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Abstract: Earth Observation data possess tremendous potential in understanding the dynamics of
our planet. We propose the Semantics-driven Remote Sensing Scene Understanding (Sem-RSSU)
framework for rendering comprehensive grounded spatio-contextual scene descriptions for enhanced
situational awareness. To minimize the semantic gap for remote-sensing-scene understanding, the
framework puts forward the transformation of scenes by using semantic-web technologies to Remote
Sensing Scene Knowledge Graphs (RSS-KGs). The knowledge-graph representation of scenes has
been formalized through the development of a Remote Sensing Scene Ontology (RSSO)—a core
ontology for an inclusive remote-sensing-scene data product. The RSS-KGs are enriched both spatially
and contextually, using a deductive reasoner, by mining for implicit spatio-contextual relationships
between land-cover classes in the scenes. The Sem-RSSU, at its core, constitutes novel Ontology-
driven Spatio-Contextual Triple Aggregation and realization algorithms to transform KGs to render
grounded natural language scene descriptions. Considering the significance of scene understanding
for informed decision-making from remote sensing scenes during a flood, we selected it as a test
scenario, to demonstrate the utility of this framework. In that regard, a contextual domain knowledge
encompassing Flood Scene Ontology (FSO) has been developed. Extensive experimental evaluations
show promising results, further validating the efficacy of this framework.

Keywords: remote sensing scene understanding; semantics-driven; grounded natural language
scene descriptions; spatio-contextual; Scene Knowledge Graphs; flood ontology; semantic web;
GeoSPARQL; Resource Description Framework (RDF); Semantic Web Rule Language (SWRL)

1. Introduction

In recent years, the adoption of remote sensing across a wide spectrum of applications
has increased rapidly. With an increase in the number of satellites launched over the last few
years, there has been a deluge of Earth Observation (EO) data. However, the rate of data
exploration largely lags behind the rate at which the EO data are being generated by these
remote-sensing platforms [1]. The remote-sensing imagery captured by these platforms has
great potential in understanding numerous natural, as well as manmade, phenomena. This
remains largely unexplored, primarily due to the sheer volume and velocity of the data. This
calls for a need for innovative and efficient ways to rapidly explore and exploit EO data. The
research problem of empowering machines to interpret and understand a scene as a human
has been gaining lots of attention in the remote-sensing community.

The area of remote sensing scene understanding for information mining and retrieval,
scene interpretation including Land Use Land Cover (LULC) classification and change
detection among numerous other applications has evolved significantly over the years.
Most of the research on this paradigm has been focused on the problem of information
mining and retrieval from remote sensing scenes. Earlier works [2,3] focused on the
problem of scene identification and retrieval by comparing Synthetic Aperture Radar (SAR)
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data of different scenes by using a model-based scene inversion approach with Bayesian
inference. These works propose and discuss mathematical models for extraction of low-
level physical characteristics of the 3D scenes from the 2D images. Reference [4] introduced
information fusion for scene understanding by proposing the mapping of the extracted
primitive features to higher-level semantics representing urban scene elements.

There has been significant research in the area of Image Information Mining for
Remote-Sensing Imagery that has led to the development of numerous Information Im-
age Mining (IIM) frameworks in the last couple of decades. The GeoBrowse system [5]
is one of the earliest IIM systems for remote-sensing imagery. Developed on the prin-
ciples of distributed computing, the system used an object-oriented relational database
for data storage and information retrieval. The Knowledge-driven Information Mining
(KIM) system [6,7] was built over References [2,3], and Reference [4] proposed to use
Bayesian networks to link user-defined semantic labels to a global content-index generated
in an unsupervised manner. The Geospatial Information Retrieval and Indexing System
(GeoIRIS) [8] identified specialized descriptor features to extract and map particular objects
from remote sensing scenes, with support for querying by spatial configuration of objects
for retrieval of remote-sensing-scene tiles. The PicSOM system [9] applied self-organized
maps to optimize retrieval of images based on the content queried by the user. It also
proposed supervised and unsupervised change-detection methodologies in addition to
detecting manmade structures from satellite imagery. The Intelligent Interactive Image
Knowledge Retrieval (I3KR) [1] system proposed the use of domain-dependent ontologies
for enhanced knowledge discovery from the Earth Observation data. It used a combination
of supervised and unsupervised techniques to generate models for object classes, followed
by the assignment of semantic concepts to the classes in the ontology, achieved automat-
ically by description-logic-based inference mechanisms. The Spatial Image Information
Mining Framework [10] inspired by the I3KR [1] focused on the modeling of directional and
topological relationships between the regions in an image and the development of Spatial
Semantic Graph. The SIIM also proposed a Resource Description Framework (RDF)-based
model for representing an image, associating regions with classes and their relationships,
both directional and topological, amongst themselves, along with the structural metadata,
such as geographical coordinates and time of acquisition.

Each of the image information mining systems for remote sensing imagery mentioned
above have strived to address the problem of effective retrieval of content-based information
from huge remote sensing archives. Some of the recent semantics enabled IIM systems have
also addressed the issue of the “semantic gap” between the low-level primitive features and
high-level semantic abstractions in a remote sensing scene. However, the research problem
of comprehensive understanding and interpretation of remote sensing scenes from a spatio-
contextual perspective for man–machine interactions has still not been completely addressed.

Recently, a few research studies have focused on remote sensing scene captioning to
interpret scenes into natural language descriptions. Reference [11] proposed the use of a
deep multi-modal neural network consisting of a convolutional neural network to extract
the image features followed by a recurrent neural network trained over a dataset of image–
caption pairs to generate the single sentence text descriptions. The framework proposed
in Reference [12] consists of two stages for the task of remote-sensing-image captioning:
(1) Multi-Level Image Understanding, using Fully Convolutional Networks (FCNs), and
(2) language generation, using a template-based approach. The first stage was designed
to generate triplets from the images in the form of (ELM, ATR and RLT) representing the
ground elements, their attributes and their relationships with other elements. These triples
serve as input to the templating mechanism to generate appropriate natural language
text descriptions. The Remote Sensing Image Captioning Dataset (RSICD) developed
in Reference [13] consists of manually generated image–sentence pairs for 10921 generic
remote sensing scenes of 224 × 224 pixels size. The developed dataset was evaluated over
two methods of image captioning: (1) multi-modal approach [11] and (2) an attention-
based approach proposed in Reference [13] that uses both deterministic and stochastic
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manner of attention. The Collective Semantic Metric Learning (CSML) framework [14]
proposed the collective sentence representation corresponding to a single remote sensing
image representation in the semantic space for a multi-sentence captioning task. With
the objective of ensuring focus on the regions of interest, the Visual Aligning Attention
model (VAA) [15] proposed a novel visual aligning loss function designed to maximize the
feature similarity between the extracted image feature vectors and the word embedding
vectors. The Retrieval Topic Recurrent Memory Network [16] proposed the use of topic
words retrieved from the topic repository generated from the ground truth sentences
at the training stage. In the testing stage, the retrieved topic words embedded into the
network in the form of topic memory cells further control and guide the sentence generation
process. Reference [17] addressed the problems of (1) focusing on different spatial features
at different scales and (2) semantic relationships between the objects in the remote sensing
image. It proposed the use of a multi-level attention module to account for spatial features
at different scales and attribute graph-based graph convolutional network to account for
the semantic relationship between the objects in the remote sensing image.

The remote sensing image captioning frameworks mentioned above have addressed
the problem of captioning remote sensing scenes to natural language sentences. A few
recent studies in this area have focused on the semantic visual relationships between the
objects in the scenes. However, the research problem of generating detailed description
paragraphs consisting of multiple natural language sentences, comprehensively describing
a remote sensing scene, taking into account the spatio-contextual relationships between
the objects, remains largely unexplored. Moreover, the generated sentences in the above-
mentioned frameworks are not grounded to specific regions of the scene, and thus lack
explainability. The term “grounded” in the scene description refers to the explicit mapping
words or phrases in it to regions in the scene that it describes. This reinforces explainability
and reliability of the scene description in its task of describing the scene in natural language.

Comprehensive, explainable and contextual interpretation of a remote sensing scene
is of utmost importance especially in a disaster situation such as floods. During a flood
occurrence, it is crucial to understand the flood inundation and receding patterns in context
to the spatial configurations of the land-use/land-cover in the flooded regions. Moreover,
the contextual semantics of the flood scene are also influenced by the temporal component.
As time progresses, a flooded region may either shrink in size or grow, affecting the
semantics of other regions that it spatially interacts with. Therefore, there is a dire need
to develop approaches that can translate the real-world ground situation during or post
disaster in a way that can be easily assimilated both by humans and machines, which can
lead to a response that is well orchestrated and timely.

This paper addresses the problem of remote sensing scene understanding focusing
specifically on comprehensive and explainable interpretation of scenes from a spatio-
contextual standpoint for effective man–machine interactions. In that regard, the novel
Semantics-driven Remote Sensing Scene Understanding (Sem-RSSU) framework was devel-
oped to generate grounded explainable natural language scene descriptions from remote
sensing scenes. Figure 1 depicts comprehensive grounded spatio-contextual scene descrip-
tion as rendered by our proposed Semantics-driven Remote Sensing Scene Understanding
(Sem-RSSU) framework for a remote sensing scene of urban floods. To the best of our
knowledge, this research is the first of its kind to explore comprehensive grounded scene
description rendering for remote sensing scenes using a semantics-driven approach.
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Figure 1. Comprehensive grounded spatio-contextual scene description as rendered by our proposed Semantics-driven
Remote Sensing Scene Understanding (Sem-RSSU) for a remote sensing scene of urban floods, depicting explainability by
color-coded mapping of sentences to regions of interest in the scene.

The broad objective of this research is to transform a remote sensing scene to a spatio-
contextual knowledge graph and further into explainable grounded natural language scene
descriptions for enhanced situational awareness and effective man–machine interaction.

Major Research Contributions

Our major research contributions in this work are two-fold:

• We formalize the representation and modeling of spatio-contextual knowledge in
remote sensing scenes in the form of Remote Sensing Scene Knowledge Graphs (RSS-
KGs), through the development of Remote Sensing Scene Ontology (RSSO)—a core
ontology for an inclusive remote-sensing-scene data product. We develop a contextual
domain knowledge encompassing Flood Scene Ontology (FSO), to represent concepts
that proliferate during a flood scenario.

• We propose and implement the end-to-end Semantics-enabled Remote Sensing Scene
Understanding (Sem-RSSU) framework as a holistic pipeline for generating compre-
hensive grounded spatio-contextual scene descriptions, to enhance the user-level
situational awareness, as well as machine-level explainability of the scenes.

In that regard, we propose (1) Ontology-driven Spatio-Contextual Triple Aggregation
and (2) Scene Description Content Planning and Realization algorithms, to enable rendering
of grounded explainable natural language scene descriptions from remote sensing scenes.
We report and discuss our findings from the extensive evaluations of the framework.

The paper is structured as follows: Section 2 describes the proposed Semantics-driven
Remote Sensing Scene Understanding (Sem-RSSU) framework. It presents in detail the
various layers and components of the framework. Section 3 discusses the experimental
setup, results with the evaluation strategies used to verify the efficacy of the framework.
In Sections 4 and 5, we discuss and summarize the framework and conclude with future
directions of this research.

2. Framework for Semantics-Driven Remote Sensing Scene Understanding

The core focus of the Semantics enabled Remote Sensing Scene Understanding (Sem-
RSSU) framework is geared towards enabling enhanced situational awareness from remote
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sensing scenes. It intends to enable the users/decision makers to obtain increased un-
derstanding of the situation and help make better choices to respond to it prudently. It
is well understood that the greater the amount of targeted information the better are the
chances to positively react to the situation. However, the information needs to be highly
contextual, easily understandable and pertinent to that particular situation. Otherwise,
there is a danger of information overload leading to undesired consequences. Therefore,
it is essential to develop approaches that can translate the real ground situation from
remote sensing scenes in a way that can be easily understood and queried upon by man
and machines alike, thereby leading to an appropriate and timely response in sensitive
situations such as disasters.

Figure 2 depicts the system architecture of the proposed framework. The framework
was logically divided into 6 layers: Data Storage layer, Scene Ingestion layer, Data Mediation
layer, Semantic Enrichment layer, Natural Processing layer and the Rendering layer.
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The Data Storage layer consists of a triple-store to store, retrieve and update the
Remote Sensing Scene Knowledge Graphs (RSS-KGs) generated from the scenes. It also
stores the ontologies—the Remote Sensing Scene Ontology (RSSO) and the contextual
Flood Scene Ontology (FSO)—on a disk-based storage, for deductive reasoning. The Scene
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Ingestion layer deals with ingesting Remote Sensing Scenes of interest into the framework
for comprehensive, grounded and explainable scene description rendering.

2.1. Data Mediation

The Data Mediation layer consists of (1) the deep-learning-based multi-class segmenta-
tion component that segments the ingested scene into land-use/land-cover regions and (2)
the RDF graph generator component that transforms the segmented land-use/land-cover
regions in the scene to a graph representation of the scene conforming to the proposed
Remote Sensing Scene Ontology.

2.1.1. Multi-Class Segmentation

The remote sensing scene consists of multiple land-use/land-cover regions spatially
interacting with one another. To infer higher level abstractions from the scene, it is essential
to identify the primitive features and predict their land-use/land-cover. Each pixel in the
scene is assigned a label of a land-cover, using a deep-neural-network approach. Some
of the popular state-of-the-art deep-neural-network architectures based on the encoder–
decoder architecture were experimented on for the urban flood dataset for this research.

The Fully Convolutional Network (FCN) [18] architecture popularized the use of
end-to-end convolutional neural networks for semantic segmentation. The FCN first
introduced the use of skip connections to propagate spatial information to the decoder
layers and improve the upsampling output. U-Net architecture [19] built over the FCN,
was first proposed for biomedical image segmentation and has proven to adapt well across
a large spectrum of domains. It proposed a symmetric U-shaped architecture for encoding
and decoding with multiple upsampling layers and using the concatenation operation
instead of addition operation. The Pyramid Scene Parsing Network (PSPNet) [20] uses
dilated convolution to increase the receptive field in addition to the use of the pyramid
pooling module in the encoder to capture and aggregate the global context. The SegNet [21]
architecture advocated storing and transmitting the max-pooling indices to the decoder to
improve the quality of upsampling. The ResNet [22] architecture, a Convolutional Neural
Network architecture, proposed the use of residual-blocks identity-skip connections to
tackle the vanishing gradient problem encountered while training deep neural networks.
The ResNet and VGG-16 [23] were used as backbone architectures for the FCN, U-Net,
SegNet and PSP neural network architectures for experimenting over the urban flood
dataset consisting of high-resolution remote sensing scenes captured during an urban flood
event. Each of the architectures was implemented and evaluated over this dataset.

Both ResNet and VGG-16 as backbone architectures have shown promising results [24]
for multi-class segmentation (also known as semantic Segmentation) for remote sensing
scenes. The architectures for multi-class segmentation considered in Sem-RSSU were
selected by considering their effectiveness and relevance for the task of segmentation and
to limit the scope of the study. It must be noted that Sem-RSSU was structured to be
modular and is thus amenable for use with any state-of-the-art deep neural approaches for
multi-class segmentation.

2.1.2. RDF Graph Generator

The RDF Graph Generator component translates the land-use/land-cover regions
from raster to a Resource Description Framework based graph representation. The se-
mantic segmentation results (also known as classification maps) are vectorized into Well-
Known Text (WKT) geometry representation based on the color labels assigned to the
pixels. A predefined threshold for minimum pixels in a region to constitute an object
in a knowledge graph, in this component, filters out stray and noisy pixel labels. This
was implemented by using the shapely (https://pypi.org/project/Shapely) and raste-
rio (https://pypi.org/project/rasterio) libraries in Python. This process of vectoriza-
tion is followed by encoding and rendering the WKT geometries in a string conform-
ing to an RDF representation. The RDF graph representation of the remote sensing

https://pypi.org/project/Shapely
https://pypi.org/project/rasterio
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scene consists of triples corresponding to land-use/land-cover regions in the scene with
their geometries and other spatial information stored in accordance with the GeoRDF (
https://www.w3.org/wiki/GeoRDF) standard by the W3C and the proposed Remote
Sensing Scene Ontology (RSSO).

2.2. Semantic Enrichment Layer

Description Logic (DL) forms the fundamental building block of formalizing knowl-
edge representation. It also forms the basis of the Web Ontology Language (OWL) used
to construct ontologies. The Sem-RSSU framework proposes the formalization of remote
sensing scene knowledge through the development of the Remote Sensing Scene Ontology
(RSSO) and the contextual Flood Scene Ontology (FSO). The DL-based axioms discussed in
this section were encoded in the proposed ontologies, to facilitate inferencing of implicit
knowledge from the remote sensing scenes.

The Semantic Enrichment layer was structured in a multi-tier manner, to facilitate
hierarchical semantic enrichment of the RDF graph representation of the remote sensing
scenes to generate enriched Remote Sensing Scene Knowledge Graphs (RSS-KGs).

The Remote Sensing Scene Ontology (RSSO) enriches the RDF data by inferring
spatial–topological and directional relationships between the land-use/land-cover regions,
thereby facilitating generation of Remote Sensing Scene Knowledge Graphs (RSS-KGs).
The KGs are further enriched with contextual concepts and relationships with the Flood
Scene Ontology, a domain knowledge encompassing ontology that formalizes the concepts
and relationships proliferating during the flood scenario. The enriched KGs are further
aggregated contextually from a remote sensing scene description standpoint with the
Spatio-Contextual Triple Aggregation algorithm.

An ontology-based deductive reasoner facilitates the enrichment of knowledge graphs
at every tier. Figure 3 represents the multi-tier architecture of the Semantic Reasoning
layer. The multi-tier approach of semantic enrichment in the form of spatial, contextual
and aggregated knowledge enables (1) modularity and (2) extensibility, thus rendering the
architecture amenable for scaling and integration with other data sources (e.g., GeoNames,
UK Ordnance Survey, etc.) for other remote-sensing applications.

Figure 3. Multi-tier architecture of the Semantic Reasoning layer depicting semantic enrichment.

https://www.w3.org/wiki/GeoRDF
https://www.w3.org/wiki/GeoRDF
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The figure also depicts an example of the hierarchical knowledge graph enrichment
process as it propagates upwards to the Natural Language Processing layer. In the Data
Mediation layer, the instances of vehicles and a road are represented using the Resource
Description Framework (RDF) as a graph representation of the remote sensing scene. The
graph representation in RDF form is propagated to the Spatial Knowledge Enrichment
layer where the RSSO enriches and transforms it into a knowledge graph by inferring
spatial–topological and directional relationships between the instances. The “geo:ntpp”
Non-Tangential Proper Part topological relationship from RCC8 is inferred at this stage.
The knowledge graph is further propagated upward for Contextual Enrichment using the
FSO. In this layer, the contextual relationship “on” is inferred and the “road” instance is
further specialized to a “unaffected road” class instance. Furthermore, the knowledge
graph is aggregated using Spatio-Contextual Triple Aggregation for scene description
rendering where the numerous vehicle instances “on” the road are aggregated and a
“traffic congestion” class instance is inferred.

2.2.1. Semantic Data Modeling in Sem-RSSU

The Sem-RSSU framework formalizes the representation of remote sensing scenes
in the form of knowledge graphs through the development of ontologies. It utilizes the
developed ontologies for knowledge enrichment in a modular and hierarchical form to be
amenable for integration and extension for other remote sensing applications.

Ontology Development for Spatial Semantic Enrichment

The Remote Sensing Scene Ontology (RSSO) was developed to translate the RDF
data representation of remote sensing scenes to knowledge graphs by inferring spatial–
topological and directional concepts and relationships between the identified regions. The
ontology formalizes the semantics of a generic remote sensing scene captured by a remote
sensing platform. To gauge the reliability of a remote-sensing data product and ascer-
tain its origin, the metadata bundled with the data product plays a crucial role. In that
regard, the RSSO defines classes, Object and Data Properties to model the metadata of a
remote sensing scene to establish comprehensive data lineage. The Data Properties “has-
GroundSamplingDistance”, “hasProjection”, enumerateBands”, “hasResamplingMethod”,
“hasSpectralBands”, “hasAcquisitionDateTime”, etc., along with the specifics of the remote-
sensing platform stored in Object Properties collectively model the metadata of the scene.

The Anderson Land-Use/Land-Cover Classification system was used as a reference
to model the LULC classes in the RSSO. Figure 4a depicts the Classes Hierarchy, Data
Properties and the Object Properties in the RSSO. The object properties were used to model
and capture the topological and directional relationships between instances of different
land-use/land-cover regions. Figure 4b depicts the visualization of an instance of class
“scene” and “Scene256” captured by “GeoEye-01” which is an instance of class “satellite”
that is a “RemoteSensingPlatform”. A “scene” class instance has a relation with “region”
class instances through the object property “hasRegions”. Thus, a scene has multiple
regions within it, with each of the regions having a LULC associated with it through the
“hasLULC” Data Property. Figure 5 depicts a snippet of the Scene Knowledge Graph
represented in the Resource Description Framework (RDF) form for a region “R40” in a
remote sensing scene.
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Figure 4. (a) Snapshot of the Classes Hierarchy, Object and Data Properties in the Remote Sensing Scene Ontology (RSSO)
extending the GeoSPARQL ontology. (b) Visualization of a scene instance captured by the GeoEye-01 Satellite as modeled
in the Remote Sensing Scene Ontology (RSSO).

Figure 5. Snippet of the Scene Knowledge Graph represented in the Resource Description Framework (RDF) form for a
region in the remote sensing scene.

Modeling Topological Relationships in RSSO

The RSSO builds over the OGC standardized GeoSPARQL ontology that formalizes
representation of spatial objects and their topological relationships in the form of geospatial
RDF data. The GeoSPARQL ontology enables the use of Geographic Markup Language
(GML) based and Well-Known Text (WKT) Literals for representing geometries of spatial
objects. It also defines vocabularies for topological relationships including Egenhofer [25]
and RCC8 [26] relationships. The RSSO thus reuses the RCC8 relationships defined in the
GeoSPARQL standard by referencing it with the prefix “geo”.

The RSSO defines topological relationships as depicted in Figure 6, for regions in
remote sensing scenes and establishes an equality with its GeoSPARQL counterparts, using
the owl:sameAs construct.
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Figure 6. Region Connection Calculus 8 with corresponding GeoSPARQL topological vocabularies.

The following represents the formal expression of the externally connected topological
relationship along with its definition in English, as modeled in RSSO:

Externally Connected: A region a is externally connected to region b if the geometry
of a touches geometry of b. This is detected using the WKT representation of the
geometries with the sfTouches predicate of GeoSPARQL.

∀a∀b (hasGeometry(a, aGeom) ∧ hasGeometry(b, bGeom) ∧ asWKT(aGeom, aWKT) ∧ asWKT(bGeom, bWKT) ∧
sfTouches(aWKT, bWKT)→ externallyConnected(a, b))

(1)

The variables a and b in the expression are instances of the region class. The hasExact-
Geometry, sfTouches and externallyConnected are object properties defined in GeoSPARQL
and Remote Sensing Scene Ontology (RSSO). The asWKT is a Data Property defined in
the GeoSPARQL ontology. The expression depicts the conditions for the inferencing of the
externallyConnected property between region instances a and b.

Deductive rule-based reasoning involves the use of a reasoner with access to an
ontology containing the concepts and relationships defined in it. Rule-based reasoning
specific to an ontology can be implemented by (1) encoding the rules in the form of
Semantic Web Rule Language (SWRL) in the ontology and having the reasoner infer new
triples using the rules or (2) using GeoSPARQL to query and infer new triples. The above
query in Figure 7 depicts the GeoSPARQL-query-based implementation for inferring the
externallyConnected topological relationship.

Figure 7. GeoSPARQL query depicting inferencing of externally connected topological relationship,
using GeoSPARQL’s geof:sfTouches construct.
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Modeling Directional Relationships in RSSO

The RSSO models the four cardinal directions, North, South, East and West, and
four intercardinal directions, North-East, North-West, South-East and South-West, for
representing directional relationships between regions in a scene. It uses the projection-
based approach [27], using half-planes for representing the 4 cardinal and 4 intercardinal
directions. The relationships are formalized in the ontology using Semantic Web Rule
Language (SWRL).

The directional relationship between two regions in a scene represent their spatial
orientation with respect to one another. The two approaches [10] for computing the
directional relationships between regions in the spatial domain are the (1) Minimum
Bounding Rectangle (MBR)-based approach and (2) Centroid-based approach. The MBR
based approach utilizes a pair of coordinates—Lower Left and Upper Right—for each
region, to compute the directional relationship. The Centroid-based approach uses the
coordinates of the Centroid of a region to compute the directional relationship.

It was experimentally found that for high resolution remote sensing scenes, due to the
presence of numerous elongated and obliquely placed regions such as roads and buildings
in the scenes, the MBR based approach generated erroneous directional relationships in
contrast to the Centroid based approach using half-planes, which generated fairly good
results. Thus, RSSO adopts the Centroid-based approach using half-planes from projections
as depicted in Figure 8 for modeling directional relationships.

Figure 8. Projections-based approach using half-planes for cardinal and intercardinal directions, as
modeled in RSSO.

The following represents the formal expression of the East and West directional
relationship along with its definition in English, as modeled in RSSO:

East Direction: A region a is to the East of region b if the × coordinate of the
centroid of a is greater than the × coordinate of the centroid of b. It also entails
that region b is to the West of region a.

∀a∀b (hasCentroidX(a, aCX) ∧ hasCentroidX(b, bCX) ∧ greaterThan(aCX, bCX)→ East(a, b)) ∧West(b, a)) (2)

The variables a and b in the expression are instances of the region class. The hasCen-
troidX is a Data Property defined in RSSO for storing the X coordinate of the Centroid of
a region. The expression depicts the conditions for the inferencing of the East and West
directions between region instances a and b. Similarly, expressions for all the cardinal
directions were encoded as SWRL rules in the ontology. The following query in Figure 9,
depicts the GeoSPARQL-query-based implementation for inferencing of East and West
directional relationships. The East and West directions are defined as inverse properties of
one another using the owl:inverseOf construct in RSSO.
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Figure 9. GeoSPARQL query depicting inferencing of East and West directional relationship.

North-East Direction: A region a is to the North-East of region b if a is to the
North of b and a to the East of b.

∀a∀b (North(a, b) ∧ East(a, b)→ North-East(a, b)) (3)

Consequently, the intercardinal directions were defined as the union of individual
cardinal directions, as represented in Expression (3).

Ontology Development for Contextual Semantic Enrichment

The Flood Scene Ontology (FSO) introduced in Reference [28] was further improved
and enriched as a part of this study. The FSO extends the RSSO and was conceptualized to
consist of comprehensive domain knowledge of the flood disaster from the perspective
of remote sensing scene understanding. The ontology was developed for contextual
semantic enrichment of Scene Knowledge Graphs by defining context-specific concepts
and relationships proliferating during the flood scenario.

The FSO builds over the RSSO and formalizes specialized classes that are intended to
be inferred from remote sensing scenes of urban floods. The following are the formal ex-
pressions, along with their natural language definitions, for some of the specialized classes
that were encoded as SWRL rules in the ontology. Moreover, some of their corresponding
GeoSPARQL queries that can be used as an alternate implementation instead of SWRL
rules have been depicted.

Flooded Residential Building: A region is termed as “Flooded Residential Building”
as per FSO, if it is a region that has LULC as “Residential Building” and it is externally
connected with at least one region that has LULC as “Flood Water”.

∀a∀b (hasLULC(a, “ResidentialBuilding”) ∧ hasLULC(b, “FloodWater”)
∧ externallyConnected(a, b)→ hasInferredLULC(a, “FloodedResidentialBuilding”)
∧ isA(a, FloodedResidentialBuilding))

(4)

Accessible Residential Building: A region is termed as “Accessible Residential
Building” as per FSO, if it is a region that has LULC as “Flooded Residential Building”
and it is externally connected with at least one region that has LULC as “Unaffected
Road”. This class is envisaged to be of great importance from the perspective of
disaster management specially to develop standard operating procedures (SOPs)
for evacuations. Figure 11 depicts the corresponding GeoSPARQL query.

∀a∀b (hasInferredLULC(a, “FloodedResidentialBuilding”) ∧ hasInferredLULC(b,
“UnaffectedRoad”) externallyConnected(a, b)→ hasInferredLULC(a,
“AccessibleResidentialBuilding”) ∧ isA(a, AccessibleResidentialBuilding))

(5)
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Unaffected Residential Building: A region is termed as “Unaffected Residential
Building” as per FSO, if it is a region that has LULC as “Residential Building” and it
does not have an Inferred LULC as “Flooded Residential Building”.

∀a∀b (hasLULC(a, “ResidentialBuilding”) ∧¬ (hasInferredLULC(b,
“FloodedResidentialBuilding”))→ hasInferredLULC(a,“UnaffectedResidentialBuilding”)
∧ isA(a, UnaffectedResidentialBuilding))

(6)

Stranded Vehicle: A region is termed as “Stranded Vehicle” as per FSO, if it is a
region that has LULC as “Vehicle” and it is externally connected with at least one
region that has LULC as “Flood Water”.

∀a∀b (hasLULC(a, “Vehicle”) ∧ hasLULC(b,“FloodWater”) ∧ externallyConnected(a, b)
→ hasInferredLULC(a, “StrandedVehicle”) ∧ isA(a, StrandedVehicle))

(7)

Figure 10 depicts a snapshot of the classes formalized in the proposed Flood Scene Ontology
(FSO) that extends the proposed Remote Sensing Scene Ontology (RSSO).

Figure 10. Snapshot of the Classes Hierarchy of the Flood Scene Ontology (FSO) that extends the
Remote Sensing Scene Ontology (RSSO).



ISPRS Int. J. Geo-Inf. 2021, 10, 32 14 of 32

Figure 11. GeoSPARQL query depicting inferencing of “AccessibleResidentialBuilding” concept.

Spatio-Contextual Aggregation in Remote Sensing Scenes

A generic remote sensing scene consists of numerous individual regions depending
on the scale and resolution of the scene, with each region belonging to a particular LULC
class. A natural language scene description could entail to describe each of these individual
regions. However, a scene description describing every single region in the scene in natural
language would lead to severe information overload and would sabotage our primary
objective of enhanced situational awareness through scene descriptions. Thus, there arises
a need to aggregate regions in a way that conveys the necessary information pertaining
to the scene to a user in a comprehensive yet concise manner. It is evident from the
works of [29,30] in the area of human perception and psychology that we, humans, have
a natural inclination towards grouping objects in scenes based on our understanding of
their interactions (spatial and contextual) with one another. This phenomenon, termed as
“perceptual grouping”, was extended to regions in remote sensing scenes in the proposed
Spatio-Contextual Triple Aggregation algorithm, to alleviate the issue of information
overload. Reference [31] describes a methodology with a similar objective of discovering
groups of objects in generic multimedia images for scene understanding. However, they
propose a Hough-transform-based approach that automatically annotates object groups
in generic multimedia images with bounding boxes. The proposed Spatio-Contextual
Triple Aggregation algorithm groups triples in the semantically enriched Scene Knowledge
Graphs to generate aggregates that reference multiple regions in a scene that are spatially
and contextually similar.

The Flood Scene Ontology (FSO) defines aggregate classes on similar lines as the
contextual classes defined as children of the “region” class discussed earlier. However, the
instances of aggregate classes are intended to logically house multiple region class children
instances through the “hasCompositionOf” object property.

Figure 12 depicts some of the object properties of the FSO. The “hasCompositionOf”
object property has children properties for each of the corresponding class aggregates. For
example, an instance of class “FloodedResidentialBuildingAggregate” would have mul-
tiple instances of “FloodedResidentialBuilding” connected through the object property—
“hasFloodedResidentialBuilding”. Thus, these object properties would help in mapping
each of the aggregate instances to their component region instances. The “hasInferredAg-
gregateName” Data Property allows the FSO to add contextually relevant names for the
instance aggregates to use in the scene description. For example, multiple cars on a road
can be aggregated and referenced as “traffic” or simply “vehicles” in the scene description.
Such contextual knowledge from the perspective of remote sensing scene description was
encoded in the FSO through SWRL rules.
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Figure 12. Snapshot of the Aggregate Children Classes and Object Properties in the Flood Scene Ontology that facilitate
Spatio-Contextual Triple Aggregation.

The Sem-RSSU postulates the concept of Salient Region in a remote sensing scene.
A salient region is defined as a region of significant importance from a spatio-contextual
perspective in a scene. The concept of saliency proposed in Reference [32] was adapted to
the remote sensing scene context in Sem-RSSU. The selection of the salient region in a scene
depends on the saliency measures: (1) area it covers and (2) the LULC class it belongs to. A
remote sensing scene may or may not have a salient region in it. A scene can have at most
one salient region. The salient region is the primary region in the scene that is proposed to
act as a reference to describe all the other regions in the scene. This facilitates planning and
realization of the natural language scene description for the scene. In scenes that lack a
salient region, the regions are aggregated with reference to the entire scene itself and the
scene description is planned and realized accordingly.

The Salient Region Selection algorithm (Algorithm 1) facilitates the selection of the
salient region in the scene. The algorithm filters regions in the Scene Knowledge Graphs
based on the threshold value of area and the LULC set in the contextual Flood Scene
Ontology to select the most salient region. The Sem-RSSU was designed to be modular,
such that the contextual ontology (FSO in this case) houses the most relevant LULC and
the threshold area value for the salient region, depending on the application. In the urban
flood scenario from the perspective of remote sensing scene description, the “road” LULC
was selected to be the most relevant class. Figure 12 depicts the snapshot of the aggregate
classes and their corresponding object properties as formalized in the proposed Flood
Scene Ontology (FSO).
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Algorithm 1 Salient Region Selection

Input:
g: RS Scene Knowledge Graph
fso: Contextual Ontology—Flood Scene Ontology

Output:
sr: Salient Region

Constants:
SalientRegionLULC← LULC_Name—defined in Contextual Ontology—fso
SalientRegionAreaThreshold← Value—defined in Contextual Ontology—fso

1. function salientRegionSelection(g, fso)
2. Read g
3. Initialize SalientRegionCandidates: = []
4. Initialize SalientRegionCandidateAreas: = []
5. for Region in g:
6. if Region.LULC == SalientRegionLULC and
7. Region.Area > SalientRegionAreaThreshold then
8. SalientRegionCandidates.append(Region)
9. SalientRegionCandidateAreas.append(Region.Area)
10. else
11. sr: = 0
12. return sr
13. maxArea: = max(SalientRegionCandidateAreas)
14. maxAreainde: = SalientRegionCandidateAreas.index(maxArea)
15. sr: = SalientRegionCandidates[maxAreaindex]
16. return sr
17. end

Figure 13 depicts the visualization of a Spatio-Contextual Triple Aggregate (Algorithm 2)
generated by the algorithm in the remote sensing scene. The algorithm aggregated all
the regions with Inferred LULC as “FloodedResidentialBuilding” that are to the “West”
direction of the salient region with Inferred LULC as “UnaffectedRoad”. Thus, the regions
visualized in red belong to a Spatio-Contextual Triple Aggregate with its “hasAggLULC”
Data Property set to “FloodedResidentialBuildings”. This mapping of aggregates to their
individual composition regions with the “hasCompositionOf” object property facilitates
grounded scene description rendering.

Figure 13. (a) Remote sensing scene captured during an urban flood. (b) Spatio-Contextual Triple
Aggregate in the scene formed by aggregating spatial and contextual semantics—buildings (triples)
that are flooded (contextual) and are to the West direction (spatial) of the road that is unaffected
(contextual) by the flood.
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Algorithm 2 Spatio-Contextual Triple Aggregation

Input:
g: RS Scene Knowledge Graph
sr: Salient Region
rsso: Spatial Ontology—Remote Sensing Scene Ontology
fso: Contextual Ontology—Flood Scene Ontology

Output:
g′: Enriched Scene Knowledge Graph with Spatio-Contextual Aggregates of LULC
Regions

Constants:
LeafNodes_LULC_Classes_List← All Inferred LULC Class Names
- defined in Contextual Ontology—fso
LeafNodes_SpatialRelations_List← All Inferred Spatial Relationships
Topological and Directional (Object Properties)
- defined in Spatial Ontology—rsso
- defined in Contextual Ontology—fso

1. function spatioContextualTripleAggregation(g, sr, rsso, fso)
2. Read g
3. g′:= g
4. for RegionLULC in LeafNodes_LULC_Classes_List:
5. for SpatialRelation in LeafNodes_SpatialRelations_List:
6. Initialize SCAggregate = []
7. for Region in g′:
8. if Triple <Region, SpatialRelation, sr> in g′ and
9. Region.hasInferredLULC == Region.LULC then
10. SCAggregate.append(Region)
11. if len(SCAggregate) > 1 then
12. Insert Triple <sr, SpatialRelation, SCAggregate> into g′

13. Insert Triple <SCAggregate, hasAggLULC, RegionLULC> into g′

14. for Region in SCAggregate:
15. Insert Triple <SCAggretate, hasCompositionOf, Region> into g′

16. return g′

17. end

2.3. Natural Language Processing Layer

Most state-of-the-art research [33–35] in image captioning deals with describing an
image with a single sentence. This is feasible due to the fact that the images used in these
studies are generic multimedia images and can be adequately summarized with a single
sentence. Recent research [12,13,17] in the area of remote sensing image captioning deals
with describing a scene in a single sentence, however such description is not comprehensive
and does not convey the context of the scene in its entirety. Remote sensing scenes contain
numerous objects of importance that spatially interact with each other, and thus cannot be
comprehensively summarized in a single sentence. Moreover, in remote sensing scenes,
the context of the event when the scene was captured plays a crucial role in the scene
description. A simple existential description merely informing the existence of all the
objects in a scene is undesirable too. Instead a detailed contextual description of the objects
in a scene based on their directional and topological interaction with one another from a
contextual perspective of the event is desirable. The Natural Language Processing (NLP)
layer of the Sem-RSSU framework was designed to meet this objective of comprehensive
explainable and grounded spatio-contextual scene descriptions in natural language.

The Scene Knowledge Graph enriched with spatial and contextual semantics and
having been aggregated by the Spatio-Contextual Triple Aggregation algorithm serves
as an input to the Natural Language Processing layer. The individual tasks, as identified
by Reference [36], for a generic natural language generation system comprise (1) content
determination, (2) document structuring, (3) aggregation, (4) lexicalization, (5) expression
generation and (6) realization. The natural language generation for scene descriptions in
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Sem-RSSU loosely follows this approach. The Semantic Enrichment layer in Sem-RSSU
inherently performs the tasks of content determination and document structuring by gen-
erating and enriching the Scene Knowledge Graph. The Spatio-Contextual Aggregation
algorithm in the Semantic Enrichment layer further aggregates the graph for scene de-
scription rendering, thus performing aggregation as one of the NLG tasks. The tasks of
Lexicalization, Expression Generation and Realization are performed as a part of the NLP
layer in Sem-RSSU through the Grounded Scene Description Planning and Realization
(GSDPR) algorithm (Algorithm 3).

The proposed Grounded Scene Description Planning and Realization (GSDPR) is
the primary algorithm that is geared towards describing the regions in the scene from a
spatio-contextual perspective with the salient region as a reference, using a template-based
approach. The orientation of the salient region is initially determined with Salient Region
Orientation Detection algorithm (Algorithm 4). It provides the primary algorithm with
the information whether the salient region is oriented in the North-South or East-West
direction. This is determined using the coordinates of the bounding box of the salient
region geometry. This information is crucial while describing other regions in the scene
with reference to the salient region.

The GSDPR algorithm initially checks for the existence of the salient region (SR) in the
Scene Knowledge Graph. On detection of the SR, it detects its orientation. Depending on the
orientation of the SR, it further proceeds to describe the Spatio-Contextual Triple Aggregates
(determined in the Semantic Enrichment layer) against the directional orientation of the
SR. If the algorithm detects that a Scene Knowledge Graph lacks a salient region, then it
proceeds ahead in a similar fashion considering the entire scene geometry as a salient region
and describing the regions with reference to the scene itself. For example, with a salient
region “UnaffectedRoad” oriented in the “North-South” direction, All the other regions
such as “FloodedResidentialBuildings”, “StrandedVehicles”, “FloodedVegetation”, etc., are
described in reference to the “UnaffectedRoad” with the “East-West” direction. However,
the triple aggregates whose geometry intersects with the geometry of salient region, are
described along the direction of the SR orientation. For example, “Vehicles” or “Traffic” on
the “UnaffectedRoad” oriented in the “North-South” direction, would be described in the
“North-South” direction as well. These conditions, although specific, seem to generalize
well for remote sensing scenes. The “describe” function in the GSDPR algorithm uses a
templating mechanism based on the proposed Remote Sensing Scene Description Grammar
G. It returns a sentence with appropriate natural language constructs describing the input
triples passed to it. The “VisualizeAndMap” function is responsible for the visualization
of color-coded regions mapping to the sentences generated by the “describe” function.
This is implemented by visualizing the geometries of individual regions belonging to
Spatio-Contextual Triple Aggregate mapped by the “hasCompositonOf” object property
in the Scene Knowledge Graph. Thus, atomically describing the Spatio-Contextual Triple
Aggregates and mapping their constituent regions aids in rendering grounded natural
language scene descriptions.
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Algorithm 3 Grounded Scene Description Planning and Realization

Input:
g: RS Scene Knowledge Graph
rsso: Spatial Ontology—RS Scene Ontology
fso: Contextual Ontology—Flood Scene Ontology

Output:
sd: List of Natural Language Sentences as Scene Description
groundedRegions: List of Grounded Regions Geometries corresponding to generated Natural
Language Scene Description

Constants:
LeafNodes_LULC_Classes_List← All Inferred LULC Class Names

- defined in Contextual Ontology—fso
EWDir← [“East”, “West”]

- defined in Spatial Ontology—rsso
NSDir← [“North”, “South”]

-defined in Spatial Ontology—rsso
1. function SceneDescriptionPlanAndRealization(g, rsso, fso, rssao)
2. Read g
3. sr: = salientRegionSelection(g, fso)
4. if len(sr) > 0 then
5. //Case with 1 Salient Region
6. srOrientation: = salientRegionOrientationDetection(g, sr)
7. if srOrientation == ‘NS’ then
8. alongSROrientation: = NSDir
9. againstSROrientation: = EWDir
10. else
11. alongSROrientation: = EWDir
12. againstSROrientation: = NSDir
13. sd.append(describe(sr))
14. groundedRegions.append(visualizeAndMap(sr))
15. g′ = spatioContextualTripleAggregation(g, sr, rsso, fso)
16. for SCTripleAggregate in g′:
17. //Check if the SCTripleAggregate intersects with SalientRegion
18. if ntpp(SCTripleAggregate.geometry, sr.geometry):
19. direction: = alongSROrientation
20. else:
21. direction: = againstSROrientation
22. for currentLULC in LeafNodes_LULC_Classes_List:
23. //Check if SCTripleAggregate has currentLULC and is oriented in direction w.r.t. SR
24. //If found then -
25. sd.append(describe(SCTripleAggregate, direction, sr))
26. groundedRegions.append(visualizeAndMap(SCTripleAggregate))
27. else:
28. //Case with 0 Salient Region
29. sr: = “thisScene”
30. g′ = spatioContextualTripleAggregation(g, sr, rsso, fso)
31. for SCTripleAggregate in g′:
32. for currentLULC in LeafNodes_LULC_Classes_List:
33. //Check if SCTripleAggregate has currentLULC and is oriented in each of the Cardinal
34. Directions w.r.t SR—Scene
35. //If found then
36. sd.append(describe(SCTripleAggregate, CardinalDirection, sr))
37. groundedRegions.append(visualizeAndMap(SCTripleAggregate))
38. end;
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Algorithm 4 Salient Region Orientation Detection

Input:
g: RS Scene Knowledge Graph
sr: Salient Region

Output:
orientation: Salient Region Orientation

1. function salientRegionOrientationDetection(g, sr)
2. Read g
3. Get BoundingBox Coordinates—LLX, LLY, URX and URY from g
4. Compute size of the Horizontal Side as horizontal and Vertical Side as vertical of the
5. Bounding Box
6. if horizontal > vertical then
7. orientation = “EW”
8. else
9. orientation = “NS”
10. return orientation
11. end

The algorithms developed in this research were implemented in Python. The RDFLib
python library was used for facilitating the use of GeoSPARQL over the generated Scene
Knowledge Graphs. Shapely, Descartes and Matplotlib libraries were used for rendering
geometry visualizations for grounded scene descriptions.

The natural language scene descriptions generated by the NLP layer in Sem-RSSU con-
form to the following Remote Sensing Scene Description Grammar G. G is a Context-Free
Grammar (CFG) in the research area of linguistics and is used to generate restricted lan-
guages. The grammar defines production rules specific to remote sensing scene description
application context using the parameters T, N, S and R (Algorithm 5).

The natural language scene description of remote sensing scenes generated by G can
be defined as follows:

L(G) = {x є T* | S⇒* x} (8)

The grammar is invoked for every call to the “describe” function in the GSDPR
algorithm. Thus, the natural language scene descriptions rendered by Sem-RSSU for
remote sensing scenes can be derived and verified by parsing the proposed Remote Sensing
Scene Description Grammar G.

The Rendering layer involves the generated Natural Language Scene Description in
text form and its corresponding color-coded visualization depicting grounded mappings of
the sentences in the description to the regions in the scene. This reinforces the explainability
of the generated scene descriptions by Sem-RSSU. The figure below depicts the front-end
of a web-based application implementing the Sem-RSSU framework to browse, preview,
render grounded scene descriptions, query and visualize remote sensing scenes.

The web-based application depicted in Figure 14, uses Python with RDFLib and GraphDB
triple-store at the back-end with REST based API calls originating from the user interactions
and renders the scene descriptions, responses and visualizations over the web page.
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Algorithm 5 Remote Sensing Scene Description Grammar G

G = (T, N, S, R)

T is a finite alphabet of Terminals
N is a finite set of Non-Terminals
S is the Start Symbol and S є N
R is the finite set of Production Rules of the form N→ (N ∪ T)*

T = {flooded buildings, accessible buildings, unaffected buildings, unaffected roads, vehicles, stranded
vehicles, traffic, flooded vegetation, unaffected vegetation, road, scene, spread across, to the, of, on, east,
west, north, south, there, the, a, an, is, are}
N = {ZeroSalientRegion, OneSalientRegion, DescribeSalientRegion, Pronoun, AuxiliaryVerb, Article,
SalientRegion, DescribeSpatioContextualAggregate, SpatialReference, DirectionalReference}

S = DescriptionSentence

R = {
<DescriptionSentence>→ <ZeroSalientRegion> | <OneSalientRegion>
<OneSalientRegion>→ <DescribeSalientRegion> | <DescribeSpatioContextualAggregate>
<ZeroSalientRegion>→ <DescribeSpatioContextualAggregate>
<DescribeSalientRegion>→ <Pronoun> <AuxiliaryVerb> <Article> <SalientRegion>
<DescribeSpatioContextualAggregate>→ <Pronoun> <AuxiliaryVerb>
<SpatioContextualAggregates> <SpatialReference> . <SalientRegion>
<SpatioContextualAggregates>→ flooded buildings | accessible buildings | unaffected buildings |
unaffected roads | vehicles | stranded vehicles | traffic | flooded vegetation | unaffected vegetation
<SalientRegion>→ road | scene
<SpatialReference>→ spread across <Article> | to the <DirectionalReference> of <Article> | on
<Article>
<DirectionalReference>→ east | west | north | south
<Pronoun>→ there
<Article>→ the | a | an
<AuxiliaryVerb>→ is | are
}

Figure 14. Web-based application front-end implementing the Sem-RSSU framework.
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3. Experimental Setup and Results

The Sem-RSSU framework was designed and implemented to enhance the situational
awareness from remote sensing scenes through the rendering of grounded spatio-contextual
scene descriptions in natural language. Having realized the importance of enhanced situa-
tional awareness from remote sensing scenes during a dynamic disaster, such as a flood, we
selected it as the test scenario for demonstrating the utility of Sem-RSSU. This section discusses
the dataset and the results obtained including multi-class segmentation of remote sensing
scenes and the grounded natural language scene description rendered by Sem-RSSU. It also
discusses the different evaluation strategies employed to evaluate Sem-RSSU at different
stages in the framework. The section concludes with a brief discussion of the results obtained
with the framework, analysis, observations and scope of improvement for Sem-RSSU.

3.1. Data Description

Multispectral and Panchromatic satellite imagery captured by WorldView-2, with
a ground sampling distance of 0.5 m of the Srinagar area in India, during the floods of
September 2014, was used for this work. Pansharpening operation was performed to fuse
the two satellite products—panchromatic and multispectral—and the resultant imagery
was selected to be used by Sem-RSSU. The satellite imagery spanning over an area of 25
sq. km on the ground was split into 512 × 512 pixel sized scenes to be used by Sem-RSSU
framework for grounded spatio-contextual scene description rendering. Figure 15 depicts
a couple of satellite scenes from the selected dataset. The training data required for multi-
class segmentation of the scene, to be consumed by the neural network, were generated by
annotating the satellite imagery.

Figure 15. Remote sensing scenes depicting urban floods captured by WorldView-2 of Sringar, India,
during the floods of September 2014.

The annotation of satellite imagery was performed manually in accordance with the prin-
ciples of remote sensing image interpretation. A total of seven classes—“ResidentialBuilding”,
“Road”, “Shrub”, “Shadow”, “FloodWater”, “Vehicle” and “FallowLand”—were selected
to be annotated for multi-class segmentation of the urban floods dataset. A collection of
150 annotated scenes was considered for this study. The data split of 70% and 30% was used
for training and validation of the deep learning models. Figure 16 depicts a satellite scene
from the dataset, with its corresponding annotated ground truth.
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Figure 16. Urban flood satellite scene with its corresponding annotated ground truth.

3.2. Results and Evaluation

The experimental results and their corresponding evaluations for the different stages
in the Sem-RSSU framework are discussed in this section.

3.2.1. Multi-Class Segmentation Results of Urban Flood Scenes

Different state-of-the-art deep-learning architectures were experimented with for
multi-class segmentation of the urban floods dataset. The deep neural network models
were re-trained from scratch over the annotated urban floods dataset without using any
pre-trained model weights. The evaluation metrics of Intersection over Union (IoU)—class-
wise, mean and frequency-weighted IoU—were used, in addition to the overall accuracy,
to evaluate the models.

From the experiments, it was found that the SegNet, with ResNet as its backbone in the
deep neural network architecture, produced the best overall accuracy, 89.74%, while SegNet
with VGG-16 as its backbone produced the best mean IoU and frequency-weighted IoU of
0.5299 and 0.6702, respectively. Figure 17 depicts the result of multi-class segmentation as
predicted by the SegNet with ResNet architecture.

Figure 17. (a) Remote sensing scene of urban floods. (b) Manually annotated ground truth for the scene. (c) Multi-class
segmentation result predicted by using SegNet with ResNet architecture.

From the consistent lower values of class-wise IoU in Table 1 for the “Vehicle” class for
all the deep-learning architectures, it is evident that it is the most difficult to predict, given
the small number of pixels for it in the training data. Similarly, from the consistent higher
values of class-wise IoU for the “ResidentialBuildings” and the “FloodWater” classes, these
classes are relatively easier for the deep neural networks to predict given their distinct
spectral signature and relatively higher number of pixels in the training data. The neural
network architectures was implemented in Python, using the Keras deep-learning library.
The models were iteratively trained and validated over Nvidia Tesla P100 GPU.
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Table 1. Class-wise and overall evaluation of the deep-learning-based multi-class segmentation over urban-floods remote
sensing scenes.

Model

Class-Wise IoU Overall

Residential
Building Road Flood

Water Shrub Shadow Vehicle Fallow
Land

Mean
IoU

Frequency-
Weighted

IoU
Accuracy

U-Net with
VGG 0.421 0.102 0.406 0.646 0.39 0.0042 0.125 0.299 0.429 0.762

U-Net with
ResNet 0.606 0.185 0.465 0.595 0.442 0.0006 0.028 0.332 0.502 0.8085

FCN with VGG 0.491 0.4756 0.5838 0.6152 0.3429 0.0055 0.2216 0.3908 0.52.8 0.7772

FCN with
ResNet 0.4705 0.3556 0.5271 0.5733 0.2861 0.0081 0.009 0.3185 0.4711 0.7432

PSPNet with
VGG 0.5801 0.5748 0.4836 0.3699 0.3149 0.0019 0.3328 0.3797 0.4739 0.8224

PSPNet with
ResNet 0.5497 0.6154 0.634 0.5715 0.2798 0.0419 0.3716 0.4377 0.5507 0.8279

SegNet with
VGG 0.6572 0.6415 0.7918 0.6669 0.3806 0.0018 0.5696 0.5299 0.6702 0.8625

SegNet with
ResNet 0.5512 0.4232 0.5728 0.5936 0.3751 0.00129 0.1578 0.382 0.5304 0.8974

3.2.2. Evaluation of Ontologies in Sem-RSSU

The Remote Sensing Scene Ontology (RSSO) and the Flood Scene Ontology were
proposed and extensively used in the Sem-RSSU framework. The ontologies conform
to the principle of clarity. They were designed for use in the domain of remote sensing
scene understanding and use commonly used relevant terms for concepts and relationships
in this domain. The ontologies conform to the principle of coherence. This is validated
by visualization of inferred statements (region triples) as geometries in Sem-RSSU thus
indicating correctness of the statements. The ontologies are extendible. This is reinforced by
the fact that the Flood Scene Ontology itself extends the Remote Sensing Scene Ontology.
The Flood Scene Ontology too can be extended and re-used for another application scenario.
The ontologies exhibit minimum encoding bias. The ontologies were tested and found to be
amenable for being consumed by different libraries for inferencing. The ontologies observe
minimum ontological commitment, thereby enabling application developers to build, extend
and reuse them in their applications. Thus, the ontologies were evaluated against and were
found to satisfy the principles of ontology design proposed by Reference [37]. The ontologies
were developed by using Protégé (https://protege.stanford.edu/) Ontology Editor.

3.2.3. Grounded Spatio-Contextual Natural Language Scene Description Rendering

Figures 1 and 18 depict some of the natural language scene descriptions generated by
Sem-RSSU, along with the remote sensing scenes and corresponding grounded visualiza-
tions. Sem-RSSU renders grounded mappings visualizations by color-coding the regions,
to match their corresponding sentences in the scene descriptions.

https://protege.stanford.edu/
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Figure 18. Conts.
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Figure 18. Remote sensing scenes with their corresponding grounded mapping visualizations and scene descriptions, as
rendered by Sem-RSSU.

3.2.4. Evaluation of Grounded Spatio-Contextual Natural Language Scene Descriptions

To the best of our knowledge, this research is the first of its kind in rendering comprehen-
sive spatio-contextual scene descriptions from remote sensing scenes. Existing research studies
in this area do not address this issue of comprehensive scene descriptions. In that regard, there
is a lack of benchmark datasets involving remote sensing scenes with their corresponding
comprehensive multi-sentence scene descriptions. Due to this shortcoming, this research
validates the Sem-RSSU framework against a validation dataset of urban flood scenes with
their corresponding manually transcribed scene descriptions. For comprehensive evaluation
of the generated grounded natural language scene descriptions, they were evaluated by using
a two-pronged strategy: (1) Automatic Evaluations, using widely accepted evaluation metrics,
such as Bilingual Evaluation Understudy (BLEU) [38], Metric for Evaluation of Translation
with Explicit Ordering (METEOR) [39], ROUGE_L [40] and Consensus-based Image Descrip-
tion Evaluation (CIDEr) [41]; and (2) Human Evaluations, using a set of proposed evaluation
metrics to account for naturalness and quality in the scene descriptions.

Automatic Evaluations for Spatio-Contextual Natural Language Scene Descriptions

A corpus of remote sensing scenes from the urban flood dataset was selected for
manually transcribing the scene description of scenes for the purpose of evaluation. This
corpus of 50 remote sensing scenes and their corresponding manually generated scene
description was used for Automatic Evaluation of the natural language scene descriptions
generated by Sem-RSSU.

The Bilingual Evaluation Understudy (BLEU) computes a modified version of precision
for quantifying the similarity between the machine generated text and reference text. The
BLUE_1 to BLEU_4 refer to the n gram overlap between the machine generated text and the
reference text. The Metric for Evaluation of Translation with Explicit Ordering (METEOR)
computes the similarity between the texts based on harmonic mean of one-gram precision
and recall. The Recall-Oriented Understudy for Gisting Evaluation (ROGUE_L) computes
similarity between texts based on the longest common subsequence; while the Consensus-
based Image Description Evaluation (CIDEr) quantifies the consensus of image captions by
taking into account the precision and recall in addition to using the TF-IDF for every n-gram.

Table 2 depicts the evaluation metric scores for the scene descriptions generated by
Sem-RSSU for the urban flood dataset. From the table, it is evident that the Sem-RSSU with
Segnet consistently produces the highest scores for all evaluation metrics. This correlates
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well with the fact that the SegNet architecture produces the best accuracy and IoU for
multi-class segmentation. Thus, it is evident that multi-class segmentation impacts the
quality of the scene descriptions generated by Sem-RSSU.

Table 2. Automatic Evaluation metrics for natural language scene description rendering.

BLEU_1 BLEU_2 BLEU_3 BLEU_4 METEOR ROUGE_L CIDEr

Sem-RSSU
with UNet 0.3975 0.3635 0.3352 0.3087 0.2288 0.5169 0.1177

Sem-RSSU
with FCN 0.6145 0.5723 0.5215 0.4812 0.4056 0.5945 1.1687

Sem-RSSU
with PSPNet 0.6287 0.5793 0.5284 0.4798 0.3946 0.6428 1.4586

Sem-RSSU
with SegNet 0.6395 0.5822 0.5343 0.4853 0.3987 0.6468 1.5776

Human Evaluation of Grounded Spatio-Contextual Natural Language Scene Descriptions

The Human Evaluation of the grounded spatio-contextual natural language scene
descriptions was performed by using a scale-based approach, where human participants
were asked to score the scene descriptions rendered by Sem-RSSU based on several pa-
rameters. For evaluating the scene descriptions comprehensively, the Human Evaluation
was performed in two stages: (1) Subjective Evaluation of the Spatio-Contextual Natural
Language Scene Descriptions, focusing on Natural Language Constructs and Readability,
and (2) Subjective Evaluation of Grounded Mappings and Spatio-Contextual Information
conveyed in the Scene Descriptions. The scores in the tables below were graded indi-
vidually for the corpus of 50 remote sensing scenes by a group of seven remote-sensing
researchers at IIT Bombay. The researchers are experienced and adept in the domain of
remote sensing image interpretation and have full professional proficiency in English
language. The scores graded by the human participants were averaged and scaled to range
from 0 to 1 for uniformity.

Subjective Evaluation of the Spatio-Contextual Natural Language Scene Descriptions

The parameters [42] readability, accuracy, adequacy and relevance were selected for
subjective evaluation of the scene descriptions. Readability accounts for the naturalness
of the descriptions while accuracy or correctness, adequacy and relevance account for
informativeness in the scene descriptions. From the Table 3, it is evident that the scene
descriptions generated by Sem-RSSU were largely deemed as readable and accurate by the
human participants, however the adequacy and relevance seemed fair to the participants.

Table 3. Human Evaluation metrics for natural language scene description rendering.

Readability Accuracy Adequacy Relevance

Sem-RSSU with SegNet 0.875 0.8 0.7 0.725

Subjective Evaluation of Grounded Mappings and Spatio-Contextual Information

The subjective evaluation of grounded mappings and spatio-contextual information
led to the development of requirement specific parameters for evaluation of remote sensing
scene descriptions. The generic evaluation parameters to gauge the quality of descriptions
in the research area of natural language generation—adequacy and accuracy or correctness—
were modified to suit the context of remote sensing scene descriptions. The proposed
parameters with their definitions as displayed to the human participants are as follows:

Grounding Correctness: the accuracy or correctness of the mappings between the
regions in the scene and the sentences in the scene description for the remote sensing scene.
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Directional Correctness: the accuracy or correctness of the cardinal directions with respect
to the reference region mentioned in the scene description for the remote sensing scene.

Contextual Correctness: the accuracy or correctness of the context conveyed by the
scene description for the remote sensing scene.

Topological Correctness: the accuracy or correctness of the topological relations
between the regions mentioned in the scene description for the remote sensing scene.

Grounding Adequacy: the adequacy of the mappings between the regions in the
scene and the sentences in the scene description to comprehensively describe the remote
sensing scene.

Directional Adequacy: the adequacy of the directional relations between the regions
mentioned in the scene description to comprehensively describe the directions in the remote
sensing scene.

Contextual Adequacy: the adequacy of the context mentioned in the scene description
to comprehensively convey the context of the remote sensing scene.

Topological Adequacy: the adequacy of the topological relations between the regions
mentioned in the scene description to comprehensively describe the topology of the remote
sensing scene.

From the scores in Table 4, it is evident that grounding, context and topology were
aptly conveyed in the scene descriptions generated by Sem-RSSU however the overall
consensus in terms of directional relationships in the scene descriptions is fair as scored by
the human participants.

Table 4. Human Evaluation metrics for grounded natural language scene description rendering.

Grounding
Correct-

ness

Directional
Correct-

ness

Contextual
Correct-

ness

Topological
Correct-

ness

Grounding
Adequacy

Directional
Adequacy

Contextual
Adequacy

Topological
Adequacy

Sem-RSSU
with

SegNet
0.92 0.7 0.82 0.85 0.85 0.72 0.85 0.87

4. Discussion

The Sem-RSSU framework was meticulously evaluated by using relevant evaluation
strategies at different stages of its operation. The multi-class segmentation of remote sensing
scenes for the urban flood dataset in the Data Mediation layer of the framework was imple-
mented by experimenting with different state-of-the-art deep neural network architectures.
From the experiments, it was observed that the SegNet architecture with ResNet backbone
produces the best results over the urban floods dataset in terms of accuracy and mean IoU.
From the experiments, it was found that the Sem-RSSU framework is best suited for Very
High Resolution remote sensing scenes considering the importance of effective multi-class
segmentation in the framework. However, it was also noted that minor inaccuracies in the
classification map generated by the segmentation component did not have a significant
impact on the natural language scene descriptions, primarily due to the Spatio-Contextual
Triple Aggregation algorithm, which groups multiple objects in a scene as “aggregates” based
on their spatio-contextual relationship with the salient region. The ontologies Remote Sensing
Scene Ontology and the Flood Scene Ontology, used extensively in Sem-RSSU, were evalu-
ated in accordance with the principles of Ontology Design, as proposed by Reference [37].
The grounded spatio-contextual scene descriptions rendered by the Sem-RSSU were exten-
sively evaluated by using a two-pronged strategy—Automatic Evaluations (Objective) and
Human Evaluations (Subjective). The metrics BLEU, METEOR, ROGUE_L and CIDEr were
employed for evaluation of the scene descriptions generated by Sem-RSSU with different
deep neural network architectures for multi-class segmentation. It was observed that the
Automatic Evaluation metrics consistently scored the highest for the SegNet with ResNet
architecture, thus reinforcing the significance of multi-class segmentation. It should be noted
that the Sem-RSSU framework was designed in a layered manner to be modular and can thus
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facilitate use of any state-of-the-art approach for multi-class segmentation for best results.
The Human Evaluation of the rendered scene descriptions show promising results however
they do highlight the minor imperfections in terms of adequacy and relevance specific to the
directional relationships conveyed in the descriptions.

From the experimental analysis, it is understood that the directional relationships
inferred by Sem-RSSU are imperfect in cases involving elongated and irregular regions due
to the use of the centroid based approach in inferencing of directional relationships in the
Semantic Enrichment layer. A more robust approach that takes into account the holistic
geometries of regions needs to be researched on for inferencing of directional relationships.
The Sem-RSSU at its core uses the Spatio-Contextual Triple Aggregation and the Grounded
Scene Description Planning and Realization algorithms. The latter relies on a templating
mechanism to generate natural language scene descriptions from the aggregated triples, the
salient region and the directional information passed to it. Considering the limited number
of natural language constructs necessary for comprehensively describing remote sensing
scenes, a template-based approach seemed prudent for the development of Sem-RSSU
framework. However, with Neural Machine Translation approaches being widely used, it
would be intriguing to explore a neural approach to translate Scene Knowledge Graphs to
natural language scene descriptions.

5. Conclusions and Future Directions

The Semantics-driven Remote Sensing Scene Understanding (Sem-RSSU) framework
presented in this paper aims for enhanced situational awareness from remote sensing
scenes through the rendering of comprehensive grounded natural language scene descrip-
tions from a spatio-contextual standpoint. Although the flood disaster was chosen as a
test scenario for demonstrating the utility of comprehensive scene understanding, Sem-
RSSU can also be applied to monitoring other disasters, such as earthquakes, forest fires,
hurricanes, landslides, etc., as well as urban sprawl analysis and defense-related scenarios,
such as hostile surveillance in conflicted zones. It is envisaged that Sem-RSSU would lay
the foundation for semantics-driven frameworks for natural language scene description
rendering for comprehensive information dissemination for application scenarios such as
disasters, surveillance of hostile territories, urban sprawl monitoring, etc., among other
remote sensing applications.

The framework proposes the amalgamation of a deep learning and a knowledge-
based approach, thereby leveraging (1) deep learning for multi-class segmentation and
(2) deductive reasoning for mining implicit knowledge. The framework advocates the
transformation of remote sensing scenes to Scene Knowledge Graphs formalized through
the development of Remote Sensing Scene Ontology (RSSO). The ontology models the
representation of a generic remote sensing scene in the form of knowledge graphs by
defining concepts related to the scene’s lineage and land-use/land-cover regions and the
spatial relationships between them. The contextual Flood Scene Ontology developed
as a part of this research defines concepts and relationships that are pertinent during
a flood disaster in an urban landscape. The ontology thus demonstrates Sem-RSSU’s
adaptability to different application contexts. The Remote Sensing Scene Ontology (http:
//geosysiot.in/rsso/ApplicationSchema) and Flood Scene Ontology (http://geosysiot.in/
fso/ApplicationSchema) have been published on the web, for reference. The framework
proposes and implements the Spatio-Contextual Triple Aggregation and Grounded Scene
Description Planning and Realization Algorithms to (1) aggregate Scene Knowledge Graphs
for aiding in scene description rendering from a spatio-contextual perspective and (2)
render mappings between regions in the scene and generated sentences in the scene
description respectively. It also defines the Remote Sensing Scene Description Grammar
that the rendered natural language scene descriptions conform to. The GeoSPARQL Query
Interface of the framework enables querying and visualization over the inferred Scene
Knowledge Graphs, thus allowing users to further explore and analyze the remote sensing

http://geosysiot.in/rsso/ApplicationSchema
http://geosysiot.in/rsso/ApplicationSchema
http://geosysiot.in/fso/ApplicationSchema
http://geosysiot.in/fso/ApplicationSchema
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scene. Extensive evaluation of individual components of the framework inspires confidence
and demonstrates the efficacy of Sem-RSSU.

Although the approach for grounded natural language scene description rendering
in Sem-RSSU produces fair results, it would be interesting to explore and compare with a
neural approach to translate Scene Knowledge Graphs to natural language. In addition
to the use of directional and topological relations, it would be beneficial to explore the
use of inferred qualitative spatial relations, such as “near”, “around” and “next to”, in the
future, to generate more natural scene descriptions. Moreover, the temporal component
in natural language scene descriptions for depicting evolving remote sensing scenes has
remained largely unexplored. The future directions of this research are (1) to explore neural
approaches, to render natural language scene descriptions from Scene Knowledge Graphs;
(2) to explore the use of inferred qualitative spatial relations, to improve the naturalness
of the rendered scene descriptions; and (3) to explore the temporal component in Scene
Knowledge Graphs, to aid in rendering natural language scene descriptions of rapidly
evolving remote sensing scenes over time.
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