission channel for them. On the other hand, in case of an
emergency, the transmitted data can be backed up and cached in a data buffer
to avoid packet loss [140]. This solution also requires data annotation, in order
to find the corresponding backup in the buffer immediately after the packet is
lost.

(2) In terms of accuracy, the transmission system can connect the front and back
terminals of the equipment to realize signal transmission. However, in the
process of transmission, interference is very common, which causes the re-
ceiver to obtain the wrong information. Therefore, it is necessary to reasonably
analyze whether there are interference factors during data transmission [141].
Particularly, one must ensure the functionality of transmitting and receiving
information in a noisy environment [142]. When an error occurs, the system
needs to effectively detect and correct the error; that is, it needs to accurately
judge what the correct original code is, in order to ensure accurate data trans-
mission. However, to judge the original code correctly, it is also necessary to
label the original data.

3. Regarding data querying, the large amounts of data generated by manufacturing
enterprises need to be stored, where the storage objects include the temporary files
generated in the process of data flow or the information to be searched in the process.
With the exponential growth of big data flows, data querying has also become more
challenging [143]. The following problems are considered important:

(1) In current storage systems, there is high data redundancy. Repeated data input
into the storage system occupies a significant amount of disk memory space.
Therefore, duplicate data should be eliminated, in order to reduce the impact
of meaningless data on storage [144], which is also convenient for data queries.

(2) In terms of timeliness, the system often takes a long time to obtain accurate
query results [145]. Untimely information will be greatly reduced in useful-
ness, or may even have no value; that is, in some delay-sensitive applications,
if it takes too long to answer a query, the query result(s) may become use-
less. Therefore, it is very important to satisfy the queries of users in a timely
manner [146,147].

5.2. Knowledge Discovery

According to the vertical framework of the MC–SIOT system, the data resources in
the database can be extracted and summarized in the knowledge base. Exploring hidden
data plays a vital role in supporting decision making [148]. Therefore, effective knowledge
management is the key problem of the MC–SIOT system, including knowledge extraction,
knowledge representation, and knowledge updating.

1. In terms of knowledge extraction, there is an increasing demand for transforming
raw data into knowledge, which is of great significance for decision making, opti-
mization, and analysis [149–151]. Tang et al. [152] have proposed a method to acquire
knowledge from documents, which can process documents with high complexity.
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However, the acquisition of expert knowledge is often a complex process involving
a variety of activities [153]. Due to the diversity of domain experts, they often have
different experiences and knowledge; that is, the information they can provide often
has many types. Additionally, there are integrity and accuracy problems [154]. On
the other hand, as knowledge has the characteristics of separation and dispersion,
when employees transfer from one post to another, the problem of explicit and tacit
knowledge acquisition and sharing cannot be ignored [155].

2. Knowledge representation refers to the association of knowledge factors and knowl-
edge objects. It is convenient for people to recognize and understand knowledge.
To date, many knowledge representation methods have been developed, including
fuzzy rules [156,157]; however, most of them are static and cannot be adjusted dy-
namically. Liu et al. [158] have proposed an adaptive fuzzy model, which can reflect
the different experiences of experts and realize knowledge reasoning dynamically.
Jong et al. [159] have proposed temporal knowledge representation and reasoning
technology. Considering heterogeneous data, Kargin et al. [160] have proposed an
intelligent rule engine model which realized the cognitive functions of data general-
ization and abstraction, while Ebrahimipour et al. [161] have proposed a knowledge
representation method based on ontology. This method can address the problems
related to noise data, data arrangement, and ambiguous technical vocabulary in text
maintenance records.

3. Knowledge updating means that a system can continuously learn new knowledge
from new samples, while retaining most of the previously learned knowledge, which
is similar to how human learning works. At present, with the emergence of incre-
mental industrial big data, traditional static learning methods struggle to obtain
incremental features effectively [162]. Therefore, incremental learning has become
a new research hotspot. Incremental learning can make full use of the historical
training results, such that the system can learn independently to adjust the rele-
vant set value [163]. This reduces the need for manual interventions and adjusts
key model parameters based on historical experience [164]. Additionally, incremen-
tal learning enables the system to perceive the surrounding environment [165] and
take appropriate actions against the changes in the process [166]. By learning ex-
perience in the environment, it can improve its overall performance in unknown
scenes [167]. This even makes the machine run automatically in cases of communica-
tion delay and unexpected system stoppage [168]. In addition to serving the normal
operations of a system in various complex environments, incremental learning can
also reduce the configuration time and expense, as configuration normally requires
professional knowledge.

5.3. Human–Computer Interaction

Most information systems involve human–computer interaction (HCI). Therefore,
HCI has become a key component of any complex system [169], and has become one of the
key parts of intelligent manufacturing management [170,171]. According to the vertical
framework of the MC–SIOT system, the managers can make real-time decisions through
HCI at the management level.

1. In terms of intelligence, the system should have the function of capturing information
or learning new knowledge for users. By distinguishing the levels of understanding
of users, it can establish a harmonious relationship or sense of harmony, ensuring
the comfort and participation of users. Xia et al. [172] have connected emotional
design with interactive design, allowing the interactive design to shift from machine-
based design to human-oriented design, in order to realize the unity of humans and
objects. Erol et al. [173] expected that agents will recognize human emotional states to
promote the natural connection between humans and robots. In addition, robots have
been widely used in the industrial field. They usually perform complex tasks along
with other robots and humans, promoting efficiency and accuracy while ensuring the
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safety of workers. Additionally, systems can combine semi-autonomous robots, edge
computing, and cloud services to realize the automation of complex tasks [174].

2. In terms of efficiency, an HCI system can reduce the workload of human supervi-
sors [175]. For example, Doering et al. [176] have proposed an imitation learning tech-
nology which learns the interactive behavior of social robots from natural HCI data.
However, it only requires the designer to input minimal information. Liu et al. [177]
found that the design of a HCI detection scheme is conducive to the system manage-
ment, in terms of microdata and macro-control. This not only reduces the labor cost
and improves the calculation speed, but also lays a solid foundation for the devel-
opment of future technology. Furthermore, computer-aided design based on HCI
technology can enhance the efficiency of industrial production [178]. Feng et al. [179]
have introduced an HCI interface design method based on context awareness. It is
very important to improve the efficiency of the system by improving the user’s perfor-
mance and satisfaction. Quintas et al. [180] have enhanced the interaction function by
integrating a context and interaction information model into a decision model. This
decision model acts as a supervisory process to control the interaction, allowing for
more natural and effective interactions between human and artificial agents.

3. Reliability in HCI is very important for industrial production. Herrera et al. [181]
have proposed a new fuzzy logic method. By integrating social rules into walking
events, this method can overcome many common interference situations and adapt
to different interference events over time. Xu et al. [182] have designed a machine-
oriented proximity estimation algorithm to simplify data connection, ensure data
connection accuracy, and reduce the time complexity. Bowyer et al. [183] have de-
signed an n-dimensional dissipative control strategy which can reduce the task error,
thus enabling human–machine interactions to occur safely and effectively.

4. Availability is an important factor that must be considered when evaluating the op-
eration of a system. By making the interaction process between users and devices
simpler and easier, the system should become more available [184,185]. Additionally,
availability is an important factor for users to achieve effectiveness, efficiency, and
satisfaction within a specific environment [186,187]. Considering availability issues
in the design of management applications can affect the user experiences of staff.
Hu et al. [188] believed that the user should be central in the interactive design, in
order to achieve a user-centered, reassuring, and user-satisfactory human–computer
interface. Meng et al. [189] believed that user-centered design is the best way to
create a usable human–computer interface, which can support operator tasks. To
improve the usability of the HCI interface, Zeng et al. [190] have developed a compre-
hensive evaluation hierarchy of software and hardware interfaces, a corresponding
comprehensive evaluation carrier, and a decision pattern.

Based on the three key issues described above, we summarize some challenges faced
by the existing research and put forward several research directions for the future in
Table 2.
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Table 2. A summary of current research challenges and future research directions.

Data management
Key problems 1. Integrity; 2. Quality; 3. Reliability; 4. Accuracy; 5. Redundancy;

6. Timeliness

Challenges To solve the problem of incomplete data annotation and heterogeneous data
noise, how to ensure the anti-noise and realize perception of data

Future directions

1. Transfer learning: This technology can annotate and effectively manage the
data, including removing noise, avoiding packet loss, and fast searching
aspects.2. Digital twin: This technology can simulate and simulate the
operations of the system in the virtual space and exchange information with
the real world. Improve the reliability of system operation data.

Knowledge discovery
Key problems 1. Knowledge extraction; 2. Knowledge representation;

3. Knowledge updating

Challenges To solve the problem of information characteristics in complex environment;
how to carry out online knowledge updating of differentiated knowledge.

Future directions

1. Incremental learning: This technology is constantly learning new things
from new scenarios in the complex manufacturing environment.
2. Reinforcement learning: This technique can be used to learn strategies to
achieve specific goals during interaction, ensuring the robustness of
the system.

HCI
Key problems 1. Intelligence; 2. Efficiency; 3. Reliability; 4. Availability

Challenges
To solve the problem of industrial scene understanding, human–computer
interface, and how to realize collaborative evolution and decision control
interaction through task collaboration.

Future directions The Multi-agent co-operative: This technology can help the system to realize
the scientific and efficient interaction of each body.

6. The MC–SIOT System as a Complex System

It can be understood that the MC–SIOT system is complex. Through the qualitative
analysis of its complex system characteristics, we can obtain a deeper understanding of the
MC–SIOT system. Additionally, we illustrate how to quantitatively reveal the behavior
and evolutionary mechanism of the MC–SIOT system.

6.1. Qualitative Analysis

This system is composed of several sub-systems, which have the characteristics of
multi-level structure, evolution, co-operation, self-similarity, self-organization, heterogene-
ity, and openness. These sub-systems interact through co-operative relationships. As
enterprise systems are characterized by unpredictable, dynamic, and uncertain environ-
ments, researchers have advocated for the use of a complex system paradigm to clarify the
bottom-up behavior of enterprise systems [191–193]. We describe the MC–SIOT system as
a complex system. The details are as follows:

1. The MC–SIOT system has a multi-layered structure; each level reflects its upper-level
components. For example, as shown in Figure 7, the first level node represents an
MC–SIOT system, composed of the sales department (red), R&D department (blue),
and manufacturing workshop (green). The nodes of the second level represent the
ISs of the sales department, R&D department, and manufacturing workshop. In the
third level, each node represents a sub-department; for example, the sales department
is sub-divided into multiple stores, the R&D department includes multiple product
R&D teams, and the manufacturing workshop includes multiple production lines.
Sub-ISs exist in each ISs of the second level, and so on. This multi-level structure is
the foundation of the MC–SIOT system.

2. The evolutionary strategy involves adapting to the external environment by adjusting
the system’s structure and components. For example, the MC–SIOT system can
improve its IT infrastructure, business processes, management methods, and so on,
according to a plan, in order to meet the needs of the enterprise market.
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3. The interactions of departments at the same level demonstrate the nature of the
coordination. For example, the coordination and cooperation between ISs of different
departments form a pull effect to promote the development of the MC–SIOT system.

4. Self-similarity refers to the repetitious structure of the MC–SIOT system and its
components; for example, the MC–SIOT system contains multiple ISs of different
departments, where the IS of each department comprises multiple modules. The
self-similar structure is gradually formed in the process of evolution.

5. Self-organization refers to the spontaneous formation of new structures or behav-
iors through the adjustment of system components. When the enterprise plans to
produce new products, the MC–SIOT system will automatically transfer the tasks to
each department. After these departments receive their tasks, they will adjust their
statuses voluntarily to complete the assigned tasks; for example, the sales department
should find customer groups, the R&D department may complete a product design
demonstration, and the manufacturing workshop must ensure the timely production
and delivery of products.

6. The MC–SIOT system is composed of multiple ISs, and there is a cooperative rela-
tionship between them. These ISs are based on a variety of architectures and achieve
corresponding goals through different departments. Different departments are faced
with different scenarios. The data are not only collected in a multi-source manner, but
different devices in physical space or cyberspace are also used as the infrastructure.

7. The MC–SIOT system constantly exchanges resources and information with the
surrounding environment; for example, the MC–SIOT system provides data related to
products or services to consumers, while absorbing product innovation and workshop
management experiences in the external environment. Due to its openness, the
MC–SIOT system can be continuously upgraded.
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The qualitative description of the MC–SIOT system is depicted in Figure 7. Although
the description is qualitative, it shows that the MC–SIOT system is a complex system. It
is helpful to understand some of the more puzzling phenomena found in the MC–SIOT
system. In addition, by providing the basic concept of a complex system, our interpretation
provides the basis for quantitative description.
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6.2. Quantitative Analysis

The MC–SIOT system is composed of multiple heterogeneous units. Only through in-
teraction can the overall function of the system be completed. This requires an information
interface to transfer information between units and select interactive objects. In this way,
the flexible coupling between units can be realized. In this paper, R-W theory is applied to
study the control performance of units.

(1) The state transition function

The calculation structure and state transition function of each unit were established
such that the unit has autonomy during the operation of the MC–SIOT system, meets the
system control requirements, and gives full play to its functions. The system unit model is
as follows:

Hc = (Q, θ ∗ Σ, λc, q0, Qm), (1)

where Q is the state set, θ is the control mode set (θ = {0,1}), Σ is used for event collection,
λc is the state transition function, q0 is the initial state, and Qm is the identification state
(i.e., the work completion state).

It is assumed that the states in the set Q = {q0, q1, q2} for the equipment represent
the standby state, working state, and fault state, respectively, while the components in the
event set Σ = {σ1, σ2, σ3, σ4} represent receiving instructions, work completion, failure, and
troubleshooting, respectively. As the state of the unit of the system will change accordingly
after an event, the above process can be represented by the state transition function. The
state transition function can be defined as follows:

For ∀q ∈ Q, there are λ(ε, q) = q, λ(σ2, q2) = q0, λ(σ1, q0) = q1, λ(σ3, q1) = q0,
λ(σ4, q1) = q2.

(2) Relationship between system units.

The MC–SIOT system needs to realize two-way information transmission between
interactive units, such that the system is a two-way output interface of the octal group:

M = (Q, ∑, ∆, λ, δ, q0, F, B), (2)

where Q is a non-empty finite set of states where, for ∀q ∈ Q, q is a state calling M; Σ
is the input alphabet; M is any input string; a ∈ ∑; ∆ is the output alphabet; δ is the
output function; q0 is the start state of M; F is the acceptance status set of M (F ⊆ Q); B
is a Boolean character set (B = {0, 1}); and λ is the state transition function, such that
λ : Q ∗∑ ∗D → Q ∗ D , where D = {L, R, S} is the movement direction set. The specific
explanations are as follows:

(1) If λ(q, a, L) = {p, L}, then if M is in the state q, the character a is read, the state is
changed to p, and then the character prior of a will be read. At this time, δ(p) = a.

(2) When λ(q, a, R) = {p, R}, then q in M changes to p after reading a, and the next
character is then read.

(3) When λ(q, a, S) = {p, S}, the state of M changes to p after reading a, but the character
is read again the next time.

In the latter two cases, when p 6= q, δ(p) = x. When p = q, δ(p) = ε, where ε is a
null character.

To realize the bi-directional information transmission function of the interface in the
system, the system interface layer can be expressed as:

{p[n], s} = λ(p[n− 1], yi[n], d), (3)

xi[n] = δ(d[n]), (4)

where d ∈ D‚ p[n] ∈ Q‚ yi[n] ∈ ∑; λ is the output function λ : ∑→ Q , which maps
discrete event variables to discrete time variables; and δ is the output function δ : ∑→ ∆ ,
which maps discrete event variables to discrete time variables. Formula (3) indicates that



ISPRS Int. J. Geo-Inf. 2021, 10, 653 19 of 30

the interface transmits the information of one unit to another unit and causes interactive
unit events, while Formula (4) represents the interface conversion, which feeds back the
state information of the interactive unit.

To clearly describe the mapping relationship, the mapping coupling function is con-
structed in this paper. The MC–SIOT system has mixed dynamic characteristics. Therefore,
we assume that the attributes of all system units can be represented by events and states.
The mapping coupling function is as follows:

Ea = ψ(Er, Sr, Sa), (5)

where Ea and Sa are the set of events and initial states of the target unit, respectively; and
Er and Sr are the event set and state set of the unit, respectively. For different interaction
units, the mapping coupling function, ψ, has different specific forms.

In this paper, an ontology is used to establish the logical model of the system unit.
Taking the equipment unit as an example, the Web Ontology Language (OWL) is used to
establish the ontology structure of processing equipment based on semiotics:

Om : {C, R, Hc, relAo}, (6)

where C is the collection of states and events, R is the relationship set between its states and
events, Hc is the concept level (here, it is an empty set), rel is a specific function to realize
the relationship between elements in C, and Ao is the OWL language rule. On this basis,
OWL can easily describe the attributes of a unit, in order to realize the semantic integration
of the system through a reasonable integration structure. This ensures the smooth progress
of the self-organization process of the system.

(3) Servo constraint function

The order parameter of the system is expressed by P, P = (p1, p2, . . . , pm), where
pi(i = 1, 2, . . . , m) are the macro-order parameters of the system. Let the objective
function be

A(n) = f [W(n), V(n)], (7)

V(n) = g[P(n), E(n), B(n)], (8)

where N is the servo time; E and B are information related to the order parameters in the
environmental and feedback information, respectively; V is the optimal state of the system
under the action of order parameters; and W is the weight corresponding to the order
parameter in the servo action, W = (w1, w2, . . . , wm). The weight relationship between
different servo moments is given as follows:

W(n + 1) = φ[W(n), A(n)]. (9)

To achieve the optimal state of the system, it is necessary to find the optimal value
of A(n). The optimization of A(n) can be realized by the weight optimization algorithm.
In this process, the interface is servo to the F function. By adjusting the interactive object
and content of the system unit, according to W, the collaborative relationship of the system
under the given goal is realized.

7. Discussion

Through the construction of the MC–SIOT framework, this paper should help system
designers, as we have provided an advanced system which may address the key problems
existing in such systems. We showed that the technologies involved in the MC–SIOT system
mainly include three aspects: Semantic analysis, knowledge graphing, and deep learning.
These technologies have different emphases and intersections. At the same time, these
technologies face different problems, regarding data management, knowledge discovery,
and HCI. This paper summarized the above content, in order to provide a reference for
researchers. At the same time, given the problems existing in customer participation in
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production and process management as a whole, future research directions are put forward.
These issues are discussed further in the following sections.

7.1. Research Findings

We showed that the intelligent manufacturing concept using the IOT has many valu-
able practices, which can be used for different purposes, such as R&D and fault diagnosis;
however, there is a lack of understanding regarding customer participation in decision mak-
ing. Therefore, in this paper, we introduced SIOT into MC information systems to improve
customer participation in MC and the management of enterprises. For example, customer
demand analysis is necessary for MC, which is the reason for the continuous development
and rapid progression of semantic analysis. Through semantic analysis, customer opinions
and needs can be captured through social networks. Based on the results, enterprises
can understand the popularity of their products on the market. Therefore, enterprises
should collect accurate data in real-time, in order to capture changes in customer needs.
To collect these data, future research needs to develop enhanced artificial intelligence and
special analysis algorithms, which can analyze and process multi-modal real-time data and
generate dynamic customer knowledge graphs.

The MC–SIOT can be used as a platform to link and display all of the activities of MC
in manufacturing enterprises; in addition, it is considered helpful to use AI algorithms for
data mining. For example, the Paraimpu platform uses virtual services on Web pages and
a social network framework to realize user addition, sharing, and interaction functions, in
order to create personalized applications [194]. Further, the MUL-Swot platform provides
users with Internet of Things service suggestions. It supports communication between
users and third-party platforms by calling a Web API [195]. In the above system, the
interactions between people and things are realized mainly in the form of natural language.
Therefore, by collecting a large amount of text data and using an artificial intelligence
algorithm for data mining, the MC–SIOT platform can realize user feature recognition,
basic information queries, and user demand analysis. Based on user portraits, the user label
database and user relationship database can be established to query the basic information.
For example, designing distributed data management based on user portraits can provide
a retrieval function. In the process of human–computer interaction, a user portrait can help
the machine to understand the user’s intentions more clearly and better answer the user’s
questions. It can continuously carry out index management and query optimization.

At present, support for patent analysis methods for enterprise technology prediction
and decision making remains relatively weak. The identification of core technology vacancy
and the evaluation of patent technology innovation can only provide a subjective reference
for decision makers, in the form of static and historical data. Secondly, existing patent
analyses often pay attention to a single piece of technology, while paying little attention to
the technology’s relevance and the dynamic evolution of technological groups. Therefore,
using a knowledge graph algorithm for knowledge discovery in the MC–SIOT framework
can realize patent link prediction, patent quantification, and visualization.

In the patent network of SIOT, each node represents a technical knowledge area and
each link represents the dynamic amount of interaction between a pair of technical knowl-
edge areas. In knowledge discovery, link prediction can predict the changing relationship
between different technical knowledge fields. It can discover new products and future
changes of existing products, based on patent documents. In terms of human–computer in-
teraction, this can help enterprise R&D personnel to determine the distribution of relevant
technical knowledge.

Deep learning technology is data-driven, and its results are often limited by relevant
data types and availability. However, in the real environment, equipment is often in a
healthy state, such that it is difficult to obtain a large amount of comprehensive fault
data. Therefore, in the framework of MC–SIOT, diagnostic technology and digital twin
technology can be interconnected. This can not only simulate the physical entity of the
device in the virtual space and use a large number of simulated device fault data sets, but



ISPRS Int. J. Geo-Inf. 2021, 10, 653 21 of 30

the real device fault data can also be used to fine-tune the model, thus enabling effective
information management. Additionally, in terms of human–computer interactions, the
MC–SIOT system can diagnose and receive equipment status information. If the equipment
status deviates from the preset range, the system can send a notification to the management
personnel, reminding them to maintain the equipment.

7.2. Limitations

This paper introduced the use of different technologies, but these technologies have
some problems. The relative details are as follows:

Intelligent technology relies heavily on large amounts of data, but a lack of high-
quality data may affect the operations of the associated systems. This challenge can be seen
as twofold, due to: (1) A lack of data quality management technology; and (2) the amount
of data being small and difficult to obtain. In short, the data source may have problems
with relatively small total amounts and low data quality (e.g., affected by noisy and/or
abnormal data). Therefore, it is necessary to further study the data processing methods to
support the rational and efficient use of data by MC–SIOT.

There is still a lack of application of quantitative intelligent algorithms that have been
trained with expert knowledge. At present, there are two difficulties inherent to knowledge
discovery in a complex environment: (1) Due to the lack of dynamic knowledge, most
of the existing systems provide static and historical data for the subjective reference of
decision makers; and (2) such data require manual review by professionals, which means
that a lot of resources are required to update knowledge.

It is necessary to solve the problem of task scheduling and coordination between
humans and machines, especially in complex dynamic industrial scenes. Otherwise, there
will be interface barriers and decision conflicts between the personnel and equipment.

7.3. Future Directions

Data quality management based on transfer learning: Based on manually labeling
a small amount of data, information can be extracted from them through use of this
technology and then used for target data. This method can label the data, and not only
make up for the defects of different data feature distributions, but also effectively manage
the data; for instance, removing noise, avoiding packet loss, and retrieval.

Digital twins can be used to solve the problems related to insufficient data samples.
This technology not only can make up for a lack of training data, but also provide infor-
mation for real-world models, making them very important in improving the reliability of
system operation data.

Incremental learning carries out autonomous and unsupervised knowledge learning.
This technology can constantly learn new things from new scenes in a complex manufac-
turing environment, taking the current new data as the input to add new knowledge to
the existing knowledge graph. This technology can adjust the structure of the knowledge
graph, accordingly.

Reinforcement learning adopts a continuous “interaction trial-and-error” mechanism
to achieve specific goals in the process of interaction, ensuring the robustness of the system.
By applying human domain knowledge and implicit experience to reinforcement learning,
the system can obtain feedback information from specific situations, such that it can
learn the optimal strategy to complete the task. This realizes the effective combination of
quantitative algorithms and expert knowledge.

Multi-agent cooperation technology can help the system to realize scientific and
efficient interactions among agents. It is a system formed of multiple independent agents
to complete a complex task through local cooperation and interaction. It can allow people
and machines to learn and adapt through their interactions with each other, and realize
co-evolution and decision control interaction through task cooperation.

In addition, although not discussed in this paper, important research to be carried out
in the future is as follows: First, we suggest conducting research into privacy protection.
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SIOT can provide feedback on its interactions with some IOT devices and users. How-
ever, this behavior can disclose the communication behavior between the device and the
user [196]. Especially in the context of MC, users need to be highly involved in the product
production process. Therefore, future MC–SIOT systems should adopt block-chain encryp-
tion technology to prevent illegal or malicious nodes from accessing private user data. We
also suggest the development of emotional interaction technology. Whether intelligent
devices cause psychological and emotional conflicts between users and employees has not
yet been fully studied. The impacts of the intelligent environment on human psychology
and emotion should be assessed, and the design of the MC–SIOT system should be adjusted
to overcome the above problems.

In summary, this paper introduced the architecture of the MC–SIOT system and re-
viewed the related research. We found that the system is user-driven, in that user demand is
the main concern, while the whole production process is the secondary concern. Recogniz-
ing the huge demand for user-centered systems, we integrated different technologies (i.e.,
semantic analysis, knowledge graph, deep learning) into this system, and analyzed various
problems related to areas such as data management, knowledge discovery, and HCI. On
this basis, future improvement directions were also proposed, and more research directions
have been opened up, including privacy protection and system emotional interactions.

8. Conclusions

In this paper, we reviewed relevant research into IOT-based systems. According to the
essence of IOT, we determined the relevant technologies involved, such as semantic analy-
sis, knowledge graphs, and deep learning. These technologies face some key challenges,
including data management, knowledge discovery, and human–computer interaction.
However, traditional IOT cannot effectively manage customer data under the scenario of
mass customization. Therefore, SIOT has become an emerging trend. Through the inte-
gration of social networks and the Internet of Things, SIOT extends human–human social
relations to those between things and people, and things and things. This can effectively
connect the network customer base with the enterprise. It not only allows customers to
participate in the MC production process, but also allows enterprises to control all links
through the whole information system.

The MC–SIOT system not only provides a way to introduce SIOT into the MC system,
but also a means to promote business activities digitally. This can realize the conceptual
transformation from manufacturing production to service production; however, the current
technology and management level are not sufficiently advanced, which imposes limitations
on the MC–SIOT system. To fully understand the current situation of the MC–SIOT
system and lay the foundations for future research, we conducted study on the MC–SIOT.
First, we introduced the architecture of the system from organizational and technological
perspectives. Then, the key problems, challenges, and future development directions of the
MC–SIOT system were discussed in detail. Finally, the MC–SIOT system was described
in detail, from both qualitative and quantitative perspectives. This will further enable
manufacturing enterprises to understand the MC–SIOT system, in order to pave the way
for future promotion.

The specific findings of this paper are as follows: (1) The MC–SIOT system can be
used as a platform to realize user feature recognition, basic information queries, and user
demand analyses; (2) In the MC–SIOT framework, the knowledge graph algorithm is used
for knowledge discovery. It not only can predict the relationships between knowledge
fields, but can also help R&D personnel to quantify the distribution of relevant technical
knowledge; (3) The diagnosis technology and digital twin technology can be interconnected
in the MC–SIOT system. By simulating the physical entity of the device in the virtual space,
effective information management can be carried out.

However, these findings have some limitations and challenges: (1) The data sources
may have the problems of the relatively small output and low data quality, which will
affect the system’s operation. (2) The application of quantitative intelligent models based
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on expert knowledge is still lacking. (3) In complex dynamic industrial scenarios, it is
necessary to solve the problem of task scheduling and coordination between humans and
machine within a limited time.

Therefore, we put forward some future research directions: (1) Transfer learning
should be used to solve the defects of different data feature distributions and effectively
manage data; (2) The digital twin method could solve the problem of insufficient data
samples and improve the reliability of operation data; (3) Incremental learning should be
used to learn new things from new scenes under complex manufacturing environments;
(4) Reinforcement learning should be used to obtain feedback from specific situations,
in order to realize effective combinations of quantitative algorithms and expert knowl-
edge; (5) Multi-agent cooperation technology should be used to help the system to realize
efficient cooperation and decision-making control interactions between humans and ma-
chines/computers throughout tasks. In addition, future research should consider privacy
protection and emotional interactions.
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