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Abstract: The forward position solution (FPS) of any complex parallel mechanism (PM) can be solved
through solving in sequence all of the independent loops contained in the PM. Therefore, when solving
the positions of a PM, all independent loops, especially the first loop, must be correctly selected.
The optimization selection criterion of the position analysis route (PAR) proposed for the FPS is
presented in this paper, which can not only make kinematics modeling and solving efficient but also
make it easy to get its symbolic position solutions. Two three-translation PMs are used as the examples
to illustrate the optimization selection of their PARs and obtain their symbolic position solutions.
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1. Introduction

The forward position solution (FPS) of a PM is one of the most important and basic problems in
the parallel mechanisms (PMs) research community.

At present, most researchers use the loop vector method [1–3] to establish the input–output position
equations of parallel mechanism (PM) and then use numerical or algebraic methods to find its solutions.
The numerical method is used directly to solve the position equations, whose advantage is that the real
number solutions can be obtained, and the disadvantage is that the iteration is easy to diverge and large
calculations are needed. The algebraic methods [4–7], by eliminating the unknowns in the position
equations, finally express it as a one-variable higher-order equation, from which all possible solutions
can be found. However, algebraic methods need advanced mathematical elimination methods.

It is noticed that the establishment of the above-mentioned position equations of a PM based
on the loop vector method does not consider the effect of topological characteristics [8,9] of the PM
on its kinematics. For the loop vector method, on the one hand, the loop that some researchers use
is a mostly “nature loop” but not actual independent loop. On the other hand, all loops are treated
as having equal “ranking status”. Therefore, there exist more variables contained in the position
equations. Especially when the algebraic method is used, the mathematical elimination processes take
more time and are complicated.

For PMs with the same topology of branch chains, there is no need for selecting the optimal
position analysis route (PAR). However for PMs with branch chains of different topology, the correct
selection of the PAR is necessary, which will affect the efficiency of the FPS and even the solution forms
of the forward position (i.e., numerical, closed-form, symbolic). If the PAR is not selected properly,
the process of FPS of PMs may be more complicated and difficult, and even their symbolic solutions
cannot be obtained. On the contrary, the process of the FPS is convenient, and their symbolic position
solutions can be obtained as much as possible.
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It can be seen from Ref. [9,10] that the FPS of a PM can be performed by handling its sub-kinematic
chains included in the PM in an orderly manner, while an SKC can be solved in accordance with the
order of the contained independent loops. Then, for PMs with branch chains of different topologies,
the problem of how to sequentially select the first, the 2nd, . . . , v-th independent loops, especially the
first loop, will become the key to solving FPS. This problem will directly affect whether the kinematics
modeling and FPS can be carried out smoothly.

Through previous work [10,11], the authors find that (1) based on the “principle of least constraint
degree” [8,9], there may be multiple topological structure decomposition schemes, which are not all
the best PAR. (2) If the PAR is not selected properly, it may make the FPS complicated or impossible.
Otherwise, the FPS is simple and convenient, and the symbolic position solutions can be obtained as
much as possible. These observations lead the investigation of the paper.

The remainder of the paper is organized as follows. In Section 2, optimization criteria and
procedures of optimization selection of PAR are presented. In Section 3, a group of basic formulas
of the topological characteristic index used for topological property analysis [12] is described.
Two three-translation (3T) PMs with branch chains of different topologies are used as examples
to illustrate the optimization selection of PAR and their effect on the efficiency of the FPS and on the
symbolic position solutions in Section 4, respectively. Finally, conclusions are drawn in the last part.

2. The Optimization Selection Criteria for the Position Analysis Route (PAR)

2.1. Optimization Criteria for PAR

In the FPS of the PMs, the principle of the minimum constraint degree [8,9] ∆min and the minimum
number of independent displacement equations (NIDE) ξmin should be satisfied at the same time
when selecting an optimal PAR. Once choosing the optimal PAR correctly, the FPS can be carried out
efficiently, and its symbolic position solutions can be obtained as much as possible.

2.2. Procedures of Optimization Selection of PAR

i. For all loops inside the sub-kinematic chains (SKC) [9] of a PM, the loop with the smallest constraint
degree value (∆ ≥ 0) should be used as the first loop for the FPS, which can minimize the number
of virtual variables [10] that should be assigned when performing FPS to the smallest degree.

ii. If there are several optional first loops with the same minimum constraint degree ∆, the loop
with the smallest of the NIDE ξmin should be selected as the first loop. In this way, the number of
position equations required to solve the loop positions can be minimized, which is exactly equal
to ξmin.

iii. If there are both planar SKC(s) and space SKC(s) in a PM, the FPS should be started from the
planar SKC(s) first, and then the space SKC(s) should be analyzed. This is because the NIDE of the
planar mechanism loop is always the smallest, i.e., ξ = 3.

The above-mentioned criteria and procedures of optimization selection of PAR will be applied to
explain the optimization selection of PAR and their effect on the efficiency of the FPS and on the symbolic
position solutions of the two three-translation (3T) PMs with branch chains of different topology.

3. Basic Formulas for Topological Characteristics Analysis

3.1. Analysis of the POC Set

The position and orientation characteristic (POC) set equations for the serial mechanism and
parallel mechanism are expressed as respectively:

Mbi =
m
∪

i=1
MJi (1)
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MPa =
n
∩

i=1
Mbi (2)

where

MJi—POC set generated by the ith joint.
Mbi—POC set generated by the end link of the ith chain.
MPa—POC set generated by the moving platform of PM.

3.2. Determining the DOF

The proposed general and full-cycle degrees of freedom (DOF) formula for PMs is given below:

F =
m∑

i=1

fi −
v∑

i=1

ξL j (3)

ξL j = dim.
{
(

j
∩

i=1
Mbi ∪Mb( j+1)

}
(4)

where

F—DOF of PM.
fi—DOF of the ith joint.
v—number of independent loops, and v = m − n + 1.
m, n—number of all joints and links of the whole PM, respectively.
ξL j—number of independent displacement equations (NIDE) of the jth loop.

j
∩

i=1
Mbi—POC set generated by the sub-PM formed by the former j branches.

Mb( j+1)—POC set generated by the end link of (j + 1)th sub-chains.

3.3. Determining the Coupling Degree

According to the mechanism composition principle based on single-opened-chains (SOC) units,
any PM can be decomposed into groups of SKC, and an SKC with v independent loops can be
decomposed into v SOC. The constraint degree, denoted as 4j, of the jth SOC is defined by:

∆ j =

m j∑
i=1

fi − I j − ξL j =


∆−j = −5,−4,−2,−1

∆0
j = 0

∆+
j = +1,+2,+3, · · ·

(5)

where

m j—number of joints contained in the jth SOCj.
I j—the number of actuated joints in the jth SOCj.

For an SKC, the following equation must be satisfied:

v∑
j=1

∆ j = 0 (6)

Then, the coupling degree of an SKC is expressed as:

k =
∣∣∣∆ j
−
∣∣∣ = ∆ j

+ =
1
2

min{
v∑

j=1

∣∣∣∆ j
∣∣∣} (7)
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Here, min{•} operation means that the decomposition sequence with the smallest
v∑

j=1

∣∣∣∆ j
∣∣∣ should

be selected.
The constraint degree of the jth SOC indicates the constraint influences of the chain on the

kinematic performance of the mechanism. Its physical meaning will be explained below.

(a) An SOC with a negative constraint degree, denoted as SOC−, will apply
∣∣∣∣∆−j ∣∣∣∣ constraint equations

to a mechanism, and the number of DOF of the mechanism will be decreased by DOFs of
∣∣∣∣∆−j ∣∣∣∣.

(b) An SOC with a positive constraint degree, denoted as SOC+, will increase the number of DOF
of the mechanism by ∆+

j . Therefore, its forward kinematics solutions could not be solved immediately.

Its assembly can be determined only on the condition that ∆+
j virtual variables are assigned. When the

number of the virtual variables is equal to the number of
∣∣∣∣∆−j ∣∣∣∣ constraint equations applied in SOC−, i.e.,

k =
∣∣∣∆ j
−
∣∣∣ = ∆ j

+, the motion of the mechanism is defined, and its forward kinematics can be obtained.
(c) An SOC with zero constraint degree, denoted as SOC0, does not affect the DOF. Its forward

kinematics solutions can be obtained immediately without assigning virtual variables.
Therefore, the coupling degree k describes the complexity level of the topological structure of

a PM, and it also represents the complexity level of its kinematic and dynamic analysis. The lower the
coupling degree k, the easier the treatment of its forward kinematic and dynamic analysis [9,10].

The detailed explanations for these concepts and notations of topological characteristic index
used for topological property analysis can be found in Ref. [9,12].

4. Case Studies

4.1. Three-Translation PM (3T-CU)

The three-translation PM proposed by authors [13], denoted as 3T-CU, as shown in Figure 1a,
consists of a base platform 0, a moving platform 1, and three different branch chains. Among them,
the first branch is R11//R21//C31, which is connected to the base platform 0 through the revolute joint
R11 and connected to the moving platform 1 through the cylindrical joint C31. The second branch is
R12-U22-U32, which is connected to the base platform 0 through the revolute joint R12 and connected
to the moving platform 1 through the moving joint U32. The third branch is a hybrid branch chain,
which includes a parallelogram, and its two ends are respectively connected to the base platform 0
and the moving platform 1 through revolute joints R13 and R33. Here, R11, R12, and R13 on the base
platform 0 could be the actuated joints.
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Figure 1. Three-translation parallel mechanisms (PM) (3T-CU). (a) Topology structure; (b) Kinematic
modeling of the 3T PM.
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4.1.1. Topology Analysis

(i) Analysis of the POC Set
Obviously, the topological architecture of chain I, II, and III of the PM can be denoted as,

respectively:

SOC1:{R11//R21//C31}, SOC2:{R12-U22-U32}, SOC3:{R13//R23(Pa
(4R))//R33}.

Here, symbol “//” stands for “parallel”, while symbol “-“ stands for no special geometrical relation,
which applies to the whole context of the paper.

The POC sets of the end of the three SOCS are determined according to Equation (1)
as follows, respectively.

MSOC1 =

[
t3

r1(
∣∣∣∣∣∣R11)

]
, MSOC2 =

[
t3

r2

]
, MSOC3 =

[
t3

r1(
∣∣∣∣∣∣R13)

]
.

The POC set of the moving platform of this PM is determined from Equation (2) by

Mpa
= MSOC1 ∩MSOC2 ∩MSOC3 =

[
t3

r1(
∣∣∣∣∣∣R11)

]
∩

[
t3

r2

]
∩

[
t3

r1(
∣∣∣∣∣∣R13)

]
=

[
t3

r0

]
.

Hence, the moving platform 1 of the PM has a three-translation motion output.
(ii) Determining the DOF
It is easy for this PM to have two selection methods for PAR, as follows,
Case 1O: If the first loop of the PM (that is, sub-PM) consists of the first and third branch chains,

namely R11//R21//C31-R33//(Pa
(4R))R23//R13, the number of independent displacement equations (NIDE)

is obtained by Equation (4)

ξL1 = dim
{[

t3

r1(
∣∣∣∣∣∣R11)

]
∪

[
t3

r1(
∣∣∣∣∣∣R13)

]}
= dim

{[
t3

r2
∣∣∣∣∣∣(�(R11, R13))

]}
= 5.

From Equation (3), the degree of freedom (DOF) of the first loop (1st sub-PM) is:

F(1−2) =
∑

f − ξL1 = (4 + 4) − 5 = 3.

The second loop is composed of the above-mentioned sub-PM and the second branch chain. From
Equation (4), the NIDE is calculated by

ξL2 = dim
{[

t3

r1(
∣∣∣∣∣∣R11)

]
∩

[
t3

r1(
∣∣∣∣∣∣R13)

]
∪

[
t3

r2

]}
= dim

{[
t3

r2

]}
= 5.

Case 2O: If the first loop (sub-PM) of the PM consists of the second and the third branch chains,
namely R12-U22-U32-R33//(Pa

(4R))R23//R13, the NIDE is obtained by Equation (4):

ξL1 = dim
{[

t3

r2

]
∪

[
t3

r1(
∣∣∣∣∣∣R13)

]}
= dim

{[
t3

r2

]}
= 5.

From Equation (3), the degree of freedom of the first loop (1st sub-PM) is:

F(1−2) =
∑

f − ξL1 = (5 + 4) − 5 = 4.
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The second loop is composed of the above-mentioned 1st sub-PM and the first branch chain.
From Equation (4), the number of independent displacement equation is:

ξL2 = dim
{[

t3

r2

]
∩

[
t3

r1(
∣∣∣∣∣∣R13)

]
∪

[
t3

r1(
∣∣∣∣∣∣R11)

]}
= dim

{[
t3

r2(
∣∣∣∣∣∣�(R11 , R13)

]}
= 5.

Thus, the DOF of the PM is calculated from Equation (3) as:

F =
m∑

i=1

fi −
v∑

i=1

ξL j = (8 + 5) − (5 + 5) = 3.

Therefore, when the revolute joints R11, R12, and R13 on the base platform 0 are selected as the
actuated joints, the moving platform 1 can realize 3T motion outputs.

(iii) Determining the coupling degree
Form Equation (5), the constraint degree of the two loops are respectively given by:

For Case : ∆1 =

m1∑
i=1

fi − I1 − ξL1 = 8− 2− 5 = +1,∆2 =

m2∑
i=1

fi − I2 − ξL2 = 5− 1− 5 = −1.

From Equation (6), the PM contains one SKC. Further, from Equation (7), the coupling degree of
the SKC is given by

κ =
1
2

min{
v∑

j=1

∣∣∣∆ j
∣∣∣} = 1

2
(|+1|+|−1|) = 1.

Therefore, the coupling degree of the PM is κ = 1, which means that one virtual variable needs to
be assigned when solving its positions.

For Case 2O ∆1 =

m1∑
i=1

fi − I1 − ξL1 = 9− 2− 5 = +2,. ∆2 =

m2∑
i=1

fi − I2 − ξL2 = 4− 1− 5 = −2.

From Equation (6), the PM contains one SKC. Furthermore, from Equation (7), the coupling degree
of the SKC is given by

κ =
1
2

min{
v∑

j=1

∣∣∣∆ j
∣∣∣} = 1

2
(|+2|+|−2|) = 2

This moment, the coupling degree of the PM is κ = 2, which means that two virtual variables need
to be assigned when solving its positions, and it undoubtedly makes the FPS much more complicated
than the case 1Owith only one virtual variable.

(iv) Optimization selection for PAR
So far, it can be found that according to the cases 1O and 2O, the NIDE of the two cases obtained are

the same, i.e., ξL1 = ξL2 = 5, but their constraint degree ∆ (or coupling degree κ) is different, i.e., κ of
the case 1O is one, while κ of the case 2O is two. Therefore, according to the optimization criteria for
the PAR, the case 1O that has the smallest constraint degree value (∆min = 1) and the minimum NIDE
(ξmin = 5) should be used to solve the FPS. The details are described below.

4.1.2. Position Analysis

(i) The coordinate system and parameterization
The kinematic modelling of the PM is shown in Figure 1b. The base platform 0 is an equilateral

triangle with a circle radius R, and select the geometric center O as the origin of the base coordinate
system. The x- and y-axis are perpendicular and parallel to the line OA2. Let moving platform 1 be an
equilateral triangle with a circle radius r, and select the O’ point on the moving platform as the origin
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of the moving coordinate system. The x’- and y’-axis are perpendicular and parallel to the line O’C2.
The z and z’ axis are determined by the Cartesian coordinate rule.

Let the angle θi between vectors AiBi and AiO be the input angle, and the length of the line AiBi
and BiCi (i = 1–3) is equal to l1 and l2, respectively.

(ii) Direct kinematics
To perform the FPS, i.e., it is to compute the position O’(x, y, z) of the moving platform with the

known actuated joints θ1, θ2, and θ3.
The coordinates of points Ai and Bi (i = 1–3) are easily known as:

A1 = (Rcos 30◦,−Rsin 30◦, 0)T, A2 = (0,R, 0)T, A3 = (−Rcos 30◦,−Rsin 30◦, 0)T,
B1 = ((R− l1cos θ1)cos 30◦,−(R− l1cos θ1)sin 30◦, l1sin θ1)

T,
B2 = (0,R− l1cos θ2, l1sin θ2)

T, B3 = (−(R− l1cos θ3)cos 30◦,−(R− l1cos θ3)sin 30◦, l1sin θ3)
T.

1O Solving the first loop (A1-B1-C1-C3 -B3-A3) with a positive constraint (∆1 = 1)
Since the coupling degree of the PM is 1, it is necessary to assign one virtual variable when

performing the FPS. Let the angle α1 between B1C1 and B1D1 be the virtual variable, where B1D1//A1O.
It is easy to know that the coordinates of point C1 are below:

C1 = (xB1 − l2cos 30◦cosα1 , yB1 + l2sin 30◦cosα1 , zB1 + l2sinα1)
T. (8)

Thus, the three points Ci(i = 1–3) in the base coordinate system are calculated as:

C1 = (rcos 30◦ + x, − rsin 30◦ + y, z)T (9)

C2 = (x, r + y, z)T (10)

C3 = (−rcos 30◦ + x, − rsin 30◦ + y, z)T. (11)

From Equations (9) and (11), we can get:

C3 = (xB1 − l2cos 30◦cosα1 − 2rcos 30◦ , yB1 + l2sin 30◦cosα1 , zB1 + l2sinα1)
T. (12)

Due to the length constraint defined by B3C3 = l2, we can get:

α1 = 2arctan

−G2 ±
√

G22 + G1
2 −G32

G3 −G1

 (13)

where

p = xB1 − 2r cos 30◦ − xB3 , q = yB1 − yB3 , g = zB1 − zB3 , G1 = 2l2(q sin 30◦ − p cos 30◦),
G2 = 2gl2, G3 = p2 + q2 + g2.

Substituting Equation (13) into Equations (8) and (12), the points C1 and C3 can be obtained.
2O Solving the second loop (Loop2: A2-B2-C2) with negative constraint (∆2 = −1)

After the positions of all joints on the first loop are obtained, it is easier to solve that on the second
loop. From Equations (9) and (10), the coordinates of point C2 are:

C2 = (xC1 − rcos 30◦ ,yC1 + r + r sin 30◦ ,zC1)
T. (14)

Therefore, the origin coordinates of the moving platform can be easily obtained.
It can be seen that from FPS of the PM there is a total of five position equations, i.e., (1) three

geometric constraint equations: B1C1 = l2, B3C3 = l2, yC3 = yC1 ; (2) two topological constraint equations
introduced by the POC feature (3T): zC2 = zC1 , zC3 = zC1 , which are exactly equal to the NIDE ξL = 5,
and we ensure that the positions of the PM can be solved.
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The inverse kinematics of this PM is omitted here due to its easiness.
(iii) Verification
Set the parameters of the PM as R = 90, r = 55, l1 = 40, l2 = 40(unit: mm), and the input angles of

the three actuated joints are θ1 = 30◦, θ2 = 60◦, and θ3 = 60◦.
From Equations (8)–(14), two sets of real solutions are obtained, i.e., (1) x = −33.9339, y = 19.5917,

z = 13.9672, and (2) x = 23.5901, y = −13.6197, and z = 49.6216. It has been verified that both the FPS
and inverse solutions derived above are correct.

The authors also analyze the position of the 3T-CU PM according to case 2O, but only numerical
solutions were obtained, and calculations are more complicated.

So far, for route selection cases 1O and 2O, the NIDE are ξL1 = ξL2 = 5, but the constraint degree of
case 1O is ∆1 = +1, ∆2 = −1 and the constraint degree of case 2O is ∆1 = +2, ∆2 = −2. Therefore, case 1O
is the optimization selection for PAR. It not only guarantees the efficient kinematic modeling but also
obtains the symbolic solutions.

4.2. Three-Translation PM (Delta-CU)

Figure 2a shows another three-translation PM [14,15], denoted as Delta-CU PM, designed by the
authors, which consists of base platform 0, moving platform 1, and three branch chains. Among them,
the first and third ones are hybrid branches containing a parallelogram structure (same as the traditional
Delta mechanism). The first and third branches are connected to the base platform 0 through the
revolute joints R11 and R13, and they are connected to the moving platform 1 through the revolute
joints R31 and R33, respectively. The second branch is R12-U22-U32, and its two ends are connected to
base platform 0 and moving platform 1 through R12 and U32, respectively. The PM is called Delta-CU,
i.e., 2-R//R//Pa//R+R-U-U.
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3T PM.

Compared with the Delta mechanism with the same three branches (all of which are hybrid
branches with a parallelogram structure), this Delta-CU mechanism decreases two revolute joints and
three links, and hence the structure is simpler. Since the topological structure of the three branch chains
are not all different, it involves the problem of optimization selection of PAR, and different PARs will
lead to a big difference in the difficulty of the FPS of the PM.

4.2.1. Topological Analysis

(i) Analysis of the POC Set
The first and third mixed branches are denoted as SOCi {R1i/ /R2i/ /Pa(4R)-R3i}(i = 1, 3), while the

second branch is denoted as SOC2{R12-U22-U42}.
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The POC sets of the end of the three SOCS are determined according to Equation (1) as follows,
respectively:

MSOC1 =

[
t3

r1(
∣∣∣∣∣∣R11)

]
, MSOC2 =

[
t3

r2

]
, MSOC3 =

[
t3

r1(
∣∣∣∣∣∣R13)

]
The POC set of the moving platform of this PM is determined from Equation (2) by:

Mpa
= MSOC1 ∩MSOC2 ∩MSOC3 =

[
t3

r1(
∣∣∣∣∣∣R11)

]
∩

[
t3

r2

]
∩

[
t3

r1(
∣∣∣∣∣∣R13)

]
=

[
t3

r0

]
Hence, the moving platform 1 of the PM has three-translation motion output.
(ii) Determining the DOF
The PM has three branches; therefore, it contains two independent loops. Since the three

branches belong to two different topological structures, that is, the first and third branches are hybrid
branches with four degrees of freedom (DOF) (one 4R parallelogram mechanism is equivalent to one
prismatic joint). The DOF of the second branch is 5. Therefore, there are at least two schemes in the
topology decomposition of the PM as follows.

Case 1O: The first loop (sub-PM) is composed of the first and third hybrid branch chains with the
least degree of freedom (DOF = 4), while the second loop is composed of the sub-PM and the second
branch (R12-U22-U32) with 5-DOF.

Case 2O: The first loop (sub-PM) is composed of the first branch chain with 4-DOF and the second
branch chain with 5-DOF, while the second loop is composed of the sub-PM and the third branch chain
with 4-DOF.

For Case 1O: The NIDE of the two loops can be obtained by Equation (4):

ξL1 = dim
{[

t3

r1(
∣∣∣∣∣∣R11)

]
∪

[
t3

r1(
∣∣∣∣∣∣R13)

]}
= dim

{[
t3

r2

]}
= 5,ξL2 = dim

{[
t3

r1(
∣∣∣∣∣∣R11)

]
∩

[
t3

r1(
∣∣∣∣∣∣R13)

]
∪

[
t3

r2

]}
= dim

{[
t3

r2

]}
= 5.

From Equation (3), the DOF of the PM is:

F =
m∑

i=1

fi −
v∑

i=1

ξL j = (8 + 5) − (5 + 5) = 3.

Therefore, when the revolute joints R11, R12, and R13 on the base platform 0 are selected as the
actuated joints, the moving platform 1 can realize 3T motion outputs.

For Case 2O: The NIDE of the two loops can be obtained by Equation (4):

ξL1 = dim
{[

t3

r1

]
∪

[
t3

r2

]}
= dim

{[
t3

r3

]}
= 6,ξL2 = dim

{[
t3

r1

]
∩

[
t3

r2

]
∪

[
t3

r1

]}
= dim

{[
t3

r1

]}
= 4.

From Equation (3), the DOF of the PM is:

F =
m∑

i=1

fi −
v∑

i=1

ξL j = (4 + 5 + 4) − (5 + 5) = 3.

The DOF of the PM is still three. Therefore, when R11, R12, and R13 on the base platform are
actuated joints, the moving platform 1 can realize 3T motion outputs.

(iii) Determining the coupling degree
Case 1O: From Equation (5), the constraint degrees of the two loops are respectively given by:

∆1 =

m1∑
i=1

fi − I1 − ξL1 = (4 + 4) − 2− 5 = +1,∆2 =

m2∑
i=1

fi − I2 − ξL2 = 5− 1− 5 = −1.
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From Equation (6), the PM contains one SKC. Furthermore, from Equation (7), the coupling degree
of the SKC is given by:

k =
1
2

min{
v∑

j=1

∣∣∣∆ j
∣∣∣} = 1

2
(|+1|+|−1|) = 1.

The above equation shows the following: 1O This PM contains only one SKC, and its coupling
degree is one. When performing FPS, it is necessary to assign one virtual variable on the first loop with
the constraint degree of positive one, and it is necessary to establish a constraint position equation
containing the virtual variable on the second loop with a constraint degree of minus one. 2O Since
the three actuated joints are in one SKC, according to the input–output (I-O) motion decoupling
determination principle [9], it can be determined that the PM does not have an input–output (I-O)
motion decoupling property.

For Case 2O: From Equation (5), the constraint degrees of the two loops are respectively given by:

∆1 =

m1∑
i=1

fi − I1 − ξL1 = (4 + 5) − 2− 6 = +1,∆2 =

m2∑
i=1

fi − I2 − ξL2 = 4− 1− 4 = −1.

From Equation (6), the PM contains one SKC. Furthermore, from Equation (7), the coupling degree
of the SKC is calculated as:

k =
1
2

min{
v∑

j=1

∣∣∣∆ j
∣∣∣} = 1

2
(|+1|+|−1|) = 1.

Of course, the topology decomposition scheme 2O of the first loop of the PM can also be composed
of the second and third branches, while the second loop is composed of the sub-PM and the first
branch, and the result is identical.

(iv) Optimization selection for PAR
Comparing the topological decomposition Cases 1O and 2O, it can be seen that if the position

analysis is performed according to Case 2O, the constraint degree of the two loops are ∆1 = 1 and
∆2 = −1, and the NIDEs are ξL1 = 6, ξL2 = 4, respectively, which means that when performing the FPS,
six position constraint equations must be found in the first loop. Obviously, the difficulty will increase,
and it will even not be solved. On the contrary, if the position analysis is carried out according
to Case 1O, the constraint degrees of the two loops are ∆1 = 1, ∆2 = −1, and the NIDEs are ξL1 = 5
and ξL2 = 5, respectively, which means that when performing the FPS, only five position constraint
equations are needed to be found in the first loop, which is obviously easier.

Therefore, when performing the FPS of the Delta-CU PM, the PAR should be selected as Case 1O.

4.2.2. Position Analysis

(i) The coordinate system and parameterization
The kinematic modeling of the Delta-CU PM is shown in Figure 2b. The base platform 0 is an

equilateral triangle with a circle radius R, and select the geometric center O as the origin of the base
coordinate system. The x- and y-axis are perpendicular and parallel to the line OA2. Let moving
platform 1 be an equilateral triangle with a circle radius r, and select the O’ point on the moving
platform as the origin of the moving coordinate system. The x’- and y’-axis are perpendicular and
parallel to the line O’C2. The z- and z’-axis are all determined by the Cartesian coordinate rule. Let the
angle θi between vectors AiBi and AiO be the input angle, and the lengths of the lines AiBi and BiCi
(i = 1–3) are equal to l1 and l2, respectively. Let the coordinates of the origin of the moving coordinate
system be O’ (x, y, z).

(ii) Direct kinematics
To perform the FPS, compute the position O’ = (x, y, z*) of the platform with the known actuated

joints θ2, θ2, and θ3.
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Since the coupling degree of the PM is κ= 1, one virtual variable needs to be assigned. Furthermore,
the first loop passes through the moving platform 1, and there are two methods for selecting virtual
variables, namely method A (i.e., the virtual variable starts from one side of the loop) and method B
(i.e., the virtual variable starts from the moving platform) [16]. Since method B has the advantages of a
short calculation path, fewer calculations, and available symbolic solutions [16], method B is now used
for the calculation of the PM.

Since the PM is a 3T PM and the coupling degree is κ = 1, take one of the position parameters
(x, y, z*) of the platform 1, for example, z*, as a virtual variable.

1O Solving the first loop with the positive constraint (∆1 = 1)
The coordinates of Ci point (i = 1–3) on the moving platform are given, respectively.

C1 = (rcos 30◦ + x,−rsin 30◦ + y, z∗)T, C2 = (x, r + y, z∗)T, C3 = (−rcos 30◦ + x,−rsin 30◦ + y, z∗)T.

Due to the length constraint defined by BiCi = l2 (i = 1, 3), we can get:

(x + m)2 + (y + n)2 + (z ∗ −zB1)
2 = l22 (15)

(x + u)2 + (y + v)2 + (z ∗ −zB3)
2 = l22 (16)

where

m = rcos 30◦ − xB1 , n = −
(
rsin 30◦ + yB1

)
, u = −

(
rcos 30◦ + xB3

)
, v = −

(
rsin 30◦ + yB3

)
.

2O Solve the second loop with the negative constraint (∆2 = −1)
Due to the length constraint defined by B2C2 = l2, we can get:

(x− xB2)
2 + (y + t)2 + (z ∗ −zB2)

2 = l22 (17)

where t = r− yB2 .
From Equations (15)–(17), we can get the symbolic solutions as follows:

x = Nz ∗+D
y = Hz ∗+K

z∗ = −C2±
√

C22−4C1C3
2C1

(18)

where

M =
m2+n2+zB1

2
−xB2

2
−t2
−zB2

2

2 , T = m2 + n2 + zB1
2
− u2

− v2
− zB3

2
−

2M(m−u)
m+xB2

, P =
2(m−u)(t−n)

m+xB2
+ 2(n− v),

Q =
2(m−u)(zB1−zB2)

m+xB2
+ 2

(
zB3 − zB1

)
, H = −Q

P , K = −T
P ,

N = −
(n−t)H+(zB2−zB1)

xB2+m , D = −
(n−t)K+M

xB2+m ,

C1 = N2 + H2 + 1, C2 = 2
(
ND + HK + mN + nH − zB1

)
, C3 = D2 + K2 + 2mD + 2nK + m2 + n2 + zB1

2
− l22.

It can be seen that from the FPS of the PM there is also a total of five position equations in
the first loop, i.e., 1O two position constraint equations zC1 = zC3 = z introduced by the topological
constraint that the moving platform 1 always performs three-dimensional translation, 2O two length
constraint conditions B1C1 = l2 and B3C3 = l2, and 3O the position of C2 is also constrained by the length
constraint equation B2C2 = l2 inside the second loop. In this way, there are five position constraint
equations, which are equal to the NIDE ζL = 5. Therefore, the position of the first loop is guaranteed to
be solvable, since these position equations are nonlinear ones and simper, symbolic solutions can be
easily obtained.

The inverse kinematics of this PM and numerical verification are omitted here due to its easiness.



Robotics 2020, 9, 93 12 of 13

5. Conclusions

The optimization selection for PAR can affect the effectiveness of FPS and the solution forms.
For this reason, the optimization selection criteria for PAR are proposed, i.e., when solving the position,
the loop should be selected according to the criteria of “minimum constraint degree value (∆min) and
minimum number of independent displacement equations (ξmin)” in order to effectively perform
FPS and obtain the symbolic solutions to the greatest possible extent. Otherwise, the FPS may be
difficult, complicated, or symbolic solutions cannot be obtained. Two examples are used to illustrate
the procedures of how to select the PAR.

In the recent years, the authors have performed a large number of FPS of the PMs [17,18],
which proves that the procedures of the selection criteria of PAR for FPS proposed in this paper
are universal.

For PMs with branch chains of different topology, the correct selection of the PAR is necessary and
important. This work provides new inspiration and the road map for the FPS of these complex PMs.
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