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Abstract: With the wide availability of low-cost proximity sensors, a large body of research focuses
on digital person-to-person contact tracing applications that use proximity sensors. In most contact
tracing applications, the impact of SARS-CoV-2 spread through touching contaminated surfaces
in enclosed places is overlooked. This study is focused on tracing human contact within indoor
places using the open OGC IndoorGML standard. This paper proposes a graph-based data model
that considers the semantics of indoor locations, time, and users’ contexts in a hierarchical structure.
The functionality of the proposed data model is evaluated for a COVID-19 contact tracing application
with scalable system architecture. Indoor trajectory preprocessing is enabled by spatial topology to
detect and remove semantically invalid real-world trajectory points. Results show that 91.18% percent
of semantically invalid indoor trajectory data points are filtered out. Moreover, indoor trajectory
data analysis is innovatively empowered by semantic user contexts (e.g., disinfecting activities)
extracted from user profiles. In an enhanced contact tracing scenario, considering the disinfecting
activities and sequential order of visiting common places outperformed contact tracing results by
filtering out unnecessary potential contacts by 44.98 percent. However, the average execution time of
person-to-place contact tracing is increased by 58.3%.

Keywords: trajectory analysis; graph-based data model; OGC IndoorGML standard;
COVID-19 contact tracing

1. Introduction

High transmissibility of the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has made the COVID-19 disease a global health crisis [1,2]. As we approach
the end of 2020 and many pieces of research about SARS-CoV-2 have been conducted
around the world, transmission ways of coronavirus are still under debate among schol-
ars [3,4]. According to recent studies [5,6], three main transmission ways of coronavirus can
be reported: (1) contact transmission that defines situations in which the infected person
and someone else has direct contact or touch a common surface; (2) through virus-laden
droplet transmission with a diameter larger than 5 µm (referred as respiratory droplets),
and (3) through the airborne transmission of droplets with a diameter less than 5 µm
(referred as droplet nuclei). Depending on the size of SARS-CoV-2-laden droplets, they can
either rapidly fall out of the air in the immediate environment around the infected host
(i.e., cause contamination on surfaces close to the emission point) or remain suspended in
the air and travel over tens of meters [7]. Van Doremalen et al. [8] evaluated the stability of
SARS-CoV-2 on various surfaces under ten different experimental conditions and found
that the SARS-CoV-2 can survive up to two days on surfaces. Therefore, the spread of
COVID-19 can occur directly by being in direct contact with an infected person or indirectly
through touching contaminated surfaces.

Amongst the different strategies used to decrease the infection rate of COVID-19,
contact tracing is utilized as a public health practice [2,9]. Using contact tracing, people who
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have had close contact with an infected carrier in the past 14–21 days (the incubation period
for COVID-19) are identified as people who might be at significant risk of infection [10].
This practice can be conducted manually with health authorities by interviewing infected
individuals [11]. However, manual contact tracing is a time- and effort-consuming task that
requires experienced contact tracers. So, the rapid viral spread of COVID-19 necessitates
utilizing a scalable and digital approach for contact tracing [12]. An increase in the use
of mobile technology, scalability of cloud data storage, and capability of physical devices
to connect to the Internet using the Internet of Things (IoT) technology can meet the
underlying requirements of applying digital contact tracing on a large scale [13].

Due to the interest of different governments in using digital contact tracing to ad-
dress COVID-19, different smartphone contact tracing applications such as TraceTogether
(Singapore) [14], CovidSafe (Australia) [15], and PACT (East-coast) [16] have been launched.
A survey of recently introduced COVID-19 contact tracing applications can be found in [11].
Communication between nearby smartphones using their built-in Bluetooth interfaces is
the most widely applied approach used by contact tracing applications [11]. Most contact
tracing applications [11] only use proximity estimation and duration of contact between
nearby smartphones. However, the contact tracing applications are insufficient for accurate
contact tracing because they do not consider the impact of location and other contextual
information [17].

The accuracy of contact tracing applications can be enhanced by considering the
historical location context of users. The SARS-CoV-2 virus can be transmitted by a person
touching a common surface that was previously touched by a diagnosed carrier [17].
In other words, when the common spaces were visited, the temporal sequence plays an
essential role in enhancing the accuracy of contact tracing applications. The location history
of users (provided by GPS) was considered in the SafePaths project in order to enhance the
accuracy of contact tracing applications [17]. Similarly, He et al. [9] analyzed the location
history of users in a COVID-19 contact tracing application for outdoor environments.
However, indoor locations and the sequential order of visiting a common space have
been overlooked [9,17]. Several reasons underlie the importance of indoor spatiotemporal
trajectories for COVID-19 contact tracing applications: Enclosed indoor environments pose
higher risks of community spread than outdoor environments [5,7,18], and people usually
spend a larger part of their lives in indoor environments [19,20]. Therefore, an indoor
location-based contact tracing approach is required to model complex spatiotemporal
topology for multiple floors and intrinsic connectivity [21,22].

To the best of our knowledge, another missing gap in contact tracing applications is the
inclusion of semantic contexts such as cleaning and disinfection activities. The disinfection
and cleaning of commonly visited locations can effectively stop the chains of coronavirus
spread [23] and should be considered by the contact tracing applications. An example
scenario explaining the importance of disinfecting activities and the sequential order of
visiting a place is given in Appendix A. To bridge the existing research gap, an enhanced
digital contact tracing system is required to take the spatiotemporal movement trajectories
of users and users’ semantic contexts into consideration.

Indoor trajectory data analysis, such as contact tracing, requires a formal spatiotem-
poral data model as an abstraction of indoor movement trajectory [24]. The indoor raw
trajectory is a temporal sequence of the time-stamped geographical coordinates of the
moving object [25,26]. Keeping a record of such precise location information requires more
battery power, communication, and computation overheads [25]. Trajectory segmentations
try to break down a raw trajectory into fragments that carry semantic meaning to address
the challenges above. In this paper, raw movement trajectories are semantically partitioned
into spatial fragments called stay points. Stay points are spatial objects which carry partic-
ular semantic meaning and contain all of the geographical coordinates located within the
stay point, and the moving object remains in it for a length of time that is above a certain
threshold [27].
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For this study, a graph-based data model is proposed for encoding spatial and tempo-
ral dimensions as well as user contexts for indoor trajectories. Using a graph data structure,
representing trajectory data allows movement trajectories to be stored in natural graph
form using recent graph database technologies [27]. The first component of the proposed
data model defines a spatial indoor space based on the OGC (Open Geospatial Consortium)
IndoorGML standard [22]. The IndoorGML standard considers an indoor space as a set
of non-overlapping cell spaces and models the topological relationships between cells
using one or more Node-Relation Graphs (NRGs) [28]. The second component describes the
time dimension as the duration of stay in each IndoorGML cell using a temporal hierarchy.
The third component, called contextual dimension, shows user contextual information such
as user job type, activity type, and how vulnerable they are in terms of being exposed to the
SARS-CoV-2 virus. The proposed hierarchical graph-based data model allows the indoor
movement trajectory to be represented at different levels of granularities. The different
levels of granularities provided by the proposed model support the aggregation of seman-
tic indoor trajectories over three dimensions: spatial, temporal, and contextual. For this
research, the following contributions are discussed:

1. A spatiotemporal graph-based indoor trajectory data model is proposed to reflect
hierarchies in space, time, and user’s contextual information. The OGC IndoorGML
standard is incorporated to enrich stay points with topological relations amongst
indoor cells. The proposed model can store and analyze semantic indoor movement
trajectories regardless of the indoor positioning system type.

2. A COVID-19 contact tracing system is developed and investigated using the proposed
data model. In comparison to other contact tracing applications, to the best of our knowl-
edge, this paper is the first research to implement and evaluate both types of SARS-CoV-2
transmissions, namely, person-to-person and person-to-place. Additionally, the contact
tracing application is further enhanced by including the place’s disinfection history
based on user’s contextual information.

3. The spatial topologic relationships extracted from OGC IndoorGML in the proposed
data model is used in a preprocessing technique to filter out semantically invalid
trajectory points.

User privacy is a big challenge for contact tracing applications. Using historical location
or proximity information can be considered as a threat to user privacy [17]. As mentioned
in [29], 90 percent of people can be identified using only four trajectory points. Hence there
is always a trade-off between user privacy versus the effectiveness of contact tracing
applications. Although the application of privacy protection techniques is outside the
scope of this paper, some considerations are taken into account in order to protect user
privacy, as discussed further in Section 6. Moreover, the scope of this research focuses on
indoor movement trajectories by considering an active Bluetooth Low Energy (BLE) beacon
for each indoor cell. Although the topological relationships amongst indoor cells are used
to filter out semantically invalid trajectory points, reconstructing missing trajectory points
is outside the scope of this paper. Additionally, the automatic extraction of users’ contexts
such as cleaning activities and job type is outside the scope of this paper.

The rest of this paper is organized as follows: Firstly, the definition of the problems
is defined in Section 2, followed by a discussion of related works in Section 3. The archi-
tecture of the proposed system is then described in Section 4. Section 5 provides details
of the proposed data model, whilst the implementation results are illustrated in Section 6.
Finally, Section 7 wraps up this paper with the conclusion, future work possibilities and
ongoing problems.

2. Problem Definition

Consider the situation that the goal is conducting the contact tracing between users
in indoor space using Bluetooth Low Energy (BLE). Unique advantages of BLE beacons
like being lightweight, low cost, widely supported by smart devices, consuming less power,
more flexible, and a higher Received Signal Strength Indicator (RSSI) has attracted many
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scholars to use them as a dominant indoor localization system [30,31]. As seen in Figure 1
(top-left), the topographic space of a physical indoor environment, including four cell
spaces, is shown in Euclidian space. Let us consider a situation that a BLE beacon is placed
in each indoor cell. Figure 1 (bottom-left) shows the signal coverage of each BLE beacon.
The connectivity graph among indoor cells and BLE beacons in dual space is shown using
IndoorGML NRGs in Figure 1 (right).

Figure 1. Representation of indoor cells and Bluetooth Low Energy (BLE) beacon coverage in
Euclidian and dual space.

The first problem in an efficient indoor trajectory analysis is to model the users’ trajec-
tories in a semantic graph-based spatiotemporal data model. Figure 2 shows four users’
semantic indoor trajectories considering indoor cells as stay points in user movement
trajectories. As an example, user u1 entered and then exited the indoor cell c1 in times-
tamp t1 and t3 respectively. In this example, a point will be recorded in the semantic
indoor movement trajectory of u1 as P1 = 〈c1, ∆1〉. In which, ∆1 is the length of time
that u1 has spent in indoor cell c1. So, the semantic trajectory of u1 can be modeled as
{〈c1, ∆1〉, 〈c2, ∆2〉, 〈c3, ∆3〉, 〈c4, ∆4〉}. The spatiotemporal representation of semantic indoor
trajectories for all four users is shown in Figure 3

Figure 2. Representation of semantic movement trajectories of four users in the indoor environment.

The next issue in trajectory modelling is to validate if the sequence of stay points is
topologically connected. It is evident that missing or unstable RSSI data directly lead to
noisy semantic movement trajectories. This issue is caused by delayed signal transmissions
and interferences from walls and glass doors [32]. For example, as seen in Figure 1 consider
the situation that user u1 is located in cell c1 and BLE beacon B1 is placed in this cell.
Consider the situation in which the connection between the BLE receiver (e.g., smartphone)
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and B1 is lost for a while. During this time, the BLE receiver will be connected to the
BLE beacon B4, considering the signal coverage shown in Figure 1. After reconnecting
to B1, user semantic trajectory includes three stay points like {〈c1, ∆1〉, 〈c4, ∆2〉, 〈c1, ∆3〉}.
However, this movement trajectory is semantically invalid and 〈c4, ∆2〉 has made the move-
ment trajectory noisy and semantically invalid. This semantic trajectory is invalid because
there is no connectivity directly between indoor cells c1 and c4. So, topological relation-
ships among indoor cells (i.e., NRGs) can be utilized as a noise filtering method to extract
semantically valid indoor trajectories.

Figure 3. Spatiotemporal representation of semantic indoor movement trajectories of four users.

The last but not the least challenge in our study is to evaluate contact tracing applica-
tion as sequential trajectory analysis considering users’ contexts (e.g., disinfecting activity).
Let us assume user u1 as an infected person with COVID-19 and u3 as cleaning staff.
In this scenario, different spatiotemporal queries might be of interest to contact tracers.
For example, a list of users who visited indoor cells just after those cells being visited by the
infected user (i.e., user u1) and before they were cleaned by the cleaning staff (i.e., user u3).
As seen in Figure 3 all four indoor cells are visited by the infected user. However, only user
u2 was in contact with the infected user u1 in indoor cell c2 before this room being cleaned.

3. Literature Review

In this section, we categorized the state-of-the-art related to our study into four
categories: Current COVID-19 contact tracing applications are briefly reviewed in the first
category. Next, existing trajectory segmentation approaches are studied as they require
less computation power, communication cost, and are more human-readable. The third
category focuses on trajectory representation methods. The fourth category looks over
existing data models for indoor environments. Finally, the major differences between this
study and other related studies will be summarized at the end of this Section.

3.1. COVID-19 Contact Tracing Applications

The exponential increase in the number of people with the coronavirus has moti-
vated many governments and developers to leverage technology to curb the spread of
COVID-19 [33,34]. As the world continues to fight against the COVID-19 pandemic,
retracing close contacts of a COVID-19 Confirmed Person (CCP) to find and notify possibly
exposed people at the earliest possible stage (i.e., contact tracing) is widely accepted as
an available approach to “flatten the curve” [35,36]. In practice, the laborious and slow
process of manual contact tracing (i.e., interview-based contact tracing) and rapid trans-
mission of coronavirus necessitate utilizing scalable digital contact tracing systems [11,35].
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Researchers and developers have proposed different digital contact tracing systems to ease
the burden of manual contact tracing on public health departments. To the best of our
knowledge, existing contact tracing systems can be categorized into web-based and mobile
contact tracing systems. For example, both web-based (i.e., TeamSense [37]) and mobile
(e.g., COVID Alert [38] and ABTraceTogether [39]) contact tracing systems are used in
Canada to combat the COVID-19 pandemic. In another attempt, BLE-based wearables are
recently proposed by Estimote, Inc. [40], which can be used in a web-based contact tracing
system for workplaces. TraceTogether [41] is implemented as a digital contact tracing
system by the Singaporean government to help automate the laborious task of manual
contact tracing. According to SensorTower [42], this application with more than 3.2 million
downloads (i.e., 55.36 percent of the total population in Singapore [43]) from the App Store
and Google Play [44] is ranked first among all free applications in this country. As another
example, Corona-Warn-App [45] is used as a digital contact tracing application in Germany.
This application has received over 22.8 million downloads (i.e., 27.17 percent of the total
population in Germany [43]) and ranked first among all free mobile applications in this
country [46].

There are currently more than 50 smartphone contact tracing applications utilized
in more than 30 countries around the world [47]. Different technologies like BLE,
Global Navigation Satellite System (GNSS), Radio Frequency Identification (RFID), Wi-Fi,
and QR codes have been introduced for contact tracing applications. BLE and GNSS
technologies can be considered as leading technologies in COVID-19 contact tracing ap-
plications [17,47]. Focusing on coronavirus transmission, obstructions like walls between
users can stop virus transmission. Comparing GNSS and BLE technologies, reduced signal
strength in BLE technology can represent existing obstructions between users, while GNSS
cannot consider (Appendix B). Additionally, BLE technology is more accurate than GNSS
for proximity detection in enclosed places like indoor buildings and underground tran-
sit [17]. TraceTogether [41] can be mentioned as the first digital contact tracing application
in the world using the BLE proximity technology. Most of the existing contact tracing
applications, such as CoEpi [48] and Covid Watch [49], tried to estimate proximity between
individuals using BLE proximity technology. A survey of recently introduced COVID-19
contact tracing applications can be found in [11]. Estimating proximity between users can
be considered as the heart of contact tracing applications [47]. However, relying only on
proximity among users will not be sufficient because coronavirus can be transmitted by
touching a common surface such as a table, keyboard, and door handle. In other words,
the person-to-place way of transmitting coronavirus needs to be considered as location-
based COVID-19 contact tracing applications.

Berke et al. [17] tried to investigate the location-based COVID-19 by incorporating
the location history of users in SafePaths project. In their contact tracing application,
the user’s historical location can be collected by either GPS or BLE technologies. In more
detail, GPS 2-dimensions (latitude and longitude) coordinates and time are first mapped
to a 3-dimensional geospatial grid. Then, time intervals when two users occupied the
same place will be detected using the intersection approach across users’ GPS histories.
Although the authors suggested that their method can be used in the person-to-place way
of coronavirus transmission, there is no evidence that the impact of person-to-place virus
transmission is considered to the best of our knowledge. To clarify this gap, consider
the situation that a commonplace is visited firstly by user A who is a diagnosed carrier,
and after this user left the commonplace, it is visited by user B. Consider this situation has
happened in a short time interval. Intersecting the location at the common time window
results in finding user B as a possibly exposed user. So, the sequential order of visiting a
commonplace should be considered in addition to user historical location to model the
person-to-place way of transmitting coronavirus among users.

He et al. [9] tried to incorporate users’ historical location in COVID-19 contact trac-
ing as a travel companion trajectory mining application for outdoor environments.
Authors followed the methodology proposed by Rong et al. [50] to design an efficient
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index, called the Spatial First Time index, as a similarity metric for trajectory clustering.
Their proposed similarity metric was applied to group trajectory segments that are spatially
and temporally similar to the query trajectory (i.e., the trajectory of COVID-19 confirmed
case) [9]. Using trajectory clustering, users who have similar trajectories to the query
trajectory can be detected. Although they measured users’ companionship, they did not
study if a location is contaminated with a diagnosed carrier. Additionally, their proposed
system only focused on outdoor environments.

Although researchers and developers have been mostly focused on technological
advancements of digital contact tracing systems, broad public participation in digital contact
tracing applications is required to halt the pandemic [33]. Hellewell et al. [36] evaluated
the impact of isolation and contact tracing to control the pandemic using a mathematical
model. According to their results, the majority of outbreaks in regions with the basic
reproduction number (The expected number of secondary cases that can be infected by
the infected host in a population where all individuals are susceptible) (R0) less than 1.5
can be controllable if 50% or more of contacts are successfully traced [36]. For example,
the estimated basic reproduction number in Singapore is (0.8–1.4) [51] and in Germany is
(0.9–1.3) [52] with a 90% credible interval. According to SensorTower [42], TraceTogether
and Corona-Warn-App contact tracing applications are publicly adopted by 55.36 and
27.17 percent of Singapore and Germany, respectively. Although the TraceTogether met the
expected adoption (i.e., 50% of the country’s population), the Corona-Warn-App lagged
behind the expected adoption. Various factors, such as privacy concerns, anonymity,
transparency, and concerns about data overusing, affect the public willingness to use
digital contact tracing applications [33]. Recent works [33,35] suggest that automatic
contact tracing at any public adoption rate will slow the quick spread of coronavirus.
Although a qualitative analysis of the effectiveness and success of digital contact tracing
applications is required, we believe that digital contact tracing applications cannot be
considered a replacement for manual contact tracing.

To conclude, user location history and sequential order of visiting a place can better
model person-to-person way of coronavirus transmission. However, person-to-place virus
transmission is still overlooked at the time of writing this paper. Moreover, user location
history has only been considered for outdoor environments. As of 16 December 2020,
the disinfection history of commonly visited places is ignored by researchers for both
indoor and outdoor environments.

3.2. Trajectory Segmentation

The main goal of trajectory segmentation is breaking down a trajectory into fragments
that carry semantic meaning, more human-readable, and require less computation power [25].
There are mainly three categories of approaches for trajectory segmentation [25,26].
The first category takes time interval into account to divide a trajectory into fragments [53].
The second category focuses on trajectory shape and breaks down a trajectory using turning
points that maintain the trajectory shape [54]. Finally, partitioning trajectories using each
segment’s semantic meaning, which is used in our proposed data model, can be considered
the most widely applied approach of trajectory segmentation. This approach has been
vastly applied in different applications such as transportation [55,56], tourism [57,58],
and recommender systems [59].

A very natural way of semantic meaning-based trajectory segmentation is splitting
a trajectory into segments that show stillness versus movement [25,26]. Depending on
trajectory data analysis, stationary points can either be kept or skipped. For example,
Yuan et al. [60] skipped the stationary points in their proposed taxi travel speed estimation
approach. However, He et al. [9] have only focused on stationary points in their proposed
trajectory clustering approach for COVID-19 contact tracing application. Gómez et al. [27]
similarly used the concept of stationary points and assumed users’ check-ins extracted
from location-based social networks as stationary points that have no duration.
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Although there is a large body of knowledge for trajectory segmentation in outdoor
applications like transportation, only a few research pieces have been focused on indoor
settings. Werner et al. [61] reduced the amount of computation using the Douglas–Peucker
algorithm as a trajectory segmentation approach, which is mainly concern with the trajec-
tory shape. Gua et al. [62] improved the accuracy of the map matching process in indoor
trajectories considering semantics provided by pedestrian dead reckoning and human
activity recognition algorithms. Wang et al. [63] used raw odometer data to extract step
length, step count, and heading for the purpose of trajectory segmentation. In our research,
the raw indoor trajectory is segmented by the definition of stay points and semantically
enriched by OGC IndoorGML cell attributes.

3.3. Indoor Trajectory Model

Chen et al. [64] have used the grid partition method to abstract the indoor phys-
ical model using hexagonal grids. The IFC data model were used in this research,
and movement trajectories were generated using the tool Vita [64,65]. They applied a
vertical projection distance approach to transform synthetically generated indoor move-
ment data into determined grids. The OGC has published the IndoorGML standard as a
common spatial framework to represent and model indoor spaces for indoor navigation
purposes [22]. OGC IndoorGML open standard provides a standard way of abstracting
indoor physical environments using a multi-layered graph-based data model. The flexibil-
ity of OGC IndoorGML standard in providing spatial units with the ability to have their
own semantic and topological relationships in a graph-based data structure makes OGC
IndoorGML standard an appropriate alternative to model spatial dimension of indoor
trajectories. Alattas et al. [20] analyzed and visualized indoor users’ movement data in
an evacuation exercise using the extended LADM-IndoorGML. They extracted the loca-
tion of users by analyzing WiFi logs data collected from the main WiFi network of TU
Delft. LADM-IndoorGML is an integration of OGC IndoorGML and Land Administration
Domain Model to determine restrictions, right, and responsibilities of different groups of
users for each interior space [66]. Alattas et al. [20] used a relational database
(i.e., PostgreSQL) to model the 3D geometry of the IFC model and technical model of
LADM-IndoorGML as an infrastructure to visualize users’ movements. Following indi-
vidual users and monitoring the number of users in each WiFi access point zone were two
types of analyses have been carried out by Alattas et al. [20].

Kontarinis et al. [24] proposed a hierarchical semantic-enabled symbolic model for
indoor movement trajectories of users who visited the Louvre Museum located in Paris,
France. In [24], the physical model of the Louvre Museum was abstracted using OGC
IndoorGML standard into five symbolic graph layers (i.e., building complex, building, floor,
room, and region of interest). Regions of interests were defined as 51 non-overlapping
zones specified by the museum administration and associated with exhibition themes.
Raw movement trajectories of visitors were collected using the BLE beacon infrastructure
and smartphone application (app) and then transformed and enriched by considering five
symbolic graph layers. So, authors in [24] modelled visitors’ indoor movement trajectories
as a sequence of their presence in Louver’s thematic zones. In [24], the OGC IndoorGML
standard was used to semantically enrich raw trajectories. However, some significant
differences between our study and their study are: (1) their proposed data model is focused
on museum visitors, while we proposed a general spatiotemporal graph-based model
which can be used in COVID-19 contact tracing application; (2) although spatial granu-
larity was supported in the proposed model by Kontarinis et al. [24], the user contextual
information was overlooked; (3) temporal and contextual granularity will be supported
in our proposed model to fully represent the spatiotemporal nature of users’ movement
trajectories; (4) our proposed data model is implemented in a graph-based database instead
of using a thematic representation of indoor trajectories.
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3.4. Trajectory Representation

There are three ways to represent movement trajectories using a matrix, tensor,
and graph data structure [25]. The matrix representation of movement trajectories is widely
applied in recommendation systems. Ojagh et al. [67,68] transformed GPS trajectories of
users into a matrix and then applied a collaborative filtering algorithm to provide users
with personalized recommendations. Tensor representation of movement trajectories can be
considered a natural extension of matrix-based transformation, with additional information
as the third dimension of matrix representation [25]. Zheng et al. [69] extended the location-
activity recommendation system to a user personalized recommendation system by adding
users to the location-activity tensor representation of users’ GPS trajectories.

Using a graph data structure, representing trajectory data allows movement trajecto-
ries to be stored in natural graph form using recent graph database technologies. Therefore,
graph-based trajectory representation prevents the “impedance mismatch” problem be-
tween the data model and storage [27]. Recent advances in graph database technologies
increase using a graph data structure in various applications [27,70,71]. Hu et al. [72]
extracted tourist movement trajectories from users’ geo-location data shared on Twitter
as social media. In their research, extracted trajectories then turned into graphs using
DBSCAN-based clustering. Then, network analytical methods were applied to extracted
graphs to discover tourist movement patterns. Niu et al. [73] constructed a dual graph
from movement trajectories considering the transportation network as a complex network.
The dual graph has then been utilized in a label-based clustering approach to cluster move-
ment trajectories and addresses the main limitation of distance-based trajectory clustering
methods. Sabarish et al. [74] proposed a hierarchical clustering method based on the graph
data structure to identify similar movement patterns of movement trajectories for moving
trucks carrying goods. Gómez et al. [27] proposed a spatiotemporal graph data structure
and transformed users’ movement trajectories from the location-based social network to
perform Online Analytical Processing operations on movement trajectories. Guo et al. [62]
enhanced the indoor pedestrian trajectory’s accuracy using the concept of a semantically
enriched graph data model extracted from the floor plan.

To conclude related studies, person-to-place location history, the sequential order of
visiting a commonplace, user-related contextual information such as disinfection activities
are missing in digital contact tracing applications. Additionally, the state-of-the-art only
focused on outdoor environments. To address the aforementioned research gaps, a graph-
based data model is proposed to encode spatial and temporal dimensions as well as user’s
contexts for indoor trajectories. The first component of the proposed data model defines
a hierarchical spatial indoor space. In this model, the raw indoor trajectories using BLE
sensors are segmented by the definition of stay points and semantically enriched by OGC
IndoorGML cell attributes. The benefit of using OGC IndoorGML is its graph-based
structure to model the spatial topology. So, it can be adopted in our proposed data model
to represent and store the spatial dimension of movement trajectories in their native graph
form. The second component describes the time dimension as the entrance time for each
IndoorGML cell using a temporal hierarchy. The third component, called the contextual
dimension, shows users’ contextual information such as disinfecting activities. We used a
graph database to represent the proposed spatiotemporal indoor trajectory model as an
efficient approach for contact tracing query processing.

4. Methodology

In this section, the methodology and preliminary definitions applied for this research
are explained. The proposed graph-based hierarchical data model for semantic indoor
movement trajectory data analysis is then described. This section is focused on COVID-19
contact tracing. However, the proposed data model can also be used as a general-purpose
indoor movement trajectory.
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4.1. Semantic Trajectory Segmentation

Considering the situation in which four BLE beacons are deployed in an indoor
environment, the raw indoor movement trajectory of u1 is shown in Table 1. bj

i indicates
the RSSI value measured by the user smartphone for BLE beacon Bi for timestamp tj.
As shown in this table, u1 smartphone received four RSSI measurements from four BLE
beacons (i.e., B1, . . . , B4) located near it.

Table 1. Raw indoor movement trajectory of a sample user.

User ID Time B1 B2 B3 B4

1 t0 b0
1 b0

2 b0
3 b0

4
1 t1 b1

1 b1
2 b1

3 b1
4

1 t2 b2
1 b2

2 b2
3 b2

4
1 t3 b3

1 b3
2 b3

3 b3
4

1 t4 b4
1 b4

2 b4
3 b4

4
. . . . . . . . . . . . . . . . . .
1 tj bj

1 bj
2 bj

3 bj
4

Table 1 shows the indoor movement trajectories for a single user and is called Raw
Movement Trajectory (RMT). Given the RMT, the notation of raw indoor movement trajec-
tory can be defined as follows:

Definition 1 (Raw Indoor Trajectory). An indoor raw movement trajectory (i.e., RMT) for the
user ui is a temporal sequence of RSSI values from all of the visible BLE beacons deployed by an
indoor positioning system. The measured RSSI values from visible BLE beacons depend on the user
geospatial locations. Thus the raw indoor trajectory of a user can be formulized as:

RMT =
[(

ui, t0,
{

b0
i

∣∣∣i ⊆ N0

})
,
(

ui, t1,
{

b1
i

∣∣∣i ⊆ N1

})
, . . . ,

(
ui, tj,

{
bj

i

∣∣∣i ⊆ Nj

})]
(1)

in which, Nj ⊆ N denotes the number of visible BLE beacons close to the user smartphone at
each timestamp j, and N is a set of all BLE beacons ({B1, B2, . . . , BN}) deployed in an indoor
environment. The set

{
bj

i

∣∣∣i ⊆ Nj

}
represents a set of RSSI measurements (bj

i ) from visible BLE
beacons at timestamp j. The order of t0 < t1 < . . . < tj is considered a natural order in the time
frame for geospatial points visited by the user in the RMT.

As seen in Table 1 the RMT contains a huge amount of data which make the trajectory
data analysis time-consuming. Additionally, contact tracers might not be interested in such
detailed information regarding the RSSI value for all visible beacons for each timestamp.
The proximity zone that the user is located in, and also the amount of time that he/she
stayed there might be of greater interest for contact tracers. Hence the raw indoor move-
ment trajectories can be segmented using the semantic concept of “Place of Stay (PoS)”.
The PoS semantically refers to the proximity zone of the BLE beacon with the highest
RSSI value in which the user has spent ∆k length of time. The notation of PoS is defined
as follows:

Definition 2 (Place of Stay). Consider δmin and δmax as the minimum and maximum RSSI
values associated with the proximity zone of the BLE beacon Bi with the highest RSSI value.
All geospatial points with their measured RSSI value belonging to the [δmin, δmax] range are defined
as the PoS associated with the BLE beacon Bi. The length of time (i.e., ∆k) that the user spent at the
PoS is the time difference between the entrance and exit time of the user in this proximity zone.

Also, user contextual information can be considered in semantic indoor trajectories.
In the COVID-19 contact tracing application, we denoted job type, activity type, and the
level of user vulnerability to COVID-19 virus exposure as user’s contexts in each PoS. User
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contextual information can be manually entered by the user. Table 2 illustrates the semantic
trajectory segmentation of user u1.

Table 2. Semantic indoor movement trajectory of a user.

User ID Time Time Duration Place of Stay Health Status Activity Type Vulnerability

1 t0 ∆1 B1

Healthy

Cleaning

v1
1 t1 ∆2 B2 Visiting
1 t2 ∆3 B3 Visiting
1 t3 ∆4 B4 Visiting

The notation of semantic indoor movement trajectory is defined as follows:

Definition 3 (Semantic Indoor Trajectory). The semantic indoor movement trajectory
(i.e., SMT) is a temporal sequence of visited PoSs including user ID, the time that the user enters the
PoS, duration of time stayed in the PoS, and user contextual information in each PoS. The notation
of semantic movement trajectory of user u1 (i.e., SMT1) according to Table 2 is defined as follows:

SMT1 = [(u1, t0, ∆1, B1, Healthy, Cleaning, v1), . . . , (u1, t3, ∆4, B4, Healthy, Visiting, v1)] (2)

in which, Bi ∈ BDom and BDom (BLE beacon with the highest RSSI value) is an indicator of the
visible set of BLE beacons (i.e.,

{
bj

i

∣∣∣i ⊆ Nj

}
) related to the PoS proximity zone.

4.2. Multilayered Spatial IndoorGML-Based Data Model

To support interoperability between indoor location-based services, OGC published
an XML-based exchange standard indoor data model called IndoorGML in 2014 [75].
The cellular space can be considered the underlying concept of IndoorGML in order to
provide an abstraction of the physical indoor environment [76].

Definition 4 (Cellular Space). The cellc is defined as the basic unit type of the indoor primal
space of the IndoorGML spatial data model. The cellular space C is considered the union of
non-overlapping cells ci ∈ C which is an abstraction for the given physical indoor space P [76].

To abstract the indoor physical space using IndoorGML, both geometrical and topo-
logical properties need to be defined within the cellular space. Geometrical properties that
define spatial extent for cells and their boundaries can facilitate the computation for indoor
distance [75]. However, geometrical properties are not necessarily required for many
applications (e.g., contact tracing). Using the Poincaré duality thorium three-dimensional
cells and their relationships, topographic indoor spaces can be transformed into corre-
sponding dual spaces. In the dual spaces, a topological, or an equivalent adjacency graph,
visualizes indoor cells and their adjacency relationships using nodes and edges.
Edges in the adjacency graph can be generally classified into navigable (e.g., doors) and
non-navigable (e.g., walls) links. As shown in Figure 4 a connectivity graph can be ex-
tracted by considering only the navigable links in the adjacency graph. As the connectivity
graph illustrated in Figure 4 does not represent the geometrical properties of cells, it is
called a logical connectivity graph [75].

IndoorGML offers a mechanism called the multi-layered space model that supports
different interpretations for indoor spaces [75,76]. For example, BLE signal coverage
can be defined as a new interpretation for the topological space as shown in Figure 5.
Each interpretation has its own cellular space. Geometrical and topological properties
can be defined for the corresponding cellular spaces. Additionally, inter-layer types
of connections can be used to visualize relationships amongst different cellular spaces.
The multi-layered space will be defined as an overlay of interpretations. An example of
this is when eight BLE beacons were installed in the topological space as shown in As
illustrated in Figure 5 the BLE signal coverage in dual spaces can be considered for the
extraction of a logical connectivity graph for BLE beacons. The multi-layered space model
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that includes inter-layer relationships amongst different interpretations is shown in Figure
6. Following the same concept, IndoorGML offers a hierarchical graph that covers spatial
granularity in cellular spaces [75,76]. An example would be the situation in which the
indoor space illustrated in Figure 4 belongs to building b. As shown in Figure 6 building b
will be defined as the highest layer of the hierarchical structure offered by the IndoorGML.

Figure 4. Extracting adjacency and connectivity graph from two-dimensional topologic indoor space.

Figure 5. Extracting adjacency and connectivity graph for BLE beacons from two-dimensional
topologic indoor space.
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Figure 6. An example of hierarchical structure considered for spatial granularity.

4.3. Proposed Graph-Based Indoor Trajectory Modelling

As seen in (2), three main components were used to define the semantic indoor
trajectory. The first component determines the spatial space using the concept of PoS.
The second component describes temporal space using a pair of coordinates similar to(

tj, ∆k
)

in which tj indicates the time the user entered the PoS and ∆k indicates the length
of time the user spent in the PoS. The third component, called the contextual dimension,
shows user contextual information such as their job type, activity type, and how vulnerable
they are in terms of exposure to the SARS-CoV-2 virus.

Three granularity levels will also be defined in order to support aggregation in semantic
indoor trajectories: temporal, contextual, and spatial. The temporal hierarchical structure
of tj is defined as Instant→ Minute→ Hour → Day→ Month→ Year in the proposed
data model. In addition to temporal spaces, hierarchical structure is also considered for
contextual information. Vulnerability is considered as part of the incorporated contextual
information for this research. A diverse range of factors influences COVID-19 vulnerabil-
ity (e.g., age, background medical conditions) [77]. However, for the sake of simplicity,
mobile users are only asked to report how vulnerable they think they are in terms of being
exposed to the SARS-CoV-2 virus. Vulnerability levels can be entered as an integer value
between zero and ten. This integer can then be categorized into high-level and low-level.

The spatial hierarchy of the proposed data model is based on the OGC IndoorGML
multi-layered spatial representation. The spatial granularity of the proposed data model
is shown in Figure 6. The proposed indoor spatial hierarchical structure is defined as
BLE Zone ∆Interior Cell → Category→ Floor → Building .
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Spatial hierarchical layers shown in Figure 6 from bottom to top are defined as follow:

• The BLE zones layer (as shown in Figure 5) is investigated as the finest level of the
spatial hierarchy because multiple BLE zones can cover an interior cell;

• The Interior Cells layer divides the indoor space into individual spatial units divided by
walls. Interior cells may have different semantic categories: Laboratory, meeting room,
personal office, washroom, corridor, stair, elevator, and kitchen;

• The Category layer is defined as a group of interior cells with a similar type of semantic
category. For example, the laboratory category of interior cells can be assigned to
either chemical or mechanical laboratories;

• The Floors layer is considered a higher spatial granularity of categories. For example,
the third floor includes the library, office, and chemical laboratory categories;

• The Building layer is comprised of the various floors associated with it.

An example of modelling semantic indoor trajectory that considers different hierarchi-
cal structures (i.e., temporal, contextual, and spatial) is shown in Figure 7. In Figure 7 circles
with dashed blue lines show the trajectory data points in SMT. For example, the central
blue dashed point shows the SMT of a user with ID#1 who is a diagnosed carrier. The user
has an entrance time of 01: 12: 23Z to the proximity zone of BLE beacon B2 for the duration
of 1177 s as shown: [u1, 2020− 07− 25T01 : 12 : 23Z, 1177, B2, COVID19, visiting, 8]
From the proposed data model, we can infer that the user was located at cell ID#123 which
belongs to the library category on the third floor of building b1.

Figure 7. An example of the proposed graph-based indoor trajectory modelling.

5. System Architecture

To evaluate the proposed data model in contact tracing application, cloud-based
architecture is developed. The architecture includes three layers (Figure 8): “Data Collec-
tion”, “Cloud Data Storage and Management”, and “Visualization”. We have adopted
“cloud Data Storage” and “Visualization” layers from SensorUp (https://sensorup.com/)
architecture. The data collection layer (i.e., a smartphone Android app) is mainly respon-
sible for measuring RSSI values from different visible BLE beacons. The user raw indoor
movement trajectories are then segmented in the smartphone app to reduce the commu-
nication cost. Smartphone app provides users with both “offline” on device and “online”
cloud storage. The user can choose to be in an “online” or “offline” mode. When a user is
entered in the proximity zone of a BLE beacon in online mode, the smartphone app will
start counting seconds. When the user leaves the dominant BLE beacon’s proximity zone,
a record will be sent to the cloud layer. The record consists of different types of information,
including the dominant BLE beacon information (i.e., dominant BLE beacon Identification
(ID) and average RSSI), temporal data (the date and time of the user entered and exited the

https://sensorup.com/
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proximity zone and the length of time that user has stayed there), and user-related contexts
(i.e., user’s health status, activity type, and vulnerability level as entered by the user).
In “offline” mode, such a similar record is stored internally in the smartphone’s database
(i.e., SQLite database). In “offline” mode, whenever the users willing to share their move-
ment trajectory, a bulk data transfer mechanism is applied to share all stored trajectory
points with the cloud server.

Figure 8. System architecture.

The second layer is the cloud data storage and management layer developed using
Amazon Web Services (AWS). This layer is mainly responsible for handling users’ and
end-users’ identity and access management and data storage. As shown in Figure 8,
Amazon AWS Cognito (https://aws.amazon.com/cognito/) is used as a fully managed
service for authentication and authorization of smartphone apps. AWS Cognito supports
identity and access management using Cognito User Pool and Cognito Identity Pool
as standard authentication and authorization services. Amazon AWS Lambda (https:
//aws.amazon.com/lambda/) is applied in this layer as a server-less and event-driven
computing service. As an instance, an AWS Lambda is triggered to enrich the indoor
trajectory as soon as a record from an authenticated smartphone app user is received.
A data record is taken as an array of trajectory data point records in JavaScript Object
Notation (JSON) format in this enrichment process. For each trajectory point, a mapping
function will be applied to map the captured BeaconID to a unique OGC IndoorGML
cell in the proposed data model. Then, the output is published to AWS IoT as a standard
GeoJSON record. Amazon AWS IoT (https://aws.amazon.com/iot/) service is used in this
research as a managed cloud service to support cloud data sharing for billions of devices
and trillions of messages.

The data records published on AWS IoT Core will then be stored in Amazon Dy-
namoDB (https://aws.amazon.com/dynamodb/) and the Neo4j graph database using
another AWS Lambda. Amazon DynamoDB is used as a fully managed No-SQL scal-
able database offered by Amazon. An instance of the Neo4j database is also deployed in
Amazon EC2 (https://aws.amazon.com/ec2/) as the most popular open-source graph
database according to DB-Engines ranking (https://db-engines.com/en/system/Neo4j).
The Neo4j graph database can natively support graph data storage, including nodes and
relationships among nodes. The reason behind using two databases in this research is that
Amazon DynamoDB is used to visualize enriched trajectory data using SensorUp Explorer
web dashboard. While the Neo4j database is used to store and manage the spatiotemporal
trajectory for the proposed semantic indoor trajectory data model. The proposed semantic

https://aws.amazon.com/cognito/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/iot/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ec2/
https://db-engines.com/en/system/Neo4j
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hierarchical graph-based data model implemented by the Neo4j database is responsible for
importing hierarchical data: spatial, temporal, and contextual.

Finally, the last layer (i.e., visualization) provides end-users (e.g., contact tracers
and building managers) with visualization tools to interact with the proposed system.
AWS Identity and Management (IAM) (https://aws.amazon.com/iam/) is used in this
research to manage end-users’ access to AWS.

6. Implementation
6.1. Real-World Data Sets

To evaluate the proposed indoor movement trajectory data model, a real-world experi-
ment is designed. A smartphone app is developed in this experiment, and cloud data storage
and management were set up. A total number of 20 users are asked to install the smartphone
app and collect data on their Android smartphones. Four of the users have randomly selected
as CCP and two users as cleaning staff. Calgary Centre for Innovative Technology (CCIT)
building located in the University of Calgary (UofC) Campus is selected as the test area of our
experiment. Figure 9 shows the 3rd-floor plan of the CCIT building, BLE beacons’ locations,
and connection between indoor cells. For this experiment, 41 BLE beacons from six different
BLE beacon manufacturers are utilized in 41 indoor cells. Table 3 lists the details of different
types of BLE beacons used in our experiment, as shown in Figure 10.

Figure 9. Floor plan of the third floor of Calgary Centre for Innovative Technology (CCIT) building.

https://aws.amazon.com/iam/
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Table 3. Details of BLE beacons used in real-world experiment.

BLE Beacon Type Manufacturer No. of BEL Beacons
in Experiment

Bluetooth Beacon Estimote (https://estimote.com/) 8

IBKS PLUS Accent Systems
(https://accent-systems.com/) 8

IBKS 105 Accent Systems 9
IBS CARD Accent Systems 7

RadBeacon Dot Radius Networks
(Https://www.radiusnetworks.com/) 5

RadBeacon Chip Radius Networks 4

Figure 10. Six different types of BLE beacons from three different BLE manufacturers used in
real-world experiment.

The smartphone app’s main responsibilities are measuring RSSI values for all visible
BLE beacons, conducting trajectory segmentation, and pushing data records to the cloud
data storage. Figure 11a,b show the User Interface (UI) of the developed smartphone
app when it is capturing RSSI of a Bluetooth Estimote and an IBKS PLUS BLE beacon,
respectively. In the real-world experiment, all users were asked to spend four hours on
25 July 2020 in the CCIT building. A GeoJSON payload showing a single enriched PoS
captured by the developed smartphone app is shown in Figure A3. In this experiment,
a total of 582 PoS records were received in the AWS IoT Core. The ultimate goal of our
real-world experiment is to evaluate the functionality of the proposed graph-based data
model in the contact tracing application.

6.2. Validating Semantic Indoor Movement Trajectories

In the real-world experiment, we designed an experiment to directly detect semanti-
cally invalid indoor movement trajectory caused by additional, missing or unstable RSSI
data. Considering topological relations between indoor cells (i.e., logical connectivity
graph) extracted from OGC IndoorGML, they can largely eliminate semantically invalid
trajectory segments. In this research, a logical connectivity graph in dual space is con-
sidered in the AWS Lambda function to filter semantically invalid trajectory segments.
The applied algorithm is shown in Appendix E.6. Figure 12 shows the semantic hierarchical
spatial data model and connections (in the Neo4J database) of CCIT building, including OGC
IndoorGML cells, in-layer, and inter-layer relations.

https://estimote.com/
https://accent-systems.com/
Https://www.radiusnetworks.com/
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Figure 11. The user interface of the developed app on Samsung Galaxy S9 smartphone capturing the
proximity of a user from (a) Bluetooth Estimote beacon (b) IBKS PLUS beacon.

Figure 12. Hierarchical spatial graph-based representation of the 20 selected building including
OGC IndoorGML cells (green circles), floor (red circle), building (blue circle), inter-layer topological
connections among IndoorGML cells (gray arrows), intra-layer topological connections among
IndoorGML cells and their corresponding floor (light blue arrows), and intra-layer topological
connections floor and corresponding building (red arrow).

6.3. Simulation Data Sets

In addition to the real-world experiment, a simulation is developed to generate users’
trajectories for the same building setting. To generate synthesized indoor trajectories,
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CLI (Command-Line Interface) application with Node.js is developed. The source code
of the developed Node CLI application is publicly available on GitHub (https://github.
com/soroushojagh/Indoor_Trajectory_Data_Analysis). In this application, the logical
connectivity graph between indoor cells extracted from OGC IndoorGML is considered to
synthesize semantically valid indoor movement trajectories. The Random Walk technique,
as a stochastic approach, is used to synthesize random indoor movement trajectories for
20,000 users. This simulated dataset contains 453,640 PoS records for all 20,000 users to
evaluate the proposed method using a higher number of users. However, as we did not
have the plan of many buildings at the UofC Campus, we consider all trajectories in the
same building for a two-week time period. In this simulated dataset, we considered 20% and
10% of users as CCP and cleaning staff types, respectively. So, there are 4000 CCP users and
1000 cleaning staff users in total in the simulated dataset. Simulated indoor movement trajecto-
ries of all 20,000 users are publicly available in GitHub (https://github.com/soroushojagh/
Indoor_Trajectory_Data_Analysis/tree/master/Data/User_Trajectories) for further
trajectory analysis.

6.4. Data Privacy

The Amazon user and identity pools were used as a fully managed service for user
authentication and authorization respectively. For the Amazon user pool, a unique iden-
tification (ID) token was assigned to each smartphone user in order to keep the user
anonymous. With regards to the Amazon identity pool, user access to back-end services
were managed based on their authorization. Additionally, users have full control over
what data they are willing to share with the cloud. To be more precise, they can stop
sharing information with the cloud whenever they choose not to. Additionally, by using
user authorization controls, no user is allowed to trace the location of other users. Any
user requests for possible contact with diagnosed carriers will receive only the results of
the trajectory analysis. Since no further information will be provided for users regarding
the time and place they were potentially exposed, the trajectory and ID token of diagnosed
carriers will remain anonymous.

6.5. Data Visualization Tool

For the visualization purpose of this research, SensorUp Explorer is used as a spa-
tiotemporal web dashboard developed by SensorUp Inc. A short demonstration video of
live trajectory data visualization in SensorUp Explorer and Amazon DynamoDB for this
research’s real-world experiment is shown in Video S1.

6.6. Storing Semantic Indoor Trajectories

Considering the concept of the semantic indoor trajectory (2), a temporal sequence
of PoSs is stored in the Neo4j graph database. Each PoS reflects a node with relation to
user context and proximity zone. This node is labelled as a Check-in type with temporal
information and user-related metadata properties. As an example, consider the situation
that user u1 entered the proximity zone of B1 in time t1 and stayed there for ∆1 seconds
and finally left this proximity zone in time t2. In this example, a Check-in type of node like
ch1 is created in the Neo4j database. This node has two relationships. The first relationship
shows the relation of ch1 with user 1 who has created such a PoS. Meanwhile, the second
relationship shows the relation between ch1 with the OGC IndoorGML cell hierarchy.
This node also has temporal properties, including entrance time, duration of stay, and exit
time. The indoor semantic trajectory of u1 in a real-world experiment is shown in Figure A4.
etails of the number of PoSs, nodes, and relationships stored in the Neo4j graph database
in both real-world and simulated experiments are summarized in Table 4.

https://github.com/soroushojagh/Indoor_Trajectory_Data_Analysis
https://github.com/soroushojagh/Indoor_Trajectory_Data_Analysis
https://github.com/soroushojagh/Indoor_Trajectory_Data_Analysis/tree/master/Data/User_Trajectories
https://github.com/soroushojagh/Indoor_Trajectory_Data_Analysis/tree/master/Data/User_Trajectories
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Table 4. Details of stored semantic indoor movement trajectory in the Neo4j graph database.

No. of Users No. of PoSs No. of Relations Total No. of Nodes

20 488 1149 551
200 4815 9803 5058
2000 47,783 95,739 48,826

20,000 453,640 907,453 473,683

6.7. Contact Tracing Application

In this section, a list of spatiotemporal trajectory data queries for the COVID-19
contact tracing application was selected. Each of the spatiotemporal queries was executed
in graph databases with different data sizes. It is worth mentioning that Cypher Graph
Query Language was used for this research as a declarative graph query language for the
Neo4j database.

Query 1 (Contaminated cells by a CCP): In this query, the goal is finding possibly
contaminated geospatial cells visited by a single CCP. According to [78], it is assumed
that only people who were in close contact with the user for longer than 15 min would be
possibly infected. Accordingly, a cell is contaminated if a CCP has visited it for more than
15 min. The Cypher code for this spatiotemporal query can be found in Appendix E.1.

Query 2 (Contaminated cells by all CCPs): This query is an aggregation on Query
1 for all CCPs. There are four, 40, 400, and 4000 CCPs in our real-world and simulated
databases, to be more precise.

Query 3 (Temporally constrained contaminated cells by all CCPs): In this query,
the list of contaminated cells (i.e., coming from Query 2) is filtered by a selected time
window. For example, the Cypher code to find all contaminated cells visited by CCPs from
2020-07-25T02:29:52.461Z to 2020-07-25T02:58:59.461Z can be found in Appendix E.2.

Query 4 (Contact tracing for a single CCP): This query uses the contact tracing method
proposed by [9,17] to analyze person-to-person contacts for 15 min duration of time in a
commonly visited cell. A list of possibly infected users by considering their contacts with a
single CCP user is reported.

Query 5 (Contact tracing for all CCPs): This query is an aggregation on Query 4 for
all CCPs. This query will prove that our proposed data model is able to consider all CCPs
instead of a single CCP. So, a list of possibly exposed users who were in close contact with
each of the CCPs for longer than 15 min will be reported in this query. The algorithm of
this query is presented in Algorithm 1. The Cypher code for this query can be found in
Appendix E.3.

Algorithm 1: Contact Tracing

Input: SMT for all CCP and all ordinary users
Output: A list of possibly infected users

Initialize:
1. cCells[]← Visitedcells by all CCPS f or 15 minutes(Query 2)
2. oCells[]← Visitedcells by ordinary users f or 15 minutes
3. pIn f ectedUsers← []
4. For Each ordinary user As uo :
5. For Each oCell ∈ oCells :
6. If (oCell ∈ cCells)
7. If (∆CCP ∩ ∆uo ≥ 15 minutes)
8. pIn f ectedUsers ← uo
9. RETURN pIn f ectedUsers

Query 6 (Temporally constrained contact tracing for all CCPs): This query is similar to
Query 5 and the results of Query 5 are filtered for a specific time window. For example,
a list of possibly infected users who were in close contact with all of CCPs within a selected
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time window from 2020-07-25T02:29:52.461Z 2020-07-25T02:58:59.461Z is reported in this
spatiotemporal query.

Query 7 (Contaminated cells considering cleaning activity): This query is similar to
Query 2 filtered by cleaning activities. Visiting a contaminated place by a cleaner in a
sequential order is assumed as a disinfected place (i.e., not-contaminated status) in our
proposed method. For example, if a CCP user visits a cell and then it is cleaned by a cleaning
user, it is assumed that this cell will not be classified as a contaminated cell to transmit the
coronavirus further. The Cypher code for this query can be found in Appendix E.4.

Query 8 (Enhanced contact tracing): In this query, the person-to-place way of coro-
navirus transmission, the sequential order of visiting places, and the disinfection history
of places will be incorporated in the contact tracing application. This query shows the
flexibility of our proposed data model to consider additional parameters in COVID-19
contact tracing. The algorithm of this query is presented in Algorithm 2. The Cypher code
of this query can be found in Appendix E.5.

Algorithm 2: Contact Tracing

Input: SMT for a single CCP and all ordinary users
Output: A list of possibly infected users

Initialize:
1. cCells[]← Visited cells by CCPS f or 15 minutes(Query 2)
2. tc ← CCP EntracnceTime
3. oCells[]← Visited cells by ordinary user uo f or 15 minutes
4. to ← Ordinary user EntracnceTime
5. dCells[]← Disin f ected cells by all disin f ecting users ud
6. td ← Disin f ecting user ExitTime
7. pIn f ectedUsers← []
8. For Each ordinary user :
9. For Each oCell ∈ oCells :
10. If (oCell ∈ cCells) :

11.
If NOT[oCell ∈

dCell AND MAX (tc|tc < to) < MAX (td|td < to)AND MAX (td|td < to) < to] :
12. pIn f ectedUsers ← uo
13. RETURN pIn f ectedUsers

7. Results and Discussion
7.1. Validating Indoor Real-World Trajectories

Extracting semantically invalid indoor movement trajectories is evaluated as the third
aim of this research. In our real-world experiment, all 20 users were asked to keep track
of all visited BLE beacons in their proximity zone using unique BeaconIDs that were writ-
ten on each BLE beacon (as shown in Figure 11. These reported BeaconIDs data were
used as ground truth indoor movement trajectories. For the real-world experiment, a total
of 582 PoSs was detected by all users. After comparing PoS records stored on Amazon
DynamoDB and ground truth trajectories, 34 PoS records were determined to be invalid
PoSs. Invalid PoS records were caused by missing or unstable RSSI values measured by
the smartphone app. After applying our developed preprocessing algorithm in an AWS
Lambda function (as demonstrated in Appendix E.6), 31 PoSs were recognized as invalid
PoS records. The results of applying the preprocessing algorithm on the indoor move-
ment trajectory in real-world experiments are shown as a confusion matrix in Table 5.
From Table 5, it can be concluded that the preprocessing algorithm detected 73.53 percent
of the semantically invalid PoS records. The missing false-negative cases in our prepro-
cessing algorithm were caused by multiple connections (links) between the PoS records.
After removing all of the 31 noisy PoSs reported by the developed preprocessing algorithm,
another 551 nodes were loaded into the Neo4j graph database. For instance, there are
three topological connections between the cells in the building test area of our experi-
ment (Figure 9)“301Z-3”, “301Z-4”, and “301Z-5”. In the ground truth trajectory, the user
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moved from “301Z-3” to “301Z-5”. However, the smartphone measurements showed
this trajectory: [301Z-3, 301Z-4, 301Z-5]. Therefore, based on the ground truth trajectory,
“304Z-4” is an invalid trajectory point. However, the proposed preprocessing method
cannot detect this point since it is topologically connected to the other two trajectory points.
Figure 13 shows these cells and trajectory points for both the ground truth and experiment.
“301Z-4” is invalid with regard to the ground truth.

Table 5. Confusion matrix for preprocessing indoor trajectory method.

Ground-Truth Trajectory
Valid Nodes Invalid Nodes

Preprocessed
Trajectory

Valid Nodes 551 34
Invalid Nodes 554 31

Figure 13. Representation of an existing situation in which the developed preprocessing algorithm
cannot detect invalid trajectory point: dashed lines show ground-truth and solid line shows collected
data from our experiment.

7.2. COVID-19 Contact Tracing Results

To evaluate the paper’s second contribution, the proposed semantic graph-based data
model’s functionality is evaluated in contact tracing applications (discussed in Section 6).
Each query was executed a hundred times on four different Neo4j graph databases with a
different number of nodes. The first database consists of real-world movement trajectories
collected by 20 users with 551 nodes. Simultaneously, the rest three databases are simu-
lated trajectories, including 200, 2000, and 20,000 users with 5058, 48,826, and 473,683 nodes,
respectively. To show the graph database query execution time for various nodes, the per-
formance results of Query 4 are reported in Table 6 as an example. Detailed information,
including minimum, average, and standard deviation of all query execution on all four
databases are listed in Table A1 For visualizing the performance results, the average and
standard deviation of the first three databases are represented in Figure 14.

According to the study done by Silva, F. D., [79], graph size plays an essential role in
query execution time. As the general trend, it can be seen that query execution time for all
queries increases with the increasing number of nodes. Looking further into average query
execution times reveals increasing the number of nodes 100 times for Query 1, 2, 3, 5, and 7
leads to a rise in the average query execution time by almost less than ten times. While this
statistic for Query 6 and 8 is almost 20 and 80 times, respectively.

Table 6. Query 4 (contact tracing) execution time for different sizes of the graph databases.

No. of Nodes
Query 4 Execution Time (ms)

Minimum Average Standard Deviation

551 2.00 2.98 8.24 × 10−1

5058 3.00 5.02 1.17
48,826 6.30 × 10 3.52 × 10 1.77 × 10
473,683 3.61 × 102 4.28 × 102 3.47 × 10
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Figure 14. Representation of executing trajectory data analysis for 100 times in the Neo4j graph
database with 551, 5058, and 48,826 nodes: (a) Showing average query execution time in milliseconds
for different trajectory data analysis, (b) Representing standard deviation of query execution time in
milliseconds for different trajectory analysis.

As seen in Figure 14a, the average execution time for Query 8 (person-to-place contact
tracing) is relatively more extensive than other queries. For Query 8, the average query
execution time for databases with 0.5k and 5k nodes is less than 20 milliseconds. An in-
creasing number of nodes from almost 5k to 50k results in a rise of almost less than six
times for all queries in different sizes of databases. Similarly, as seen in Table A1, increasing
the number of nodes from 50k to 500k results in the same for all queries except Query 8.
For Query 8, an increasing number of nodes from 50k to 500k results in a considerable rise
by almost 38 times of average execution time. So, it can be concluded that Query 8 would be
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more sensitive than other queries to the number of nodes as it is based on the person-to-place
contact tracing application.

Looking further into details shows that queries focused on a group of users (e.g., Query 2)
require more average execution time than similar queries that are focused only on a single
user (e.g., Query 1 with a focus on a single CCP). It can also be concluded when the number
of query trajectories increases 400 times, the required query execution time increases almost
ten times. Additionally, it can be seen that applying temporal constraints on queries (e.g.,
Query 3) leads to less required query execution time. Considering temporal indexing
for trajectory type of nodes is the underlying reason for this reduction in average query
execution time.

As seen in Figure 14b, the standard deviation of query execution time increases by
increasing the number of nodes for all queries. The largest standard deviation between
all queries in three different databases is for Query 8 with 18.1 milliseconds. It can be
concluded that Query 8 has the lowest precision for databases with 5k and 50k nodes.
However, this Query has the highest precision in the database with 0.5k nodes. Moreover,
although the standard deviation of Query 4 slowly increases with an increase in the number
of nodes, it has the lowest rate of change among all queries. So, it can be concluded that
Query 4 has the lowest sensitivity with regard to the size of databases.

7.3. Enhanced COVID-19 Contact Tracing Results

As discussed earlier, the use of user location history and an overlapping time window
of 15 minutes are proposed for the state-of-the-art digital tracing app [9,17]. For this
research, Query 5 is designed to consider all of the aforementioned factors in the people-
to-people contact tracing application. Query 8 is designed to consider the people-to-place
method of coronavirus transmission, sequential order of visiting places, and disinfection
history of places. Those queries were conducted in the Neo4j databases with different
number of nodes. Experimental results show that the number of reported possible COVID-
19 infected users decreased in Query 8 in comparison to Query 5 (Figure 15) Query 8
successfully filtered 44.98 percent of users who were reported by Query 5 after applying
the disinfecting history of the rooms. However, the average execution time of Query 8
increased by 58.3 percent (Table 7).

Figure 15. Number of possible COVID-19 infected users reported by different contract tracing
applications in the Neo4j database with different number of nodes.

Table 7. Comparison of average execution time for Query 5 (contact tracing) and Query 8 (enhanced
contact tracing).

Spatiotemporal Queries
Average Query Execution Time in Milliseconds

Minimum Average Standard Deviation

Query 5 4.37 × 10 6.26 × 10 4.58

Query 8 8.76 × 10 9.91 × 10 7.48



ISPRS Int. J. Geo-Inf. 2021, 10, 2 25 of 34

In this experiment, we considered 10 percent of the users as providing cleaning
activities. In another experiment, a different number of cleaning users is evaluated to show
the importance of disinfecting activities in coronavirus transmission. A simulated dataset
with 20,000 users is evaluated by considering three different percentages (i.e., 5 percent,
10 percent, and 20 percent) of users as cleaners. As shown in Figure 16 disinfecting activities
reduce the number of possible COVID-19 infected users in Query 8 by 20.06 percent,
32.34 percent, and 48.16 percent when 5 percent, 10 percent, and 20 percent of the users are
considered as cleaning users. It can be concluded that the sequential order of disinfecting
activities has a considerable effect on the COVID-19 contact tracing application. In other
words, the task of conducting the COVID-19 medical test for the number of possibly
exposed users can be decreased by considering disinfecting activities. Our proposed graph
data model provides the ability to incorporate this factor for the contact tracing application.

Figure 16. Number of possible COVID-19 infected users reported by Query 8 in the Neo4j database
with 20,000 users and different percentages: 5 percent, 10 percent, and 20 percent of cleaning users.

8. Conclusions and Future Work

This paper introduces a graph-based semantic indoor trajectory data model that can
be utilized in different indoor trajectory analyses. The OGC IndoorGML standard and its
multi-layer space model are incorporated in the proposed data model for the semantic seg-
mentation of raw indoor movement trajectories and hierarchical representation of cell spaces
in a building (i.e., BLE beacon coverage, rooms, category of rooms, floors, and buildings).
Three spatial, temporal, and contextual hierarchical structures were considered in the
proposed data model in order to support different granularity levels for trajectory data
representation. The digital COVID-19 contact tracing problem was selected as a use case
for this research in order to prove the functionality of the proposed data model for tra-
jectory data analysis. There is a large body of research concentrating on contact tracing
applications in person-to-person scenarios for outdoor settings. Hence, this paper focuses
instead on indoor settings and both person-to-person and person-to-place scenarios in
order to expand state-of-the-art digital contact tracing.

Two experiments were designed to evaluate the main contribution of this research.
A smartphone app was developed to collect raw movement trajectories from 20 users for
the first real-world experiment. A total of 41 BLE beacons of various types were deployed
in a building at the UofC Campus with the assumption that at least one beacon was de-
ployed in each room. Amazon Cloud Web Services was incorporated in order to implement
scalable data storage and data management in the Amazon cloud. Taking the logical con-
nectivity graph extracted from OGC IndoorGML into consideration, a filtering algorithm
was proposed to clean up the trajectory data. Using the proposed filtering algorithm in
the real-world experiment, 73.53 percent of the semantically invalid trajectory points were
detected and filtered. In order to further evaluate the performance of the proposed data
model, three simulated datasets were generated with 200, 2000, and 20,000 users and a
logical connectivity graph in dual spaces considered. The evaluation results of contact
tracing applications in both real-world and simulated experiments illustrated that the pro-
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posed graph-based data model could be effectively applied even for the most complicated
contact tracing queries. The average query execution time of all of the contact tracing
applications in the real-world experiments was less than five milliseconds with an average
standard deviation of less than one millisecond. However, the average query execution
time increased when the number of nodes in the simulated experiments increased.

For this research, the COVID-19 contact tracing application is selected to evaluate
the proposed data model’s functionality in indoor environments. The effectiveness of a
digital contact tracing system depends on various factors such as public adoption [80].
Different factors such as privacy, the government’s level of enforcement to use the system,
and transparency in data storage and re-use can influence the public adoption of a digital
contact tracing system [33,80]. Although assessing the effectiveness of digital contact
tracing systems is out of our research scope, evaluating the success of contact tracing
systems is required for future pandemics. Additionally, we focused only on indoor envi-
ronments as they are the most complicated type of physical environments. A seamless
positioning system providing seamless outdoor and indoor location information could be
an exciting topic for future study. The proposed filtering algorithm in this research detects
semantically invalid trajectory points but cannot improve the trajectories using possible
logical connection. Further research is required to develop a trajectory reconstruction
approach based on the IndoorGML connectivity graph, beacon coverage, and traverse
time between cell spaces. In this research, a BLE-based proximity positioning system is
deployed in an indoor environment to determine users’ location for indoor spatiotem-
poral trajectories. Environmental factors such as indoor furniture cause reflecting and
blocking the signal and impose inaccuracies on proximity estimations. So, evaluating the
accuracy provided by the proximity positioning system is on hold for future work. User privacy
and data secrecy protection is another direction for future research as well, especially in
relation to user privacy in the cloud. In order to apply the proposed contact tracing ap-
plication to a large-scale product that can be adopted by the public, detailed, scalable user
privacy research needs to be conducted. Although privacy protection is outside this paper’s
scope, basic authentication and security authorization preserving techniques and user ID
anonymization were applied to the proposed contact tracing application. Various user
contexts (e.g., cleaning activities and job type) can be automatically extracted without
human intervention [68,81]. Although user contexts are manually selected in this research,
investigating automatic context extraction approaches can improve the scalability of the
proposed systems and is on hold for future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/2220-9964/
10/1/2/s1. Video S1: Live trajectory data visualization in SensorUp Explorer and Amazon DynamoDB.
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Appendix A.

Considering the importance of disinfecting activities to reduce the risk of being
exposed to the virus [4], individuals are strongly recommended by health organizations to
sanitize the immediate space around them after each use [82,83]. As an example scenario,
the importance of disinfecting activities in common areas and public spaces such as lobbies
is shown in Figure A1. In Figure A1a the transmission of SARS-CoV-2-laden droplets
from an infected host is shown. As illustrated in Figure A1b the immediate vicinity of
the infected host is contaminated by droplets and then sanitized using a disinfectant
wipe in Timestamp2. However, as shown in Figure A1c there are surfaces that are still
contaminated and allow the susceptible host to be exposed by the virus in Timestamp3.
As shown in Figure A1d the well-trained cleaning staff disinfects the contaminated objects
using the right equipment (e.g., electrostatic spray) in Timestamp4. As seen in this scenario,
disinfecting activities and temporal sequence of visiting common areas are required to be
considered in digital contact tracing. In this example, considering the disinfecting activities
and temporal sequence of visiting a common area, the susceptible host needs to be notified
by the digital contact tracing system. If we assume that Timestamp4 (i.e., Figure A1d)
occurred before Timestamp3 (i.e., Figure A1c) in the example scenario, there is no need to
notify the susceptible host in the digital contact tracing system.

Figure A1. The impact of disinfecting activities to prevent further spread of the SARS-CoV-2 virus:
(a) Showing transmission of SARS-CoV-2-laden droplets caused by an infected host; (b) Showing
possibly contaminated surfaces in the immediate vicinity of the infected host and disinfected areas
after sanitizing; (c) Showing objects that are still contaminated and allow the susceptible host to
be exposed by the virus, and (d) Showing disinfected area after sanitizing contaminated objects by
cleaning staff.

Appendix B.

In the context of COVID-19 spread, there might exist many situations where indi-
viduals are located close to each other while physically separated by obstructions such
as walls and glasses. As shown in Figure A2, two individuals are located close to each
other but physically separated (i.e., a user is inside a building while the other is in a bus
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stop). Considering SARS-CoV-2 transmission ways, physical obstructions in between users
can stop virus transmission. Existing obstructions in between BLE beacon and receiver
(e.g., smartphone) attenuate the radio signal. For more information on signal attenuation
and the impact of different materials on RSSI values, interested readers can refer to the
study conducted by Çaliş et al. [84]. As shown in Figure A2, reduced signal strength in BLE
technology can represent existing obstructions between users. In contrast, GNSS cannot
consider existing physical obstructions among individuals [17].

Figure A2. Representation of the difference between BLE and GNSS technology to consider phys-
ical obstructions among; The gradient color schematically illustrates radio signal strength in BLE
technology (i.e., purple and white colors represent the strongest and weakest radio signal strength).

Appendix C.

A JSON payload showing a single POS record captured by the developed smartphone
app and received in the cloud AWS IoT Core is shown in Figure A3.

Figure A3. A single JavaScript Object Notation (JSON) payload showing the Place of Stay (POS)
record of one of the users received in the Amazon Web Services (AWS) IoT Core.

Appendix D.

Related experimental images for this research are shown in this Appendix.
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Figure A4. An example of user trajectory modelled by the proposed graph-based semantic indoor
trajectory in a real-world experiment using Neo4j graph database for user a single user (i.e., user
1). Nodes are illustrated as circles with different colors: Blue for building, red for floor, green for
cells, yellow for trajectory (the number shows the duration of time in seconds for each check-in),
and purple for user nodes.

Appendix E.

This Appendix is focused on the Cypher code representation of the indoor trajectory
queries in the Neo4j graph database.

Appendix E.1. Query 1

The Cypher code of Query 1 and execution of this query in Neo4j is represented in
this subsection.

Cypher Code

MATCH (c:Cell)<-[[]-(ch:CheckIn)-[[]->(u:User)
WHERE u.UserID = ‘2’ AND ch.Duration > 900//Duration of 15 minutes
MATCH (c)-[:CellFloorParent]->(f:Floor)
MATCH (f)-[:FloorBuildingParent]->(b:Building)
RETURN DISTINCT c.CellID AS Infected_Geospatial_Zone, f.FloorID AS Infected_Floor,
b.BuildingID AS Infected_Building

Figure A5. The results of executing Query 1 in the Neo4j graph database with 551 nodes and
1149 relationships: the first column of results shows contaminated indoor cells, while the second and
third columns show the floor and building in the hierarchical graph data model.
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Appendix E.2. Query 3
The Cypher code of Query 3 is represented in this subsection.

Cypher Code

MATCH (c:Cell)<-[[]-(ch:CheckIn)-[[]->(u:User)
WHERE u.UserHealthStatus = ‘COVID19’ AND ch.ExitTime > 1911608974461 AND ch.ExitTime < 1911610721461//GPS Epoch
Time of 2020-07-25T02:29:52.461Z and 2020-07-25T02:58:59.461Z
MATCH (c)-[:CellFloorParent]->(f:Floor)
MATCH (f)-[:FloorBuildingParent]->(b:Building)
RETURN DISTINCT c.CellID AS Infected_Geospatial_Zone, f.FloorID AS Infected_Floor, b.BuildingID AS Infected_Building

E.3. Query 5
The Cypher code of Query 5 is represented in this subsection.

Cypher Code

MATCH (c:Cell)<-[[]-(ch:CheckIn)-[[]->(u:User)
MATCH (u2:User)<-[[]-(ch2:CheckIn)-[[]->(c2:Cell)
WHERE u.UserHealthStatus = ‘COVID19’ AND u <> u2 AND c = c2 AND ((ch.EntranceTime > ch2.EntranceTime and
ch.EntranceTime < ch2.ExitTime) OR (ch2.EntranceTime > ch.EntranceTime AND ch2.EntranceTime < ch.ExitTime))
AND(ch.Duration*1000 + ch2.Duration*1000 - ABS(ch2.EntranceTime-ch.EntranceTime)-ABS(ch2.ExitTime-ch.ExitTime))/
2 > 900*1000
RETURN DISTINCT u.UserID AS COVID19_User,u2.UserID AS Possibly_Infected_User,c2.CellID AS Infected_Geospatial_Zone

E.4. Query 7
The Cypher code of Query 7 is represented in this subsection.

Cypher Code

MATCH (c:Cell)<-[[]-(ch:CheckIn)-[[]->(u:User)
MATCH (c2:Cell)<-[[]-(ch2:CheckIn)-[[]->(u2:User{JobType:”Cleaning_Staff”})
WHERE u.UserHealthStatus = ‘COVID19’ AND u<>u2 AND c = c2 AND ch.ExitTime < ch2.EntranceTime
MATCH (c)-[:CellFloorParent]->(f:Floor)
MATCH (f)-[:FloorBuildingParent]->(b:Building)
RETURN DISTINCT c.CellID AS Infected_Geospatial_Zone, f.FloorID AS Infected_Floor,b.BuildingID AS Infected_Building,
u.UserID AS COVID19_User

E.5. Query 8
The Cypher code of Query 8 is represented in this subsection.

Cypher Code

MATCH (c:Cell)<-[[]-(ch:CheckIn)-[[]->(u:User)
MATCH (u2:User)<-[[]-(ch2:CheckIn)-[[]->(c2:Cell)
MATCH (uc:User{JobType: “Cleaning_Staff”})<-[[]-(ch3:CheckIn)-[[]->(c3:Cell)
WHERE u.UserHealthStatus = ‘COVID19’ AND NOT u2.JobType = “Cleaning_Staff” AND NOT u2.UserHealthStatus = “COVID19”
AND u<>u2 AND u2 <> uc AND c = c2 AND c = c3 AND NOT (ch3.EntranceTime < ch.EntranceTime AND ch3.ExitTime <
ch2.EntranceTime)RETURN u2.UserID As Possibly_Infected_Users
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E.6. Semantically Valid Trajectory Extraction
The applied Algorithm 3 to extract the semantically valid indoor movement trajectory is represented in this section.

Algorithm A1: Extracting semantically valid indoor movement trajectory

Input:
A temporal sequence of indoor cells c for a user as a moving object having size = n:
S = [〈c0, t0〉, 〈c1, t1〉, . . . , 〈cn, tn〉] in which t0 < t1 < . . . < tn
The adjacency matrix Mj×j showing connectivity between indoor cells in which j is the size of indoor cell:

Mi,j =

{
1 i f there is an inter− layer connection between cell ci and cj
0 otherwise

Output: Semantically valid trajectory Ŝ having size = m
Initialize:
Ŝ← []
Ŝ0 ← S0
counter ← 1
while counter <

if MŜ[m−1]×S[counter] == 1
Ŝ[m]← S[counter]

counter ++
End-while
Return Ŝ

Table A1. Details of query execution time for trajectory queries in Neo4j graph database with different
sizes.

Spatiotemporal Queries No. of Nodes
Query Execution Time in Milliseconds

Minimum Average Standard Deviation

Query 1

551 1.00 2.02 7.74 × 10−1

5058 2.00 3.82 1.33
48,826 4.00 9.05 3.13
473,683 4.00 1.36 × 10 5.96

Query 2

551 1.00 3.05 1.46
5058 5.00 7.90 2.13

48,826 2.20 × 10 3.55 × 10 7.72
473,683 3.11 × 102 3.49 × 102 2.01 × 10

Query 3

551 1.00 1.49 5.00 × 10−1

5058 3.00 4.91 1.37
48,826 2.00 1.51 × 10 8.10
473,683 2.00 3.12 × 10 1.50 × 10

Query 4

551 2.00 2.98 8.24 × 10−1

5058 3.00 5.02 1.17
48,826 6.30 × 10 3.52 × 10 1.77 × 10
473,683 3.61 × 102 4.28 × 102 3.47 × 10

Query 5

551 3.00 5.02 1.46
5058 8.00 1.07 × 10 1.73

48,826 1.60 × 10 9.02 × 10 1.06 × 10
473,683 1.04 × 102 1.46 × 102 2.53 × 10

Query 6

551 3.00 3.43 4.95 × 10−1

5058 1.00 × 10 1.29 × 10 2.05
48,826 4.80 × 10 7.24 × 10 1.42 × 10
473,683 4.96 × 102 5.29 × 102 1.85 × 10

Query 7

551 1.70 × 10 1.85 × 10 1.06
5058 2.10 × 10 2.44 × 10 2.41

48,826 4.20 × 10 5.58 × 10 8.23
473,683 6.00 × 10 9.01 × 10 1.83 × 10

Query 8

551 2.00 3.00 8.37 × 10−1

5058 3.10 × 10 3.62 × 10 3.54
48,826 2.30 × 102 2.58 × 102 1.81 × 10
473,683 9.19 × 103 1.03 × 104 6.26 × 10



ISPRS Int. J. Geo-Inf. 2021, 10, 2 32 of 34

References
1. Whitelaw, S.; Mamas, M.A.; Topol, E.; Van Spall, H.G. Applications of digital technology in COVID-19 pandemic planning and

response. Lancet Digit. Health 2020, 2, e435–e440. [CrossRef]
2. Guinchard, A. Our digital footprint under Covid-19: Should we fear the UK digital contact tracing app? Int. Rev. Law

Comput. Technol. 2020, 1–14. [CrossRef]
3. Kampf, G.; Lemmen, S.; Suchomel, M. Ct values and infectivity of SARS-CoV-2 on surfaces. Lancet Infect. Dis. 2020. [CrossRef]
4. Mondelli, M.U.; Colaneri, M.; Seminari, E.M.; Baldanti, F.; Bruno, R. Low risk of SARS-CoV-2 transmission by fomites in real-life

conditions. Lancet Infect. Dis. 2020. [CrossRef]
5. Medicine, T.L.R. COVID-19 transmission—Up in the air. Lancet. Respir. Med. 2020, 8, 1159. [CrossRef]
6. World Health Organization. Coronavirus Disease (COVID-19): How Is It Transmitted? Available online: https://www.who.int/

news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (accessed on 12 December 2020).
7. Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730.

[CrossRef] [PubMed]
8. Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.;

Thornburg, N.J.; Gerber, S.I. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020,
382, 1564–1567. [CrossRef]

9. He, H.; Li, R.; Wang, R.; Bao, J.; Zheng, Y.; Li, T. Efficient Suspected Infected Crowds Detection Based on Spatio-Temporal
Trajectories. arXiv, 2020; arXiv:2004.06653.

10. Riemer, K.; Ciriello, R.; Peter, S.; Schlagwein, D. Digital contact-tracing adoption in the COVID-19 pandemic: IT governance for
collective action at the societal level. Eur. J. Inf. Syst. 2020, 1–15. [CrossRef]

11. Ahmed, N.; Michelin, R.A.; Xue, W.; Ruj, S.; Malaney, R.; Kanhere, S.S.; Seneviratne, A.; Hu, W.; Janicke, H.; Jha, S.K. A survey of
covid-19 contact tracing apps. IEEE Access 2020, 8, 134577–134601. [CrossRef]

12. Braithwaite, I.; Callender, T.; Bullock, M.; Aldridge, R.W. Automated and partly automated contact tracing: A systematic review
to inform the control of COVID-19. Lancet Digit. Heal. 2020, 2, e607–e621. [CrossRef]

13. Kumar, K.; Kumar, N.; Shah, R. Role of IoT to avoid spreading of COVID-19. Int. J. Intell. Netw. 2020, 1, 32–35. [CrossRef]
14. OpenTrace. OpenTrace. Available online: https://github.com/opentrace-community (accessed on 3 October 2020).
15. CovidSafe. CovidSafe. Available online: https://github.com/AU-COVIDSafe (accessed on 3 October 2020).
16. PACT. East Coast. Available online: https://pact.mit.edu/ (accessed on 3 October 2020).
17. Berke, A.; Bakker, M.; Vepakomma, P.; Raskar, R.; Larson, K.; Pentland, A. Assessing disease exposure risk with location data;

A proposal for cryptographic preservation of privacy. arXiv, 2020; arXiv:2003.14412.
18. Morawska, L.; Milton, D.K. It is time to address airborne transmission of COVID-19. Clin. Infect. Dis. 2020, 6, ciaa939. [CrossRef]
19. Jensen, C.S.; Lu, H.; Yang, B. Graph model based indoor tracking. In Proceedings of the 2009 Tenth International Conference on

Mobile Data Management: Systems, Services and Middleware, Taipei, Taiwan, 18–20 May 2009; pp. 122–131.
20. Alattas, A.; van Oosterom, P.; Zlatanova, S.; Hoeneveld, D.; Verbree, E. LADM-IndoorGML for exploring user movements in

evacuation exercise. Land Use Policy 2020, 98, 104219. [CrossRef]
21. Gu, F.; Valaee, S.; Khoshelham, K.; Shang, J.; Zhang, R. Landmark Graph-based Indoor Localization. IEEE Internet Things J. 2020,

7, 8343–8355. [CrossRef]
22. Li, K.-J.; Conti, G.; Konstantinidis, E.; Zlatanova, S.; Bamidis, P. OGC IndoorGML: A standard approach for indoor maps.

In Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 187–207.

23. Centers for Disease Control and Prevention. Cleaning and Disinfection for Households Interim Recommendations for US
Households with Suspected or Confirmed Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/
coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html (accessed on 28 March 2020).

24. Kontarinis, A.; Zeitouni, K.; Marinica, C.; Vodislav, D.; Kotzinos, D. Towards a Semantic Indoor Trajectory Model. 2019.
Available online: https://hal.archives-ouvertes.fr/hal-02314572/ (accessed on 28 March 2020).

25. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. (TIST) 2015, 6, 1–41. [CrossRef]
26. Parent, C.; Spaccapietra, S.; Renso, C.; Andrienko, G.; Andrienko, N.; Bogorny, V.; Damiani, M.L.; Gkoulalas-Divanis, A.;

Macedo, J.; Pelekis, N. Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 2013, 45, 1–32. [CrossRef]
27. Gómez, L.I.; Kuijpers, B.; Vaisman, A.A. Analytical queries on semantic trajectories using graph databases. Trans. GIS 2019,

23, 1078–1101. [CrossRef]
28. Spanier, E.H. Algebraic Topology; Springer Science & Business Media: New York, NY, USA, 1989.
29. Montjoye, Y.-A.; Radaelli, L.; Singh, V.; Pentland, A. Unique in the shopping mall: On the reidentifiability of credit card metadata.

Science 2015, 347, 536–539. [CrossRef]
30. Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-based indoor localization with bluetooth low energy beacons. Sensors

2016, 16, 596. [CrossRef] [PubMed]
31. Andrushchak, V.; Maksymyuk, T.; Klymash, M.; Ageyev, D. Development of the iBeacon’s Positioning Algorithm for Indoor

Scenarios. In Proceedings of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and
Technology (PIC S&T), Kharkiv, Ukraine, 9–12 October 2018; pp. 741–744.

http://dx.doi.org/10.1016/S2589-7500(20)30142-4
http://dx.doi.org/10.1080/13600869.2020.1794569
http://dx.doi.org/10.1016/S1473-3099(20)30883-5
http://dx.doi.org/10.1016/S1473-3099(20)30678-2
http://dx.doi.org/10.1016/S2213-2600(20)30514-2
https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
http://dx.doi.org/10.1016/j.envint.2020.105730
http://www.ncbi.nlm.nih.gov/pubmed/32294574
http://dx.doi.org/10.1056/NEJMc2004973
http://dx.doi.org/10.1080/0960085X.2020.1819898
http://dx.doi.org/10.1109/ACCESS.2020.3010226
http://dx.doi.org/10.1016/S2589-7500(20)30184-9
http://dx.doi.org/10.1016/j.ijin.2020.05.002
https://github.com/opentrace-community
https://github.com/AU-COVIDSafe
https://pact.mit.edu/
http://dx.doi.org/10.1093/cid/ciaa939
http://dx.doi.org/10.1016/j.landusepol.2019.104219
http://dx.doi.org/10.1109/JIOT.2020.2989501
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html
https://hal.archives-ouvertes.fr/hal-02314572/
http://dx.doi.org/10.1145/2743025
http://dx.doi.org/10.1145/2501654.2501656
http://dx.doi.org/10.1111/tgis.12556
http://dx.doi.org/10.1126/science.1256297
http://dx.doi.org/10.3390/s16050596
http://www.ncbi.nlm.nih.gov/pubmed/27128917


ISPRS Int. J. Geo-Inf. 2021, 10, 2 33 of 34

32. Ramadhan, H.; Yustiawan, Y.; Kwon, J. Applying Movement Constraints to BLE RSSI-Based Indoor Positioning for Extracting
Valid Semantic Trajectories. Sensors 2020, 20, 527. [CrossRef] [PubMed]

33. Simko, L.; Chang, J.L.; Jiang, M.; Calo, R.; Roesner, F.; Kohno, T. COVID-19 Contact Tracing and Privacy: A Longitudinal Study of
Public Opinion. arXiv, 2020; arXiv:2012.01553.

34. Bianconi, A.; Marcelli, A.; Campi, G.; Perali, A. Efficiency of COVID-19 mobile contact tracing containment by measuring
time-dependent doubling time. Phys. Biol. 2020, 17, 065006. [CrossRef]

35. Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C.
Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020,
368, eabb6936. [CrossRef]

36. Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvis, C.I.; Russell, T.W.; Munday, J.D.; Kucharski, A.J.; Edmunds, W.J.;
Sun, F. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Global Health 2020,
8, e488–e496. [CrossRef]

37. TeamSense. Empower the Deskless Members of Your Team. Available online: https://www.teamsense.com/features (accessed on
14 December 2020).

38. Governament of Canada. Download COVID Alert Today. Available online: https://www.canada.ca/en/public-health/services/
diseases/coronavirus-disease-covid-19/covid-alert.html (accessed on 14 December 2020).

39. Governament of Alberta. ABTraceTogether. Available online: https://www.alberta.ca/ab-trace-together.aspx (accessed on
14 December 2020).

40. Estimote. Workplace Safety with Wearables. Available online: https://estimote.com/wearable/?gclid=CjwKCAiAiML-
BRAAEiwAuWVggkJsbosByEODh11g7RBWrxIJ-XSIP5oGOfKhZ3z0F01_ONi9rKAUsBoCyF8QAvD_BwE (accessed on
14 December 2020).

41. Stevens, H.; Haines, M.B. TraceTogether: Pandemic Response, Democracy, and Technology. East Asian Sci. Technol. Soc. Int. J.
2020, 14, 523–532. [CrossRef]

42. SensorTower. TraceTogether. Available online: https://sensortower.com/ios/SG/government-technology-agency/app/
tracetogether/1498276074/overview (accessed on 12 December 2020).

43. Worldometer. Countries in the World by Population. 2020. Available online: https://www.worldometers.info/world-population/
population-by-country/ (accessed on 12 December 2020).

44. Governament of Singapore. TraceTogether, Safer Together. Available online: https://www.tracetogether.gov.sg/ (accessed on
12 December 2020).

45. Corona-Warn-App. Corona-Warn-App Open Source Project. Available online: https://www.coronawarn.app/en/ (accessed on
12 December 2020).

46. SensorTower. Corona Warning App. Available online: https://sensortower.com/ios/de/robert-koch-institut/app/corona-warn-
app/1512595757/overview (accessed on 12 December 2020).

47. Shubina, V.; Holcer, S.; Gould, M.; Lohan, E.S. Survey of Decentralized Solutions with Mobile Devices for User Location Tracking,
Proximity Detection, and Contact Tracing in the COVID-19 Era. Data 2020, 5, 87. [CrossRef]

48. Lewis, D.M. Coepi: Community Epidemiology in Action. 2020. Available online: https://www.coepi.org/ (accessed on
12 December 2020).

49. Fenwick, R.; Hittle, M.; Ingle, M.; Nash, O.; Nguyen, V.; Petrie, J.; Schwaber, J.; Szabo, Z.; Veeraghanta, A.; Voloshin, M. Sydney
Von Arx, and Tina White. Covid Watch. 2020. Available online: https://www.covidwatch.org/ (accessed on 12 December 2020).

50. Rong, C.; Lin, C.; Silva, Y.N.; Wang, J.; Lu, W.; Du, X. Fast and scalable distributed set similarity joins for big data analytics.
In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA,
19–22 April 2017; pp. 1059–1070.

51. Centre for the Mathematical Modelling of Infectious Diseases. Estimates for Singapore. Available online: https://epiforecasts.io/
covid/posts/national/singapore/ (accessed on 12 December 2020).

52. Centre for the Mathematical Modelling of Infectious Diseases. National and Subnational Estimates for Germany. Available online:
https://epiforecasts.io/covid/posts/national/germany/ (accessed on 12 December 2020).

53. Krumm, J.; Horvitz, E. Predestination: Inferring destinations from partial trajectories. In International Conference on Ubiquitous
Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 243–260.

54. Lee, J.-G.; Han, J.; Whang, K.-Y. Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, Beijing, China, 12–14 June 2007; pp. 593–604.

55. Arslan, M.; Cruz, C.; Ginhac, D. Semantic enrichment of spatio-temporal trajectories for worker safety on construction sites.
Pers. Ubiquitous Comput. 2019, 23, 749–764. [CrossRef]

56. Liu, C.; Guo, C. STCCD: Semantic Trajectory Clustering based on Community Detection in Networks. Expert Syst. Appl. 2020,
162, 113689. [CrossRef]

57. Sun, Y.; Gu, T.; Bin, C.; Chang, L.; Kuang, H.; Huang, Z.; Sun, L. A multi-latent semantics representation model for mining tourist
trajectory. In Pacific Rim International Conference on Artificial Intelligence; Springer: Cham, Switzerland, 2018; pp. 463–476.

58. Cai, G.; Lee, K.; Lee, I. Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos.
Expert Syst. Appl. 2018, 94, 32–40. [CrossRef]

http://dx.doi.org/10.3390/s20020527
http://www.ncbi.nlm.nih.gov/pubmed/31963592
http://dx.doi.org/10.1088/1478-3975/abac51
http://dx.doi.org/10.1126/science.abb6936
http://dx.doi.org/10.1016/S2214-109X(20)30074-7
https://www.teamsense.com/features
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html
https://www.alberta.ca/ab-trace-together.aspx
https://estimote.com/wearable/?gclid=CjwKCAiAiML-BRAAEiwAuWVggkJsbosByEODh11g7RBWrxIJ-XSIP5oGOfKhZ3z0F01_ONi9rKAUsBoCyF8QAvD_BwE
https://estimote.com/wearable/?gclid=CjwKCAiAiML-BRAAEiwAuWVggkJsbosByEODh11g7RBWrxIJ-XSIP5oGOfKhZ3z0F01_ONi9rKAUsBoCyF8QAvD_BwE
http://dx.doi.org/10.1215/18752160-8698301
https://sensortower.com/ios/SG/government-technology-agency/app/tracetogether/1498276074/overview
https://sensortower.com/ios/SG/government-technology-agency/app/tracetogether/1498276074/overview
https://www.worldometers.info/world-population/population-by-country/
https://www.worldometers.info/world-population/population-by-country/
https://www.tracetogether.gov.sg/
https://www.coronawarn.app/en/
https://sensortower.com/ios/de/robert-koch-institut/app/corona-warn-app/1512595757/overview
https://sensortower.com/ios/de/robert-koch-institut/app/corona-warn-app/1512595757/overview
http://dx.doi.org/10.3390/data5040087
https://www.coepi.org/
https://www.covidwatch.org/
https://epiforecasts.io/covid/posts/national/singapore/
https://epiforecasts.io/covid/posts/national/singapore/
https://epiforecasts.io/covid/posts/national/germany/
http://dx.doi.org/10.1007/s00779-018-01199-5
http://dx.doi.org/10.1016/j.eswa.2020.113689
http://dx.doi.org/10.1016/j.eswa.2017.10.049


ISPRS Int. J. Geo-Inf. 2021, 10, 2 34 of 34

59. Nardini, F.M.; Orlando, S.; Perego, R.; Raffaetà, A.; Renso, C.; Silvestri, C. Analysing trajectories of mobile users: From data
warehouses to recommender systems. In A Comprehensive Guide through the Italian Database Research Over the Last 25 Years;
Springer: Cham, Switzerland, 2018; pp. 407–421.

60. Yuan, N.J.; Zheng, Y.; Zhang, L.; Xie, X. T-finder: A recommender system for finding passengers and vacant taxis. EEE Trans.
Knowl. Data Eng. 2012, 25, 2390–2403. [CrossRef]

61. Werner, M.; Schauer, L.; Scharf, A. Reliable trajectory classification using Wi-Fi signal strength in indoor scenarios. In Proceedings of
the 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, Monterey, CA, USA, 5–8 May 2014; pp. 663–670.

62. Guo, S.; Xiong, H.; Zheng, X. A novel semantic matching method for indoor trajectory tracking. ISPRS Int. J. Geo-Inf. 2017,
6, 197. [CrossRef]

63. Wang, R.; Shroff, R.; Zha, Y.; Seshan, S.; Veloso, M. Indoor trajectory identification: Snapping with uncertainty. In Proceedings of
the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2
October 2015; pp. 4901–4906.

64. Chen, Y.; Yuan, P.; Qiu, M.; Pi, D. An indoor trajectory frequent pattern mining algorithm based on vague grid sequence.
Expert Syst. Appl. 2019, 118, 614–624. [CrossRef]

65. Li, H.; Lu, H.; Chen, X.; Chen, G.; Chen, K.; Shou, L. Vita: A versatile toolkit for generating indoor mobility data for real-world
buildings. Proc. VLDB Endow. 2016, 9, 1453–1456. [CrossRef]

66. Alattas, A.; Zlatanova, S.; Van Oosterom, P.; Chatzinikolaou, E.; Lemmen, C.; Li, K.-J. Supporting indoor navigation using access
rights to spaces based on combined use of IndoorGML and LADM models. ISPRS Int. J. Geo-Inf. 2017, 6, 384. [CrossRef]

67. Ojagh, S.; Malek, M.R.; Saeedi, S.; Liang, S. A location-based orientation-aware recommender system using IoT smart devices and
Social Networks. Future Gener. Comput. Syst. 2020, 108, 97–118. [CrossRef]

68. Ojagh, S.; Malek, M.R.; Saeedi, S. A Social–Aware Recommender System Based on User’s Personal Smart Devices. ISPRS Int.
J. Geo-Inf. 2020, 9, 519. [CrossRef]

69. Zheng, V.W.; Zheng, Y.; Xie, X.; Yang, Q. Towards mobile intelligence: Learning from GPS history data for collaborative
recommendation. Artif. Intell. 2012, 184, 17–37. [CrossRef]

70. Cauteruccio, F.; Cinelli, L.; Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Savaglio, C.; Liotta, A.; Fortino, G. A framework for
anomaly detection and classification in Multiple IoT scenarios. Future Gener. Comput. Syst. 2020, 114, 322–335. [CrossRef]

71. Cauteruccio, F.; Cinelli, L.; Fortino, G.; Savaglio, C.; Terracina, G.; Ursino, D.; Virgili, L. An approach to compute the scope of a
social object in a Multi-IoT scenario. Pervasive Mobile Comput. 2020, 67, 101223. [CrossRef]

72. Hu, F.; Li, Z.; Yang, C.; Jiang, Y. A graph-based approach to detecting tourist movement patterns using social media data.
Cartogr. Geogr. Inf. Sci. 2018, 46, 368–382. [CrossRef]

73. Niu, X.; Chen, T.; Wu, C.Q.; Niu, J.; Li, Y. Label-based trajectory clustering in complex road networks. IEEE Trans. Intell.
Transp. Syst. 2020, 21, 4098–4110. [CrossRef]

74. Sabarish, B.; Karthi, R.; Kumar, T.G. Graph Similarity-based Hierarchical Clustering of Trajectory Data. Procedia Comput. Sci. 2020,
171, 32–41. [CrossRef]

75. Kang, H.-K.; Li, K.-J. A standard indoor spatial data model—OGC IndoorGML and implementation approaches. ISPRS Int.
J. Geo-Inf. 2017, 6, 116. [CrossRef]

76. Lee, J.; Li, K.-J.; Zlatanova, S.; Kolbe, T.H.; Nagel, C.; Becker, T.; Ogc Indoorgml. Open Geospatial Consortium Standard. 2014.
Available online: https://www.ogc.org/standards/indoorgml (accessed on 18 December 2020).

77. Kassir, R. Risk of COVID-19 for Patients with Obesity. Obes. Rev. 2020, 21, e13034. [CrossRef]
78. England, P.H. Guidance to Assist Professionals in Advising the General Public. Available online: https://www.gov.uk/

government/publications/novel-coronavirus-2019-ncov-guidance-to-assist-professionals-in-advising-the-general-public/
guidance-to-assist-professionals-in-advising-the-general-public (accessed on 18 December 2020).

79. de Silva, F. Execution Time Analysis of Electrical Network Tracing in Relational and Graph Databases. 2019. Available online:
http://www.diva-portal.se/smash/get/diva2:1304968/FULLTEXT01.pdf (accessed on 18 December 2020).

80. Dar, A.B.; Lone, A.H.; Zahoor, S.; Khan, A.A.; Naaz, R. Applicability of mobile contact tracing in fighting pandemic (COVID-19):
Issues, challenges and solutions. Comput. Sci. Rev. 2020, 38, 100307. [CrossRef]

81. Ojagh, S.; Malek, M.R.; Saeedi, S.; Liang, S. An Internet of Things (IoT) Approach for Automatic Context Detection. In Proceedings
of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
BC, Canada, 1–3 November 2018; pp. 223–226.
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