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Abstract: Marine conservation and management require detailed and accurate habitat mapping,
which is usually produced by collecting data using remote sensing methods. In recent years, un-
manned aerial systems (UAS) are used for marine data acquisition, as they provide detailed and
reliable information through very high-resolution orthophoto-maps. However, as for all remotely
sensed data, it is important to study and understand the accuracy and reliability of the produced
maps. In this study, the effect of different environmental conditions on the quality of UAS orthophoto-
maps was examined through a positional and thematic accuracy assessment. Selected objects on the
orthophoto-maps were also assessed as to their position, shape, and extent. The accuracy assessment
results showed significant errors in the different maps and objects. The accuracy of the classified im-
ages varied between 2.1% and 27%. Seagrasses were under-classified, while the mixed substrate class
was overclassified when environmental conditions were not optimal. The highest misclassifications
were caused due to sunglint presence in combination with a rough sea-surface. A change detection
workflow resulted in detecting misclassifications of up to 45%, on orthophoto-maps that had been
generated under non-optimal environmental conditions. The results confirmed the importance of

optimal conditions for the acquisition of reliable marine information using UAS.

Keywords: UAS; UAS imagery; classification accuracy; accuracy assessment; change detection;
remote sensing

1. Introduction

The mapping and monitoring of marine habitats are essential for conservation man-
agement, protection of marine habitats, and assessment of the environmental status of
marine ecosystems [1]. Marine information is usually acquired by in-situ measurements at
small scales and by medium resolution satellite imagery [2—4] to high-resolution satellite
imagery [5-7] or manned aircraft [8] at medium to large scales [9]. A spatial resolution of
10-100 m is often appropriate for mapping while a spatial resolution of smaller than 10 m is
increasingly being used for coastal applications [9]. Although there is a plethora of satellite
sensors that offer different resolutions, these methods are often expensive, unavailable at
regular intervals, and not flexible as to the extent and level of detail [10-13]. Satellite data
and airborne digital imagery (e.g., Compact airborne spectrographic imager-CASI) allow
the location and extent of seagrass beds to be mapped when there is a continuous area of
seagrass with high-dense beds [9]. However, high-resolution data are often required for
the detection of small marine features, the distinction of marine species, and the detection
of marine habitat changes.

In the latest years, unmanned aerial systems (UAS) are widely used as a close-range
remote sensing tool [14] for mapping and monitoring the coastal and marine environ-
ment [11,13,15-17], marine litter detection [18,19] and assessing coastal erosion [20,21]. The
use of UAS is constantly increasing as they provide very high-resolution imagery, through
orthophoto-maps and detailed 3D models. Their ability to fly at low altitudes allows users
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to define the resolution and the level of detail of the acquired data, something that cannot
be achieved with other remote sensing methods.

Although UAS have many proven potential uses in marine applications, some limita-
tions need to be overcome for accurate and reliable marine habitat mapping [10,22], mostly
relating to environmental conditions (e.g., wind, water turbidity, sunglint) and UAS flight
parameters (e.g., type of aircraft and payload). These limitations have been reported in
several studies [8,23,24] and extensively analyzed in a UAS data acquisition protocol [25].
For example, waves and sunglint are commonly affecting the quality of the acquired data,
as they are prominently visible on the sea surface. The waves caused by high wind speeds
in combination with the presence of sunglint prevent seabed visibility. To avoid sunglint,
the UAS flight times need to be limited to the early morning and afternoon hours [21,24,26].

The quality of the high-resolution orthophoto-maps generated by UAS data is directly
affected by the environmental conditions prevailing in the area during data acquisition.
Although the information derived from the orthophoto-maps is very detailed and useful, it
is important to assess their quality and identify the sources of errors [27]. Many methods
focus on the assessment of the accuracy of remotely derived maps. These methods refer to
both positional accuracy and thematic accuracy and require reference data [28-31].

It is important to notice that the reference data samples for both accuracy assessment
methods should match the resolution of the data in question. The positional accuracy
method uses the location of objects which are detected on a map and compares them
to their true position on the ground [30,32]. The thematic accuracy method defines the
agreement of the map attribute to the reference data [28].

In this study, we conducted both positional and thematic accuracy methods on high-
resolution orthophoto-maps generated during different environmental conditions; to in-
vestigate their effect on the quality and reliability of the UAS imagery and the classification
accuracy of the maps. To achieve that, UAS flights were conducted in a specific coastal
area, in different times and environmental conditions, using the same UAS and flight
plan settings (flight altitude, overlap, etc.). The scope of the present work is to show how
and at what level the environmental conditions prevailing in a study area during UAS
data acquisition affect the quality of UAS acquired imagery through accuracy assessment
analysis.

2. Materials and Methods
2.1. Study Area

The study area is located at Pamfila beach, which is seven kilometers north of the
town of Mytilene, Lesvos Island, Greece (Figure 1). The area was chosen as its seabed has a
variety of habitats and depths which are ideal for an accuracy assessment study. Moreover,
the area is easily accessible and is not a restricted UAS fly region. The surveyed area is
close to a small harbor situated between the shore and a small island. This area has been
investigated in the past using a boat sonar system and UAS imagery for benthic mapping,
as its seabed is covered by an extended seagrass meadow of Posidonia oceanica. Posidonia
oceanica is one of the most important seagrass species, found only in the Mediterranean
Sea, in depths extending from the surface to 40-45 m depth [16]. Seagrass meadows have a
critical role in marine ecosystems, providing many services, such as favorable breeding and
nursery grounds in coastal waters, sediment retention, coastal protection, improvement of
water quality, and nutrient cycling [33,34].
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Figure 1. Location of the study area in Lesvos Island, Greece (left). The underwater images of the
marine habitats in the area placed on the orthophoto-map (right).

2.2. UAS Data Acquisition Protocol

The UAS data acquisition protocol developed by Doukari et al. (2019) [25] summarizes
the parameters that affect the reliability of the data acquisition process over the marine
environment using UAS. The proposed UAS protocol consists of three main sections:
(i) morphology of the study area, (ii) environmental conditions, and (iii) survey planning.

The first section includes parameters such as the location of the study area, the
prevailing environmental conditions and phenomena prevailing in the area, and marine
information (e.g., bathymetry, marine habitats). The parameters of this section are helpful
for flight planning decisions, related to flight altitude, the necessary equipment for data
collection, and the proper number of UAS surveys needed to capture the extent of the area.
The second section is divided into weather conditions (i.e., wind speed, air temperature,
sunglint) and oceanographic parameters (e.g., turbidity, tides, and phenology). These
parameters affect the quality of the UAS data the most, as they produce visible artifacts on
the sea-surface and the water column, affecting seabed visibility. The third section refers to
the flight parameters like the UAS parameterization, the choice of the proper sensor, and
flight planning. The survey planning is a demanding process as it is crucial for an efficient
UAS survey [25].

In this study, the environmental parameters (i.e., wind speed, air temperature, cloud
cover, wave height, sunglint) of the UAS data acquisition protocol were further examined
as to their effect on the quality of UAS high-resolution orthophoto-maps. The different
environmental conditions and acquisition times are investigated to assist with identifying
the optimal UAS flight times and conditions. The results can lead to efficient UAS surveys
in the marine environment.

2.3. UAS Data Acquisition

The UAS flights were conducted using a DJI Phantom 4 Pro system at a flight height
of 70 m from the ground. The images were acquired with a nadir viewing angle (90°)
and their overlap was set at 80%. The UAS flights were performed at different times and
different environmental conditions. The flight plans were created through Pix4Dcapture in
a grid mission with the flight lines set vertically to the shoreline. The flight settings were
identical for each flight to exclude the flight parameters that may affect the quality of the
orthophoto-maps. This allows for the comparison of the results exclusively as to the effect
of the different environmental conditions. The general weather conditions in the area were
recorded from a local weather station before each UAS flight to examine their effect on the
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acquired imagery. We also used a handheld anemometer before each flight to verify that
the wind speed is within the forecast values and sky images to evaluate the cloud coverage.

Several flights were conducted on four dates, 06/05/20, 10/05/20, 12/05/20, and
21/06/20 at different times of the day. The time variation was necessary to investigate the
presence of the sunglint effect in different solar angles and how the refraction of light affects
the apparent position and the shapes of the underwater objects. Additionally, underwater
images and depth measurements were acquired by a scuba diver.

On the first date (06/05/20), the environmental conditions were not ideal due to the
strong wind speeds ranging from 4 m/s to 6 m/s with a rough sea-state. The temperature
was about 20 °C and the sky was partly cloudy. On 10/05/20, the conditions were good
with small temporal differences, the wind speed ranged between 1 m/s and 2 m/s, the
sea-state was calm with small wrinkles at times, the air temperature was between 18 °C and
23 °C, and the sky was clear. On 12/05/20, the wind speed measured from 3 m/s to 5 m/s,
the sea swells were moderate, the temperature was 26 °C, and the sky was partly cloudy.
On 21/06/20, the wind speed was 3-4 m/s, the sea-state moderate, the temperature from
25 to 27 °C, and the sky was cloudy (Table 1).

Table 1. Flight conditions during the UAS surveys.

Date 6/5/2020 10/5/2020 10/5/2020 10/5/2020 12/5/2020 21/6/2020
Flight Local Time 12.00 10.00 11.00 16.00 17.00 13.00
Wind speed (m/s) 4 1 1 1 5 3
Sea-state Moderate Calm Calm Calm Rough Smooth
Temperature (°C) 20 19 20 23 26 27
Cloud Cover (%) 25-50% 0-25% 0-25% 0-25% 25-50% 50-75%

2.4. Methodology

The proposed methodological workflow is divided into four parts, the data acquisition,
the pre-processing of the UAS imagery, the main processing, and the analysis (Figure 2)
The UAS imagery was used for the generation of high-resolution orthophoto-maps, a
reference map for the geo-referencing process, and the in-situ data as training data for the
classification methodology.

Data Preprocess Process Analysis

i Thematic accuracy !

Classification

Change

i & NG Detection
UAS Imagery ———»> SfMalgorithms | | Orthophoto- EJ‘> !
P o maps !

l E> J | Positional accuracy

Georeferencing,

Subset Position changes

DUISCts d\> { | Areachanges

Figure 2. Workflow of the methodology.

The UAS imagery from each acquisition was preprocessed for the generation of very
high-resolution orthophoto-maps using Structure from Motion (5fM) [35] and MultiView
Stereo (MVS) algorithms [36], in Agisoft Metashape [37]. The orthophoto-maps were not
corrected as to their mosaicking errors as they are part of the thematic accuracy comparison.
The six generated orthophoto-maps were already georeferenced by the camera positions.
Their geo-reference was then corrected using a reference map to avoid shifts between them
and a subset of the orthophoto-maps was selected for further analysis. The pixel size of
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the subsets was three centimeters, and as such, they can be used as sample data for the
accuracy assessment analysis.

For selecting the reference map, we used six underwater white tiles, 40 x 40 cm in size
as targets, which were placed on the sea bottom in a depth range of 0.5-4m. The white color
creates strong contrasts compared to the dark coloured seagrass and can also be detected in
sandy areas. The tile targets were also placed on different habitats, to increase the difficulty
of observation i.e., shape of the targets. The ability to clearly distinguish the target’s shape
and extent was used as an index to select a reference map. The orthophoto-map of 10/05/20
at 16.00 was selected as a reference map for parts of the accuracy assessment analysis, as its
quality is highest since the underwater targets” shape and extent can be clearly identified.
In addition, the environmental conditions on that date and time were closest to the optimal
values detailed in the UAS data acquisition protocol.

An example of an underwater tile, placed in a sandy area in 3.5 m depth, is shown
in Figure 3. The extent of the targets was detected using an adaptive threshold with the
R programming language. We used an upper and lower threshold to isolate the values
corresponding to the tiles in a new raster file. The shape of the target is better displayed
on 10/05/20 at 16.00, while on the dates 10/05/20 at 10.00, 11.00, and 12/05/20 at 17.00
the shape is distorted by the presence of sunglint and the wavy sea-surface. Furthermore,
the target was not detected on 06/05/20 and 21/06/20 due to intense sunglint and low
illumination of the seabed. The apparent extent of the targets was also calculated and
compared to the actual size of the tiles, which is 0.16 m?. The calculated extent of the
tiles on 10/05/20 at 10.00 and 11.00 is larger than 0.16 m? (i.e., 0.19 m? and 0.20 m?), on
12/05/20 it is smaller (0.13 m?) than the actual size, and on 10/05/20 at 16.00 it is equal to
0.16 m?.

4 10/05/20 11.00 #
AL
R fi
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.
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e

Figure 3. An underwater tile as it is detected in the different orthophoto-maps. The red features
describe the isolated areas by the adaptive threshold, the white square corresponds to the actual size
of the tile. The best-described tile is on 10/05/20 at 16.00 as the sea-surface is calm and the sea-bed
well lit.

The accuracy assessment of this study is divided into a thematic and positional
accuracy analysis. In the thematic accuracy analysis, the reference orthophoto-map was
compared to each orthophoto-map as to their quality and overall classification accuracy.
Their differences were quantified and visualized using change detection methods. In the
positional accuracy analysis, features of the orthophoto-maps were compared as to their
differences in the centroid position, extent, and shape.

For the first part of the thematic accuracy assessment, the orthophoto maps of the
different dates were classified into three classes, seagrass, sand, and mixed substrate, using
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the maximum likelihood (ML) supervised classification technique [38]. This technique is
one of the most common supervised classifications used in remotely sensed imagery [39].
The underwater images of the habitats were matched with their orthophoto-map positions
and were used as training data (Figure 1). We used twenty points of each class as sample
data for the classification process. To compare the statistics of the classification classes and
the overall accuracy of the classified images, we calculated the error matrices using the
chosen reference classified map as a ground truth image. Furthermore, we applied the
support vector machines (SVM) supervised classification technique [39], a more complex
machine-learning algorithm to examine the validity of the results. SVM classification
results presented similar behavior to the initial ML classification results (Appendix A,
Table 2), and no further analysis performed using that classifier.

For the identification of the differences between the classified maps, we used a the-
matic change workflow. The thematic change workflow uses two classification images
taken at different times and results in class transitions, from one class to another. The
classified map of 10/05/20 at 16.00 was used as a reference map for the change detection
comparisons for the second part of the thematic accuracy assessment. Although the change
detection methods are usually used for the detection of actual changes in the marine envi-
ronment, in this study they are used to emphasize the importance of the exogenous factors
in the reliability of marine data.

In the positional accuracy analysis, the detection and extraction of map features are
necessary. After the visual inspection of the orthophoto-maps, features of seagrass patches
in a unique circular shape and different sizes were chosen as comparison objects. To identify
their differences in the orthophoto-maps, we analyzed their position, extent, and shape. As
the orthophoto-maps were already corrected as to their position using the same reference
map, we assume that possible differences in their characteristics are due to parameters that
affect the sea surface and the water clarity, altering their shape.

The changes between the selected objects were extracted as polygons. Three methods
were examined on polygon extraction using autonomous and semi-autonomous techniques.
The first method was the use of an adaptive threshold which isolates the objects and then
vectorizes them using the R programming language. An issue with this method is that the
adaptive threshold does not accurately describe the extent of all objects. The second method
was the segmentation of the orthophoto-map in objects which required manual merging of
their parts. In the third method, we used the vectors of the classified polygons from the
supervised classification method. The third method sufficiently describes the shapes of the
objects, it does not require user intervention for the isolation of the shapes therefore it was
preferred for the polygon extraction. Eleven objects were selected and compared as to their
extents and shapes, using the objects of the reference map as sample data.

Finally, for the position comparison of the objects, we used their centroid points as
they are the most reliable points to describe the position of a polygon. The centroids of
the polygons were calculated by an automated process using the feature to point tool in
ESRI ArcMap software, which creates point features generated from the representative
locations of the input features. For polygon features, this point is located at the center of the
feature. To estimate the distance errors between the calculated centroids from the reference
centroids, we calculated their point to point nearest distances.

3. Results and Discussion

The orthophoto-maps of the different dates present obvious differences in quality,
brightness, and reliability. The differences are not only due to the different acquisition
times, sea-state, and environmental conditions but also to the results of the SfM process.
Some of them have misaligned images and the seamlines of the mosaicking are visible,
resulting in image patches in the orthophoto-maps. Subsets of the orthophoto-maps of the
same study area are presented in Figure 4a.
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Figure 4. (a) Subsets of the orthophoto-maps in chronological order of acquisition times, from top
left to bottom right. (b) Subsets of the classified images in three classes: seagrass in green colour,
sand in yellow, mixed substrate in brown.

The visual inspection of the orthophoto-maps presents several differences that can be
explained by the weather conditions prevailing in the area and times of data acquisition.
The orthophoto-map of 06/05/20 at 12.00 has most of its extent covered by sunglint
which in combination with the wavy sea-state result in blind areas of the seabed. The
conditions on 06/05/20 do not allow the distinction of the marine habitats, while parts of
the orthophoto-map seem to be misaligned. The 10/05/20 orthophoto-map at 10.00 is clear
enough with some wave wrinkles which alter the extent and shapes of the habitats. On the
same day, at 11.00 the sea-surface was rougher, there are sunglint areas and very distinct
seamlines which decrease the quality of the orthophoto-map. Later on, the same day, at
16.00 the orthophoto-map is very clear with ideal brightness which allows the habitat
distinction. The conditions on that day presented temporal changes, which are attributed
to the sea-state, the sunglint presence-absence, and the illumination of the seabed.

On 12/05/20 at 17.00, the orthophoto-map presents small wave wrinkles on the sea
surface and sunglint areas while the brightness of the map is low. The last orthophoto-map
of 21/06/20 at 13.00, presents mosaicking problems with obvious seamlines which prevent
seabed visibility and habitat distinction. The extended presence of sunglint combined
with the wavy sea surface led to an unsatisfactory result. The most obvious differences
in the orthophoto-maps are due to sea-state conditions and sunglint presence. The visual
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inspection confirmed that high wind speeds and high solar elevation angles are not ideal
for marine data acquisition using UAS.

The visually detected differences were quantified through the classification and change
detection methods. The classification results present some differences in the capacity for
the distinction of the habitats in the classified images (Figure 4b), as well as to their overall
accuracies. In the classified subset of 06/05/20, the largest part of sunglint affected areas
is presented as mixed substrate, instead of sand and seagrass, occupying the biggest part
of the orthophoto-map. In the classified subset of 10/05/20, at 10.00, a part of the mixed
substrate (top and left) is classified as seagrass, and smaller areas of sand are classified as
mixed substrate probably due to waves. On 10/05/20, at 11.00, the subset presents small
parts of image noise on sand and seagrass areas because of the sunglint which has been
mostly classified as mixed substrate. On 10/05/20, at 17.00, the classes seem to be better
districted, presenting even small parts of the mixed substrate around areas with seagrass,
where there are rocks, litter, or dead leaves of seagrass.

On 12/05/20, the classified subset is similar to the previous one, with some alterations
in habitat shapes. The classified subset on 21/06/20 presents some unclassified areas in
black color and many misclassified areas of mixed substrate and seagrass parts. It seems
that sunglint caused the most misclassified areas in the 06/05/20 image, 21/05/20 image,
and parts of image noise in smaller areas in the 10/05/20 images, at 10.00 and 11.00,
combined with the wavy sea-surface. The 10/05/20 image at 16.00 is of better quality,
presenting the less misclassified areas and it is used as a reference map for the calculation
of the confusion matrices.

The coverage percentages (%) of the classified areas are presented in Table 1 (Appendix A).
On both dates (06/05/20, 21/06/20), with extended sunglint presence, the seagrass class is
underestimated by up to 30%, while the mixed substrate is increased to 38% on the first date,
and both sand and mixed substrate to 13% on the second date. The overall accuracies of the
classified images range from 68% to 95% and the Kappa indices from 0.6 to 0.9. The lowest
accuracy of 67.92% is calculated on 06/05/20 and the highest of 95.25% on 12/05/20.

The images of the thematic change workflow show the changes between the classified
images and the reference image, for each class (Figure 5). The changes represent the
inaccurately classified areas due to the different environmental conditions and not actual
changes in the area. It is observed that the change detection classes from seagrass to the
mixed substrate (green) occupy a large part of the image on 06/05/20 and 21/06/20; also,
areas have been altered from the seagrass to the sand class (red). Changes from mixed to
seagrass (orange) are seen on all images with the biggest extent on the 21/06/20 image and
10/05/20 at 10.00. Changes from sand to mixed (blue) are evident in a big part of 06/05/20
and 10/05/20 at 11.00, and changes from mixed to sand (purple) are mostly shown on
12/05/20.

The change detection workflow also resulted in the percentages of changes for each
class (Table 3, Appendix A). The largest changes have been calculated on 06/05/20, in a
total of 45% of the image, 33% has been changed from seagrass to mixed substrate, 7.42%
from sand to mixed, and 1.56% from seagrass to sand. Significant changes were also present
on 21/06/20, in a total of 41% of the image. 16% of seagrass has been classified as sand
and 15.23% as mixed substrate, 3.5% from the mixed substrate to seagrass. On both dates,
the sea-surface was rough due to high wind speeds, and the presence of sunglint could not
be prevented as at the time of data acquisition (12.00 and 13.00) the sun was high in the sky.
The smallest changes have been calculated on 12/06/20, in a total percentage of 6.5% of
the image. The conditions and the acquisition time on that day seem to be close to optimal,
as the sea surface is calm, and the position of the sun prevents the presence of sunglint on
the sea-surface.
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Change detection classes
Value
[ from Unclassified"to ‘seagrass’
[ from 'Unclassified" to 'sand'
[ from 'Unclassified" to 'mixed
[ from 'seagrass' to ‘Unclassified"
Il fom 'seagrass' to 'sand"
I from 'seagrass' to ‘mixed
Il from 'sand' to 'Unclassified!
- from 'sand’ to 'seagrass’
Il from 'sand to 'mixed’

[ from 'mixed to ‘Unclassified
[ from 'mixed to 'seagrass'
Il from 'mixed' to 'sand’

Figure 5. The change detection classes on the orthophoto-map subsets for each acquisition. The
legend shows the changes (from class to class) that have been calculated from the change detection
workflow, in different colours.

The object comparison results have many differentiations as to the areas, shapes, and
positions of the objects (Table 4, Appendix A). On 06/05/20, most of the objects are smaller
than the reference data, while the shapes of the objects seem to be distorted. This is mostly
due to the poor quality of the orthophoto-map that does not allow the correct outline of
the objects, and the extended presence of sunglint that creates gaps on the objects. On
10/05/20, the shapes and sizes of polygons are close to the reference objects, and their
differences are due to the small sea swell that distorts the shape and area of the objects. On
12/05/20, the wavy sea-state and the limited sunglint areas have quite altered the shape of
the objects. On 21/06/20, most of the object shapes are distorted because of the waves and
the sunglint areas.

Figure 6 presents the shape and extent of object 5 on the different dates. The red
polygon shows the extent and shape of the reference object. On 12/05/20 the area of
the object has an increase of 1.61% which is the smallest area difference compared to the
reference object and on 21/06/20 there is a 23% decrease in the area which is the highest
area difference. It seems that a large part of the object has not been classified as seagrass
because of the sunglint and the waves on the sea surface.

06/05/20 12.00

Legend
':] reference object

classified object

Figure 6. The differences in extent and shape of an object per date in comparison with the reference
object presented in the red polygon.
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The comparison of the calculated centroids with the reference centroids on 10/05/20
at 16.00, resulted in the centroid position errors of the objects (Table 5, Appendix A). Con-
sidering the results in Table 5 (Appendix A), most distance errors have been calculated on
06/05/20, where the objects were distorted. An example of the positions of the calculated
centroids of two objects with different sizes is presented in Figure 7. According to the
calculations on the first object, the largest distance has been calculated for the centroid
on 10/05/20 at 10.00, which is 0.48 m, and the least distance of 0.08 m on 21/06/20. On
the second object, the largest calculated centroid distance is 0.39 m on 06/05/20, and the
smallest is 0.10 m on 10/05/20 at 10.00.

o

‘lg‘ o0

: fere nce ceﬁtroids
10/05/10 10.00
06/05/20 12.00
12/05/20 17.00
10/05/20 11.00
21/06/2

Figure 7. Error estimates of the centroid positions. The features in different colours represent the
distances of the calculated centroids from the reference centroids and the error directions. (Table 5,
Appendix A). Note: The actual distances have been multiplied by five for the visualization.

It is observed that the highest errors in areas and positions are calculated on the dates
that the quality of the orthophoto-maps has been affected by the environmental conditions
(e.g., wind speed, waves, solar position). The differences in extent and position of the
objects are most likely caused due to the refraction angle of the light which depends on
the solar angle, and the environmental conditions that affect the visibility of the seabed
and the habitat distinction. Although the change detection methods are usually used for
the detection of actual changes in the marine environment, in this study, it was used to
emphasize the importance of the exogenous factors in the reliability of the data.

The challenges and limitations of UAS data acquisition in the marine environment
have been discussed in the published literature. Considering the published studies, we
examined the effect of environmental conditions on the quality of UAS derived data. The
use of the same flight parameters in a coastal study area, in different acquisition times and
a variety of environmental conditions, allowed us to compare the generated orthophoto-
maps as to their positional and thematic accuracy. Similar studies have examined the effect
of environmental conditions in different coastal areas [10] and locations [22]. The reliability
of the UAS acquired data through the overall accuracies of the classification have been
examined as to the UAS altitude [40], and the spatial resolution [41]. In this study, we used
the same UAS altitude and spatial resolution to emphasize and measure the effect of the
environmental conditions on the quality of the acquired data.

Accurate habitat mapping is essential to monitor habitat changes, e.g., the decline of
seagrass beds [33]. High classification errors that vary in an unpredictable way depending
on sampling time and environmental conditions compromise such monitoring efforts, as
they would lead to time series of habitat maps with high noise, which would mask actual
changes and impede their early detection.
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4. Conclusions

In this study, we examined the effect of environmental conditions on the quality and
reliability of UAS remotely sensed marine information. The accuracy assessment meth-
ods confirmed that the quality of the high-resolution produced orthophoto-maps and the
accuracy of the coastal habitat classification are affected by the environmental conditions
prevailing in the area, and the data acquisition time. The most obvious differences in the
orthophoto-maps refer to sea-state conditions and sunglint presence, while small illumi-
nation differences in the seabed have also been noticed. Visual inspection confirmed that
high wind speeds and high solar elevation angles are not ideal for coastal data acquisition
using UAS.

The application of the two different classifiers indicated that for the calculation of
the coverage percentages in this study, it is not necessary the use of the more complex
machine-learning SVM algorithm, as its results are similar to the results of the ML classifier.
The analysis results confirmed that the prevalent environmental conditions during UAS
data acquisition significantly affect the classification accuracies. The thematic accuracy
assessment resulted in misclassified images, with a significant increase/decrease of classes
on the dates that the wind speed was higher than 3 m/s and the sea surface was wavy with
sunglint presence. Moreover, it has been confirmed that on data acquisition times from
11.00 to 15.00, it is almost impossible to avoid the presence of sunlight on the sea surface.
Cloud cover is also an important parameter that affects the illumination of the seabed in a
percentage over 25%, while cloud shadows can prevent the accurate distinction of marine
habitats, increasing the probability of unreliable classification results.

The positional accuracy analysis showed important changes in the extent, shape, and
position of the selected objects. Given that the objects have not changed in such a short
time, we conclude that the calculated differences are attributed to changes resulting from
different environmental conditions, acquisition times, and light refraction. The results
of the positional accuracy analysis emphasize the importance of reliable high-resolution
data for the detection of small features and the distinction of different species in coastal
applications. Additionally, the accuracy assessment analysis indicates that the quality
of the UAS data is affected by a plethora of factors that interact with and influence each
other, thus must be considered for a sufficient UAS survey in coastal areas. These factors,
i.e., wind speed, sea-surface conditions, and sunglint, reduce the available timeframes for
marine data acquisition; therefore, it is important to be able to identify and understand
their effect on the acquired data.

UAS is a promising tool for high-resolution mapping and for monitoring shallow
habitats but caution is needed to secure optimal conditions and thus avoid serious clas-
sification errors. By adapting a proper data acquisition protocol setting optimal values
for all environmental variables affecting the quality of UAS-generated orthophoto maps,
the potential of UAS for habitat mapping and monitoring can be fully exploited. In this
study, we validated that the acquisition time (dependent on the solar position), affects the
seabed illumination and the presence/absence of sunglint on the sea surface, by presenting
data acquired at different times of the day. We also proved that UAS data acquisition
during non-optimal conditions could lead to imprecise and unreliable orthophoto-maps
and inaccurate results of marine habitat mapping.
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Appendix A

Table Al. Maximum Likelihood (ML) classification statistics of the coverage percentages, (Percentage = (Value/Total Value)
x 100). On 06/05/20, sunglint areas and big parts of seagrass have been classified as mixed substrate, increasing greatly
the coverage percentage of the class to 34.72%. In the 10/05 classified image, there are small differences in class coverages,
with the biggest differences in the mixed substrate class which is increased at 11.00 due to sunglint presence. The 12/05/20
classified image has the closest coverage percentages to the reference data, with small differences due to the non-distinction
of seagrass parts with the mixed substrate. On 21/06/20 the percentages show that almost 20% of seagrass has been
classified as sand and mixed substrate. The overall accuracies vary from 67.92 to 97.92%.

06/05/20 10/05/20 10/05/20 10/05/20 12/05/20 21/06/20
12.00 10.00 11.00 16.00 17.00 13.00
Unclassified 0.14 0.02 0.03 0.03 0.07 0.18
seagrass 27.71 60.73 52.29 60.10 61.43 33.68
sand 23.05 28.14 33.97 28.98 29.36 42.04
mixed 49.10 11.12 13.71 10.89 9.15 24.10
OA 67.92 93.16 89.74 97.92 95.25 70.35

Table A2. Support vector machines (SVM) classification statistics of the coverage percentages. On 06/05/20, parts of
seagrass have been classified as sand and mixed substrate, increasing the coverage percentages of these classes. On 12/05/20,
the coverage percentages are closer to the reference percentages (10/05/20, at 16.00). On 21/06/20, almost 30% of seagrass
has been misclassified as sand and mixed substrate. The overall accuracies vary from 54.81 to 96.81%.

06/05/20 10/05/20 10/05/20 10/05/20 12/05/20 21/06/20
12.00 10.00 11.00 16.00 17.00 13.00
Unclassified 0.00 0.00 0.00 0.00 0.00 0.00
seagrass 37.10 59.45 52.16 62.55 59.78 31.74
sand 41.80 29.95 32.42 29.47 32.05 47.25
mixed 21.10 10.60 15.42 7.98 8.17 21.01
OA 63.00 88.85 82.60 96.81 92.46 54.81
Table A3. Percentage changes from class to class calculated by the change detection workflow.
06/05/20 10/05/20 10/05/20 12/05/20 21/06/20
CLASS from CLASS to 12.00 10.00 11.00 17.00 13.00
no change no change 54.827 90.728 85.857 93.509 58.595
Unclassified seagrass 0.002 0.002 0.002 0.003 0.001
Unclassified sand 0.004 0.014 0.015 0.013 0.015
Unclassified mixed 0.012 0.001 0.001 0.000 0.002
seagrass Unclassified 0.114 0.006 0.020 0.007 0.140
seagrass sand 1.563 1.432 6.051 0.407 15.232
seagrass mixed 32.789 1.789 3.585 0.831 16.322
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Table A3. Cont.

06/05/20 10/05/20 10/05/20 12/05/20 21/06/20

CLASS from CLASS to 12.00 10.00 11.00 17.00 13.00
sand Unclassified 0.002 0.00001 0.000 0.046 0.001
sand seagrass 1.278 2.116 0.826 1.360 1.915
sand mixed 7.423 1.149 1.424 0.620 2.263
mixed Unclassified 0.005 0.002 0.002 0.001 0.026
mixed seagrass 0.776 1.806 1.112 1.209 3.530
mixed sand 1.206 0.953 1.106 1.994 1.959

Table A4. Percentage differences of object areas. The positive percentages represent the object areas
that are smaller than the reference objects and the negative percentages, the object areas that are
bigger than the reference objects. It is observed that eight of the objects have the biggest differences
on 06/05/20 and three on 21/06/20. The lowest area differences of seven objects were calculated on
10/05/20 at 10.00, two on 12/05/20, and one on the other dates.

6/5/2020 10/5/2020 10/5/2020 12/5/2020 21/6/2020
Objects 12.00 10.00 11.00 17.00 13.00
1 0.32 0.04 0.10 —-0.21 -0.07
2 1.04 —0.65 —0.60 —-0.35 —0.65
3 —1.22 —0.85 —0.16 0.25 2.34
4 0.20 —0.44 —0.03 0.14 0.53
5 1.58 0.77 1.80 —0.59 6.94
6 0.50 —0.08 0.33 0.002 —0.44
7 0.63 -0.49 -0.15 —-0.43 -0.35
8 0.60 —0.07 0.22 0.11 —-0.71
9 0.80 0.065 0.25 0.15 —0.70
10 0.31 —1.25 —0.14 —-0.09 —0.61
11 1.06 0.02 0.32 0.26 —0.61

Table A5. Calculated centroid distance errors (m). The largest and smallest distance errors of six
polygons have been calculated on 06/05/20, five on 10/05/20 at 10.00, four on 10/05/20 at 11.00,
twoon 12/05/20, and five on 21/06/20.

6/5/2020 10/5/2020 10/5/2020 12/5/2020 21/6/2020
Centroids 12.00 10.00 11.00 17.00 13.00
1 0.06 0.07 0.12 0.11 0.09
2 0.39 0.10 0.13 0.16 0.20
3 0.36 0.06 0.14 0.09 0.21
4 0.25 0.02 0.15 0.16 0.25
5 0.36 0.48 0.24 0.24 0.08
6 0.05 0.04 0.04 0.08 0.11
7 0.08 0.16 0.30 0.19 0.29
8 0.13 0.08 0.05 0.05 0.25
9 0.34 0.07 0.10 0.14 0.23
10 0.13 0.20 0.23 0.10 0.06
11 0.39 0.11 0.12 0.08 0.15
References
1. Long, WJ.L,; Thom, R.M. Improving seagrass habitat quality. In Global Seagrass Research Methods; Elsevier Science: Amsterdam,

The Netherlands, 2001; pp. 407-423.

Makri, D.; Stamatis, P.; Doukari, M.; Papakonstantinou, A.; Vasilakos, C.; Topouzelis, K. Multiscale seagrass mapping in satellite
data and the use of UAS in accuracy assessment. In Proceedings of the Sixth International Conference on Remote Sensing and
Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 2629 March 2018; p. 8.



ISPRS Int. ]. Geo-Inf. 2021, 10, 18 14 0f 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Topouzelis, K.; Spondylidis, S.C.; Papakonstantinou, A.; Soulakellis, N. The use of Sentinel-2 imagery for seagrass mapping;:
Kalloni Gulf (Lesvos Island, Greece) case study. In Proceedings of the Fourth International Conference on Remote Sensing and
Geoinformation of the Environment, Paphos, Cyprus, 4-8 April 2016; Volume 9688, p. 96881F. [CrossRef]

Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards global-scale seagrass mapping
and monitoring using Sentinel-2 on Google Earth Engine: The case study of the Aegean and Ionian Seas. Remote Sens. 2018, 10,
1227. [CrossRef]

Tamondong, A.M.; Blanco, A.C.; Fortes, M.D.; Nadaoka, K. Mapping of seagrass and other benthic habitats in Bolinao, Pangasinan
using Worldview-2 satellite image. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—
IGARSS, Melbourne, Australia, 21-26 July 2013; pp. 1579-1582.

Eugenio, F.; Marcello, J.; Martin, J. High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments
Using Multispectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3539-3549. [CrossRef]

Amran, M.A. Estimation of seagrass coverage by depth invariant indices on quick-bird imagery. Biotropia 2010, 17, 42-50.
Coggan, R.; Populus, J.; White, J.; Sheehan, K ; Fitzpatrick, E; Piel, S. Review of Standards and Protocols for Seabed Habitats
Mapping; MESH Mapping European Seabed Habitats, INTERREG European Program. 2007. Available online: https://
www.researchgate.net/profile/Jonathan_Whitel2/publication/269630850_Review_of_standards_and_protocols_for_seabed_
habitat_mapping/links/55e06b7608ae2fac471b6de3 /Review-of-standards-and-protocols-for-seabed-habitat-mapping.pdf
(accessed on 5 January 2021).

Edmund, P.G.; Mumby, P.; Edwards, A.].; Clark, C.D. Remote Sensing Handbook for Tropical Coastal Management; Unesco Publishing:
Paris, France, 2000.

Nabhirnick, N.K.; Reshitnyk, L.; Campbell, M.; Hessing-Lewis, M.; Costa, M.; Yakimishyn, J.; Lee, L. Mapping with confidence;
delineating seagrass habitats using Unoccupied Aerial Systems (UAS). Remote. Sens. Ecol. Conserv. 2019, 5, 121-135. [CrossRef]
Gonzalez, R.C. Mapping Seagrass Meadows, Using Low Altitude Aerial Images; University of Lisbon: Lisbon, Portugal, 2015.
Ventura, D.; Bonifazi, A.; Gravina, M.F,; Belluscio, A.; Ardizzone, G. Mapping and Classification of Ecologically Sensitive Marine
Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote. Sens. 2018, 10, 1331.
[CrossRef]

Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 315,
1260-1267. [CrossRef]

Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2014, 92, 79-97. [CrossRef]

Gongalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS ]. Photogramm. Remote
Sens. 2015, 104, 101-111. [CrossRef]

Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using
consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269-275. [CrossRef]
Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline Zones Identification and 3D Coastal Mapping Using UAV
Spatial Data. ISPRS Int. ]. Geoinf. 2016, 5, 75. [CrossRef]

Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising beached litter monitoring protocols through aerial imagery. Mar. Pollut.
Bull. 2018, 131, 212-217. [CrossRef] [PubMed]

Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems
(Plastic Litter Project 2018). Int. |. Appl. Earth Obs. Geoinf. 2019, 79, 175-183. [CrossRef]

Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P,; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach
topography changes in the Ligurian Sea (NW Med-iterranean). GeoMarine Lett. 2016, 36, 151-163.

Su, L.; Gibeaut, J. Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South Texas Coast. Remote. Sens.
2017, 9, 159. [CrossRef]

Duffy, ].P,; Cunliffe, A.M.; Debell, L.; Sandbrook, C.G.; Wich, S.A.; Shutler, ].D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K.
Location, location, location: Considerations when using lightweight drones in challenging environments. Remote. Sens. Ecol.
Conserv. 2018, 4, 7-19. [CrossRef]

Finkbeiner, M.; Stevenson, B.; Seaman, R. Guidance for Benthic Habitat Mapping: An Aerial Photographic Approach; NOAA /National
Ocean Service/Coastal Services Center: Charleston, SC, USA, 2001.

Joyce, K.E.; Duce, S.; Leahy, S.M.; Leon, J.; Maier, S.W. Principles and practice of acquiring drone-based image data in marine
environments. Mar. Freshw. Res. 2018, 70, 952. [CrossRef]

Doukari, M.; Batsaris, M.; Papakonstantinou, A.; Topouzelis, K. A Protocol for Aerial Survey in Coastal Areas Using UAS. Remote.
Sens. 2019, 11, 1913. [CrossRef]

Mount, R. Acquisition of Through-water Aerial Survey Images: Surface Effects and the Prediction of Sun Glitter and Subsurface
Mumination. Photogramm. Eng. Remote Sens. 2005, 71, 1407-1415. [CrossRef]

Fraser, B.; Congalton, R.G. Evaluating the Effectiveness of Unmanned Aerial Systems (UAS) for Collecting Thematic Map
Accuracy Assessment Reference Data in New England Forests. Forests 2019, 10, 24. [CrossRef]

Mas, ].-F,; Pérez-Vega, A.; Ghilardi, A.; Martinez, S.; Loya-Carrillo, J.O.; Vega, E. A Suite of Tools for Assessing Thematic Map
Accuracy. Geogr. |. 2014, 2014, 372349. [CrossRef]

Flasse, S. Remote Sensing and GIS Accuracy Assessment. Photogramm. Rec. 2005, 20, 306-307. [CrossRef]


http://doi.org/10.1117/12.2242887
http://doi.org/10.3390/rs10081227
http://doi.org/10.1109/TGRS.2014.2377300
https://www.researchgate.net/profile/Jonathan_White12/publication/269630850_Review_of_standards_and_protocols_for_seabed_habitat_mapping/links/55e06b7608ae2fac471b6de3/Review-of-standards-and-protocols-for-seabed-habitat-mapping.pdf
https://www.researchgate.net/profile/Jonathan_White12/publication/269630850_Review_of_standards_and_protocols_for_seabed_habitat_mapping/links/55e06b7608ae2fac471b6de3/Review-of-standards-and-protocols-for-seabed-habitat-mapping.pdf
https://www.researchgate.net/profile/Jonathan_White12/publication/269630850_Review_of_standards_and_protocols_for_seabed_habitat_mapping/links/55e06b7608ae2fac471b6de3/Review-of-standards-and-protocols-for-seabed-habitat-mapping.pdf
http://doi.org/10.1002/rse2.98
http://doi.org/10.3390/rs10091331
http://doi.org/10.2112/JCOASTRES-D-15-00005.1
http://doi.org/10.1016/j.isprsjprs.2014.02.013
http://doi.org/10.1016/j.isprsjprs.2015.02.009
http://doi.org/10.1007/s00338-016-1522-0
http://doi.org/10.3390/ijgi5060075
http://doi.org/10.1016/j.marpolbul.2018.04.033
http://www.ncbi.nlm.nih.gov/pubmed/29886939
http://doi.org/10.1016/j.jag.2019.03.011
http://doi.org/10.3390/rs9020159
http://doi.org/10.1002/rse2.58
http://doi.org/10.1071/MF17380
http://doi.org/10.3390/rs11161913
http://doi.org/10.14358/PERS.71.12.1407
http://doi.org/10.3390/f10010024
http://doi.org/10.1155/2014/372349
http://doi.org/10.1111/j.1477-9730.2005.00333_3.x

ISPRS Int. ]. Geo-Inf. 2021, 10, 18 15 of 15

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.
40.

41.

Vieira, C.A.O.; Mather, PM.; Aplinb, P. Assessing the positional and thematic accuracy of remotely sensed data. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2004, 35, 6.

Foody, G.M. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Photogramm. Rec. 2010, 25, 204-205.
[CrossRef]

Congalton, R.G. Thematic and Positional Accuracy Assessment of Digital Remotely Sensed Data. In Proceedings of the Seventh
Annual Forest Inventory and Analysis Symposium, Portland, ME, USA, 3-6 October 2005; pp. 149-154.

Waycott, M.; Duarte, C.M.; Carruthers, T.].B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, ] W.; Heck,
K.L.J.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci.
ULISA 2009, 106, 12377-12381. [CrossRef] [PubMed]

Nordlund, L.M.; Koch, E.W.; Barbier, E.B.; Creed, J.C. Seagrass Ecosystem Services and Their Variability across Genera and
Geographical Regions. PLoS ONE 2016, 11, e0163091. [CrossRef]

Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. In Developments in Earth Surface Processes; Elsevier BV:
Amsterdam, The Netherlands, 2020; Volume 23, pp. 1-24.

Goesele, M.; Curless, B.; Seitz, S.M. Multi-View Stereo Revisited. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2006,
2, 2402-2409.

Agisoft. Agisoft Metashape User Manual Professional Edition, Version 1.6; Agisoft LLC: Petersburg, Russia, 2020; p. 160.

Canty, M.]. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, 3rd ed.;
CRC Press: Boca Raton, FL, USA, 2014.

Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999.

Ellis, S.L.; Taylor, M.L.; Schiele, M.; Letessier, T.B. Influence of altitude on tropical marine habitat classification using imagery
from fixed-wing, water-landing UAVs. Remote. Sens. Ecol. Conserv. 2020, 2, 1-14. [CrossRef]

Duffy, ].P; Pratt, L.; Anderson, K.; Land, P.E.; Shutler, ].D. Spatial assessment of intertidal seagrass meadows using optical
imaging systems and a lightweight drone. Estuar. Coast. Shelf Sci. 2018, 200, 169-180. [CrossRef]


http://doi.org/10.1111/j.1477-9730.2010.00574_2.x
http://doi.org/10.1073/pnas.0905620106
http://www.ncbi.nlm.nih.gov/pubmed/19587236
http://doi.org/10.1371/journal.pone.0169942
http://doi.org/10.1002/rse2.160
http://doi.org/10.1016/j.ecss.2017.11.001

	Introduction 
	Materials and Methods 
	Study Area 
	UAS Data Acquisition Protocol 
	UAS Data Acquisition 
	Methodology 

	Results and Discussion 
	Conclusions 
	
	References

