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Abstract: This paper presents an obstacle-avoidance trajectory tracking method based on a nonlinear
model prediction, with a dynamic environment considered in the trajectory tracking of nonholonomic
mobile robots for obstacle avoidance. In this method, collision avoidance is embedded into the
trajectory tracking control problem as a nonlinear constraint of the position state, which changes with
time to solve the obstacle-avoidance problem in dynamic environments. The CasADi toolkit was
used in MATLAB to generate a real-time, efficient C++ code with inequality constraints to avoid
collisions. Trajectory tracking and obstacle avoidance in dynamic and static environments are trialed
using MATLAB and CasADi simulations, and the effectiveness of the proposed control algorithm
is verified.

Keywords: nonholonomic mobile robot; model predictive control; trajectory tracking; dynamic
obstacle avoidance; CasADi

1. Introduction

With the continuous development of robot technology, various robots are being increasingly used
in complex working environments. In unknown working environments, mobile robots should be able
to sense the surrounding environment, avoid obstacles, and have the ability to automatically navigate,
with obstacles divided into dynamic obstacles and static obstacles.

Previous obstacle avoidance control methods based on nonholonomic robots were proposed,
with the purpose of these methods being to enable mobile robots to avoid obstacles and utilize faster
and better trajectory tracking. The proposed path-planning algorithms described in the literature [1-4]
aim toward the static environment and do not consider the dynamic environment. Where the dynamic
environment is considered [5], applications of this research demonstrate poor real-time performance
by using support vector machines for collision avoidance problems; therefore, a need emerged for the
development of a new algorithm.

Other collision avoidance algorithms exist, including fuzzy control [6-9], but the simple fuzzy
processing of information leads to a reduction in the control accuracy of the system and deterioration of
dynamic quality, with the design of fuzzy control lacking systematicity and unable to define the control
goal. There is also the artificial potential field method [10-13], but this has a trap area and a path cannot
be identified in a group of similar obstacles. It oscillates before encountering an obstacle, the robot
swings in the narrow passage, and the target near the obstacle is unreachable. Another algorithm is
the sliding mode control [14-17], but when the state trajectory reaches the sliding mode surface, it is
difficult to strictly slide along the surface to the equilibrium point. Instead, it travels back and forth on
both sides to approach the equilibrium point, resulting in oscillation.
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Model predictive control [18-21] is one of the most commonly used advanced control technologies
in the industry. Due to the use of discrete convolutions and models described by nonminimization,
there is a large amount of information redundancy, which is conducive to improving the robustness
of the system. A rolling optimization strategy can be adopted, whereby the optimization calculation
is repeated online and implemented on a rolling basis, so that the uncertainties caused by model
mismatches and external disturbances are compensated in time to obtain better dynamic control
performance. In the literature [22,23], the motion equation of this robot utilized a linearized version
of model predictive control in the trajectory tracking problem. In another work [24], an explicit
nonlinear motion model of a robot was used and a nonlinear model predictive control was used
for tracking problems. Ostafew et al. [25] proposed a learning-based, nonlinear, model predictive
control algorithm to reduce the path-tracking error of repeated traversals along the reference path.
Mehrez et al. [26] proposed an open-source toolkit to implement point stabilization and trajectory
tracking of nonholonomic mobile robots. The toolkit and the software of the wheeled mobile robot
research platform were combined using C++ code to verify the applicability of the control issues.
Heonyoung et al. [27] proposed an obstacle-avoidance strategy based on model predictive control
and optimized the optimization problem using gradient descent method, using an algorithm able to
verify the tracking ability and obstacle-avoidance ability of the mobile robot but that does not consider
the presence of a dynamic environment. Park et al. [28] proposed an obstacle-avoidance scheme for
autonomous vehicles, where a separate controller was designed to track the generated trajectory using
a parallax-based method to incorporate local obstacle information into a performance index, resulting
in verification of the feasibility of the scheme. Jie et al. [29] proposed a collision-avoidance method
that constructed the 3D, virtual, dangerous potential field as the superposition of the trigonometric
function of the road and the exponential function of the obstacle; these authors formulated the tracking
task as a multiconstraint model predictive control problem and proved the effectiveness of the scheme.

The main contributions of this paper are the use of a discrete-time system model based on MPC to
achieve trajectory tracking control and to avoid dynamic obstacle collisions. Firstly, cost function is
composed by minimizing state error and control input. Secondly, collision avoidance is embedded into
the trajectory tracking control problem as a nonlinear constraint of the position state, which changes
with time to solve the obstacle-avoidance problem in dynamic environments. Finally, the effectiveness
of the proposed control method is verified by simulation.

This paper is organized as follows. Section 2 describes the dynamic model of the two-wheeled
differential robot. Section 3 briefly introduces the model predictive control method. Based on this
method, the controller is designed and the rules for dynamic obstacle avoidance are set. The cost
function is optimized using the direct, single-shooting method. Section 4 is simulated with MATLAB
and the code is optimized using the CasADi toolkit. Section 5 concludes the paper.

2. Materials and Methods

2.1. Two-Wheeled Differential Drive Robot

The mechanical structure of the two-wheeled differential robot is shown in Figure 1.

A two-wheeled differential robot is a typical nonlinear system. It is easy to turn and has a small
turning radius. Both wheels are on the same common axis. The speed of each wheel is controlled by
a separate motor. The speed of the left wheel is defined as v; and the angular velocity is defined as w;.
The speed of the right wheel is defined as v, and the angular velocity is defined as w,. Assuming that
the robot is purely rolling without sliding, the relationship is as follows:

U = TW;, Uy = TW; €))

where r is the radius of the two-wheeled differential robot wheel.



Robotics 2020, 9, 74 3 0f 20

Figure 1. Top view of a typical two-wheeled differential robot.

The speed and angular velocity of the two-wheeled differential robot can be calculated from the
speed and angular velocity of the two wheels, as shown in the following Formula (2):
v+ Uy wy + Wy O — U Wy — Wy

U= ) ,W = T =r T 2)

where L is the wheelbase of the two-wheeled differential robot, and the relationship between the
control input u and the linear and angular velocities of the two drive wheels is as follows:

v +0or 1 r r
_ |21 Tz |- 2 Url_ |2 2 Wy
ol B S Y BN Y B B

The turning radius R of the two-wheeled differential robot can be calculated as follows:

= N=

(w; + wy)

1
R = -t 77
2 (w, — wy)

(4)

When w; = wy, the turning radius is infinite, which means that the robot moves in a straight line.
2.2. Kinematics of Mobile Robots

As shown in Figure 2, the state vector of the two-wheeled differential robot is defined as

X

q=| v %)
0

where x and y are the center positions of the current wheel axis of the robot and 0 is the orientation of
the robot in the current two-dimensional space (global coordinate frame). The two-wheeled differential
robot has no lateral slip, nonlinear constraints, as follows:

xcos 6 — ysin 6 = 0 (6)
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Figure 2. Global coordinate frame, robot coordinate frame, and reference coordinate frame of the

mobile robot.

The motion model (7) of the mobile robot can be derived from Formulae (1) to (6). This equation
shows the relationship between the state of the robot and its own linear and angular velocity [30].

x cos 6 0 ’
y |=| sin6 0 [ “ ] 7)
0 0 1

Discretizing the above formula gives a discrete-time formula, i.e.,
Xpr1 = X+ ATcos Gkvkyk-i-l = Y+ AT sin Gkvkek-&-l = O + ATwy 8)
3. Controller Design

3.1. Nonlinear Model Control Prediction

In the case of discrete time, the dynamic model can be defined by the nonlinear state time, i.e.,
x (k + 1) = f(x(k), u(k)) )

where f(x(k), u(k)) € R" is a nonlinear continuous function, x(k) € R" is the system state vector,
and u(k)e R™ is the control input vector of the system. Generally speaking, the MPC scheme involves
using a nominal model to predict the future state within a limited range of predictions for the system
and the last available measurement or accurate estimation of the state to obtain the best control action
within the control range (control vector). The control range is less than or equal to the prediction range.
This control vector guides the system state to follow the time-varying reference generated by the model
of the form (7). Then, the first element of the control vector is applied and the entire process is repeated
with the next sample.
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When the research object is a planar, nonholonomic, two-wheeled mobile robot, the cost function
for the state error and control input is as follows:

InGrw) = Y elx(k),u(k), (10)

where e(x(k),u(k)) = (q - qr)T Q (gc —qr) + (u - u)' R (u - uy) represents the running
cost, q,=[x; yr GV]T is the robot reference pose, 1, = [v; wr]T is the reference control input, Q € R33 and
R € R?*2 are the state and control input positive definite weight matrices, respectively, and N is the
number of prediction steps. Therefore, at time t, the real-time open-loop optimization problem of the
nonlinear model predictive controller can be summarized as follows:

min]y (xo,u) = ), e(x(k), u(k)) (11)

subject to x(k + 1) = f(x(k), u(k)),

x(0) = xo,
u(k) € U,Vk € [0, N-1], and
x(k) e X,¥Yk € [0, N],

where U is the control space set and X is the state space set.

3.2. Obstacle Avoidance

In general, the collision avoidance problem is treated as a planning problem independent of the
controller. Due to the unfavorable ground environment, the controller may not be able to solve the
problem. In order to overcome this problem, the characteristics of the nonlinear model can be used to
predict the control and integrate state constraints. Assuming the obstacle is a square shape, the collision
constraint is transformed into a state constraint and integrated into the controller design in the form

(x(t) = %(£)* + (1) = yo(£)* 2 (v + 170 +7)° (12)

where x(t) and y(t) are the predicted position of the robot in the prediction range, x,(t) and y,(t) are
the centers of the obstacle in the prediction range, 7, is the safety distance from the edge of the robot to
the edge of the obstacle, 7, is the radius of the circular envelop for the square obstacle, and r is the
radius of the robot.

When the obstacle is of arbitrary shape, a circle can be created to enclose the obstacle. The center
position of the obstacle can be determined by this circle and the center position coordinates of the
obstacle can be obtained.

Several situations when the mobile robot avoids obstacles are shown in Figure 3.
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Figure 3. Schematic diagram of obstacle avoidance for nonholonomic robots.
3.3. Direct, Single-Shooting Method

In order to solve the optimal control problem of the nonlinear model prediction, a direct,
single-shooting method was adopted to convert the optimal control problem into a nonlinear
programming problem. The algorithm originated from solving the boundary value problem of differential
equations, with the basic idea of this algorithm being based on the Runge-Kutta method. The time
interval is uniformly dispersed into smaller N intervals, then the initial value problem is solved in each
small interval and added to the solution process. Some matching conditions then form a solution over
the entire range. All Runge-Kutta variants include first-order and second-order differential algorithms.
In order to make the initial state of the state trajectory and the sensitivity of the control input more
convenient to calculate, after conversion to algebraic differential equations, calculations are performed
using other integrators. Then, the problem constraint is estimated at each time node and the control
vector parameters are changed to piecewise constants. The result of this method is a least-squares,
nonlinear programming with a fixed dimension, which can be solved using the Gauss—Newton method.

Based on the above, the nonlinear model prediction scheme is as follows:

1.  Set the time parameter t, the number of prediction steps N, the time interval T, and the weight
matrices Q and R;

2. Get the initial state x;
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3. Obtain the obstacle poses x, and y,;
4. Solve the optimization problem (11) and get the optimal input control vector and prediction state;
5. Wait for the next time interval and set the next time parameter, then repeat from Step 2.

3.4. CasAD:i Toolkit

CasADi is an open-source software toolkit for numerical optimization written in C ++. Itis a
general tool with great flexibility and can be used to model and solve numerical optimization problems.
Regarding the problem of differential equation constraints in particular, that is, the optimal control
problem, compared with other similar frameworks, CasADi can be more easily increased to a higher
dimension, thereby increasing the richness of the differentiable operation set. CasADi realizes the
forward and reverse modes of automatic differentiation (ad); therefore, it is very suitable for nonlinear
model predictive control programming. The following experiments use the basic principles of CasADi.

4. Results

This experiment validates the proposed simulation based on model predictive control to avoid
obstacles. The obstacle-avoidance simulation of static and dynamic obstacles with three different
trajectories using the same prediction steps is utilized by a differential mobile robot. The three
trajectories are circular, figure-of-eight and linear. The simulation uses MATLAB2017b version and the
CasADi toolkit.

When the obstacle is a square with a side length of 0.3 m and the constraint is set from the center
point of the obstacle to the vertex of the square as a circle, then

Xo—To—1r< X < Xo+to+ 1 Yo—To—1r< Y < Yo+To+7; (13)
Therefore, the control input constraints of the robot are
~ Umax <0 < Upax — Winax < W < Wingx (14)

4.1. Circular Trajectory

When the starting position of the robot is set to [0.5; 0.5; 0], the reference trajectory is as follows:

xr=1+2%*sin(0.5* t),

1
yr=-1+2%*cos(0.5*t). (15)
Therefore, the control inputs of the robot are as follows:
Umax= 1.5m/s and w,,;y = 3rad/s (16)

When the sample time interval to T is set at 0.08 s and the number of prediction steps is N = 10,
the weight matrices Q and R are set as follows:

0 0
40 O
0 00

Q= (17)

andR:[ 05 0 ]

0 0.05
1

S O G

4.1.1. Static Obstacle Avoidance

When the obstacle coordinates are set to [2.5, —1.5] and the coordinate points are located at the
lower left corner of the square obstacle, the obstacle-avoidance effect is as shown in Figure 4.
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Figure 4. Static obstacle-avoidance effect diagram of circular trajectory tracking.

4.1.2. Dynamic Obstacle Avoidance

When the obstacle coordinates are set to [2.95, —1.05], the coordinate points are located at the
lower left corner of the square obstacle, the moving direction of the obstacle is 77/4, and the speed is
0.2 m/s, the obstacles at the position and the obstacles at the predicted 10 step positions are shown in
Figure 5. Figure 5a shows the trajectory tracking at the beginning, Figure 5b shows the robot avoiding
obstacles when it encounters moving obstacles, Figure 5¢ shows the robot tracking to the reference
track after obstacle avoidance, and Figure 5d shows the robot moving to the final position.

1
0.5 05 -
—~ 0 : - O
é ) Reference Trajef:tory é : Reference Trajectory
= +  Trajectory tracking = 05 - Trajectory tracking
0.5 '
-1
-1
O
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x(m) X(m)
(a) Robot and obstacle position at 1.6 s (b) Robot and obstacle position at 2.96 s
0.5 et . .._"... 0.5 ""‘.~ cer -,....
0
0
) 03 Ref Traject
—~-05 ) '-_ — ererence lrajectory :
g/ Reference Trajerstory s é -1 H Trajectory tracking °
> 1 +  Trajectory tracking 3 > : i
’ i -1.5 : i
1.5 o i PYEEY &
2 & 25 g
0 1 2 3 -1 0 1 2 3
x(m) x(m)
(c) Robot and obstacle position at 4.72 s (d) Robot and obstacle position at 13.36 s

Figure 5. Dynamic obstacle-avoidance effect of circular trajectory tracking.
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4.1.3. Experimental Results

By observing Figures 4-11, it can be seen that the algorithm allows the robot to effectively avoid
static and dynamic obstacles. At 1.6 s, the robot completes trajectory tracking. At 2.96 s, the velocity,
angular velocity, and direction of the robot for dynamic obstacle avoidance starts to diverge from the
static obstacle avoidance, and the robot begins to avoid obstacles dynamically. At 4.72 s, the robot
completes the dynamic obstacle avoidance. At 6.4 s, the robot’s velocity, angular velocity, and direction
angle stabilize, and the errors in each direction approach zero.

1.5 ! ! T T T T

Current velocity

1.4 Reference velocity | |

—_
w

velocity(m/s)
o

—
—
T
1

0.9 - ' ' - - '
0 2 4 6 8 10 12

time(s)

Figure 6. Variation in velocity and reference velocity of a circular trajectory.

3 T T T T T T

Current angular velocity
Reference angular velocity | 1

angular velocity(rad/s)

_3 1 1 1 1 1 1
0 2 < 6 8 10 12

time(s)

Figure 7. Variation in angular velocity and reference angular velocity of a circular trajectory.
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Figure 11. X-direction, Y-direction, and 6-direction error changes of a circular trajectory.

4.2. Figure-of-Eight Trajectories

11 0f 20

When the starting position of the robot is set to [1; 2; 0], the reference trajectory is as follows:

xr=1+2%*sin(0.3 * t),
yr=-1+2%*cos(0.15* t)

The control inputs of the robot are as follows:

Umax = 3 m/s and W,z = 3 rad/s.

(18)

(19)
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When the sample time interval is set to T = 0.08 s and the number of prediction steps is N = 10,
the weight matrices Q and R are set as follows:

30 0
Q=|0 4 0 |andR = [ 0(')5 0%5 ] (20)
0 0 02 :

4.2.1. Static Obstacle Avoidance

When the obstacle coordinates are set to [2, —1.9] and the coordinate points are located at the
lower left corner of the square obstacle, the obstacle-avoidance effect is as shown in Figure 12.

1 L
Reference trajectory
ot Trajectory tracking
E
>
1t
2t
-2 4

Figure 12. Static obstacle-avoidance effect diagram of figure-of-eight-shaped trajectory tracking.
4.2.2. Dynamic Obstacle Avoidance

When the obstacle coordinates are to [4.2, 0.2], the coordinate points are located at the lower left
corner of the square obstacle, the moving direction of the obstacle is /4, and the speed is 0.1 m/s,
the dynamic obstacle avoidance is shown in Figure 13. Figure 13a shows the trajectory tracking at
the beginning, Figure 13b shows the robot avoiding obstacles when it encounters moving obstacles,
Figure 13c shows the robot tracking to the reference track after obstacle avoidance, and Figure 13d
shows the robot moving to the final position.

2
24 . Reference trajectory | |
Trajectory tracking 1
15 . Reference trajectory
. 0 Trajectory tracking
8 ; 8
= S, =
-1
0.5 1
£ :
0
1 1.5 2 25 3 3.5 4 -2 -1 0 1 2 3 4
x(m) x(m)
(a) Robot and obstacle position at 2.56 s (b) Robot and obstacle position at 29.44 s

Figure 13. Cont.
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Figure 13. Dynamic obstacle-avoidance effect diagram of figure-of-eight-shaped trajectory tracking.

4.2.3. Experimental Results

As seen in Figures 1219, the algorithm enables the robot to effectively avoid static and dynamic
obstacles. At2.28 s, the robot completes trajectory tracking. At 27.52 s, the velocity, angular velocity,
and direction of the robot for dynamic obstacle avoidance diverge from the static obstacle avoidance
and the robot starts to avoid obstacles dynamically. At 31.52 s, the robot completes the dynamic
obstacle avoidance. At the same time, the velocity, angular velocity, and direction angle of the robot
stabilize, with the error in each direction approaching zero.

3 T T T T
Current velocity
Reference velocity

velocity(m/s)

_1 L 1 1 L
0 10 20 30 40

time(s)

Figure 14. In velocity and reference velocity of a figure-of-eight-shaped trajectory.

3 T .
Current angular velocity

2L Reference angular velocity ]
Q)
o
1y
2
8
o O]
>
©
S -1
o
S

-2 4

-3 1 I L L

0 10 20 30 40

time(s)

Figure 15. In angular velocity and reference angular velocity of a figure-of-eight-shaped trajectory.
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Figure 16. X-direction, Y-direction, and 6-direction error changes of a figure-of-eight-shaped trajectory.
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Figure 17. Variation in velocity and reference velocity of a figure-of-eight-shaped trajectory.
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Figure 19. X-direction, Y-direction, and 6-direction error changes of a figure-of-eight-shaped trajectory.

4.3. Linear Trajectory

When the starting position of the robot is set to [0; 1; 0], the reference trajectory is as follows:

The control inputs of the robot are as follows:

Umax= 1.5 m/s and wy,,y = 1.5rad/s

(21)

(22)
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When the sample time interval is set to T = 0.08 s and the number of prediction steps is N = 10,
the weight matrices Q and R are set as follows:

30 0 O
Q=|0 40 0 (andR = [
0 0 05

05 0 ] 23)

0 0.05

4.3.1. Obstacle Avoidance

When the dynamic obstacle coordinates are set to [0.8, 1.2] and the coordinate points are located in
the lower left corner of the dynamic square obstacle, the moving direction of the obstacle is 0, the speed
is 1 m/s, and the acceleration is a uniform deceleration movement of —0.25 m/s2; movement stops when
the obstacle speed is 0 m/s. Figure 20 shows the robot avoiding obstacles when encountering moving
obstacles, whereas Figure 21 shows the robot moving to the final position.

Reference Trajectory

2r *  Trajectory tracking .
1571
E
>
T teceesoessconsssonsssnnnnns .s J
057 _
0 0.5 1 1.5 2 2.5 3
x(m)
Figure 20. Robot and obstacle position at 2.32 s.
4+ j
Reference Trajectory
3l +  Dynamic |
+  Static
2t _
E O
\; 1 Tl tameme
0r _
1t
0 2 4 6 8
x(m)

Figure 21. Robot and obstacle position at 8 s.

When the static obstacle coordinates are set to [2.8, 1.2] and the coordinate points are located in
the lower left corner of the square obstacle, the obstacle avoidance effect is as shown Figure 21.
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4.3.2. Experimental Results

As seen in Figures 20-24, the algorithm can enable the robot to effectively avoid static and dynamic
obstacles. At 2.32 s, the speed, angular velocity, and direction of the robot used for dynamic obstacle
avoidance diverge from static obstacle avoidance and the robot starts to avoid dynamic obstacles.
At 4 s, the dynamic obstacle stops at the same position as the static obstacle. At 4.16 s, the obstacle
avoidance is completed and the time, speed, angular velocity, and direction angle of the robot are
considered to be stable, with the error in each direction close to zero.

1 5 T 1 T T
1 \‘,
)
k= Dynamic
= 051" Reference velocity | |
S Static
o)
©
>
of / -
05 - . .
0 2 4 6 8

time(s)

Figure 22. Variation in velocity and reference velocity of a linear trajectory.

1.5 T T T
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~ 17 Reference angular velocity |
n .
. Static
g o5} ]
ey
8 A
® 0
>
®
S -05¢ -
)
c
®
At _
-1.5 : ! s
0 2 4 6 8
time(s)

Figure 23. Variation in angular velocity and reference angular velocity of a linear trajectory.
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Figure 24. X-direction, Y-direction, and 6-direction error changes of a linear trajectory.

5. Conclusions

A model-based predictive control scheme is proposed in this paper to solve the problem of robot
dynamic obstacle avoidance. Collision avoidance as a nonlinear constraint condition of changes in
position state with time is embedded in the trajectory tracking control problem. Through MATLAB
simulation, the robot was shown to successfully avoid static obstacles and dynamic obstacles.
However, the dynamic obstacle avoidance control scheme in this paper is only theoretical. Actual road
traffic conditions, which are more complex, were not considered in this work. Therefore, the obstacle
avoidance strategies need to be further improved. Moreover, when a vehicle is actually driving, the
position of the moving obstacle cannot be accurately obtained; further research is needed to obtain
accurate obstacle positions.
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