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Abstract: This paper presents the first demonstration of NASA’s Smartphone Video Guidance
Sensor (SVGS) as real-time position and attitude estimator for proximity and formation maneuvers.
An optimal linear quadratic Gaussian controller was used, combining a linear quadratic regulator and
a Kalman filter. The system was demonstrated controlling the 3-degree of freedom planar motion of
the RINGS ground units (Resonant Inductive Near-field Generation Systems). A state-space model of
the system’s 3-DOF motion dynamics was derived, and model parameters extracted using a system
identification technique. The system’s motion control performance is experimentally demonstrated
in both tracking and formation maneuvers. The results highlight the capabilities and performance
of the Smartphone Video Guidance Sensor (SVGS) as a vision-based real-time position and attitude
sensor for motion control, formation flight and proximity operations. A leader-follower formation
maneuver approach is demonstrated, as well as position hold and path following.

Keywords: video sensor; proximity operations; photogrammetric sensor; guidance; navigation;
attitude control; proximity maneuvers; docking

1. Introduction

The interest in formation maneuvers and distributed space missions has grown significantly in
recent years [1–6], including follower formations and station keeping [7,8]. Proximity maneuvers rely
on accurate and reliable position and attitude tracking between individual spacecraft involved [9].
The Smartphone Video Guidance Sensor (SVGS) [10–12] is a miniature, self-contained autonomous
rendezvous and docking sensor developed at the NASA Marshall Space Flight Center using an
Android-based smartphone to enable proximity operations and formation flight in small satellite
platforms. SVGS determines the relative position and orientation of a moving target relative to a
coordinate system attached to the phone by capturing an image of a set of illuminated targets mounted
in a known pattern on the target spacecraft. The image is processed using a modification of algorithms
originally developed for the Advanced Video Guidance Sensor (AVGS) [13–17], which successfully
flew on the Demonstration for Autonomous Rendezvous Technology (DART) and Orbital Express
missions [13,18]. SVGS is part of the development at NASA Marshall Space Flight Center of a low-cost,
low mass, embedded sensor that will enable formation flight and navigation within proximity distance
between small satellites in autonomous rendezvous and capture maneuvers. SVGS is capable of
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estimating the full six-degree-of-freedom relative position and attitude vector of a target in the near
range (up to tens of meters) without incurring a computational burden on the motion platform
controller, since the image processing and motion estimation algorithm are performed on the SVGS
device itself. This paper demonstrates for the first time the capability and performance of SVGS as a
real-time position and attitude sensor for proximity and formation maneuvers using the ground units
of RINGS as a demonstration platform.

Vision-based navigation for spacecraft proximity operations is of significant current interest [19].
Figure 1a shows the operational concept of SVGS [10]. Estimating the target’s position and attitude
relative to the camera’s coordinate system starts with image capture of a set of illuminated points in the
target. The target’s 6-DOF position and attitude vector was estimated using geometric photogrammetry
techniques [10,12,20]. Image processing and state estimation, outlined on Figure 2, take place
onboard the SVGS device, avoiding additional computational burden on the motion control computer.
SVGS output data are sent in each control cycle to the motion control computer through a serial
communication link such as UART.
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Figure 1. (a) the operational concept of Smartphone Video Guidance Sensor (SVGS) [10]. The target’s
6-DOF state can be transmitted from the SVGS device to the spacecraft’s guidance, navigation and
control system (GN&C) (b) The SVGS coordinate system is defined relative to the camera location and
orientation within the phone.
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RINGS (Resonant Inductive Near-field Generation Systems) [21–23] are prototype systems
developed to investigate electromagnetic formation flight and wireless power transfer between
spacecraft. RINGS were designed to operate with the ISS free-flying robot SPHERES (Synchronized
Position Hold, Engaged, Reorient, Experimental Satellites) [24], using the SPHERES metrology system
to estimate RINGS position and attitude. SPHERES also act as motion control systems to regulate
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the degrees of freedom in RINGS not controlled by electromagnetic forces during formation flight
maneuvers. Two RINGS-SPHERES assemblies are shown in Figure 3.

Robotics 2020, 9, x FOR PEER REVIEW 3 of 18 

 

regulate the degrees of freedom in RINGS not controlled by electromagnetic forces during formation 

flight maneuvers. Two RINGS-SPHERES assemblies are shown in Figure 3. 

 

Figure 3. RINGS ground units with SPHERES 

2. Materials and Methods 

A 3-DOF planar motion platform (Figure 4a: design, 4b: implementation) was developed for 

ground testing of RINGS using SVGS feedback. This section presents the system identification and 

controller design for motion control of SVGS–RINGS on a flat glass surface using ducted fans. The 

motion platform provides alternative actuation to the one provided on ISS by the free-flying robot 

attached to RINGS, enabling assessment of the functionality of RINGS using the ground units. 

 

 

(a) (b) 

Figure 4. (a) Design of the 3-DOF ground motion platform for RINGS, (b) Implementation 

2.1. State-Space Model of the 3-DOF Ground Motion Platform 

The translation and rotation dynamics of the RINGS assemblies are derived from the Newton–

Euler equations [25,26]: 

𝑭 = �̇� (1) 

𝑴 = �̇� (2) 

Figure 3. RINGS ground units with SPHERES.

2. Materials and Methods

A 3-DOF planar motion platform (Figure 4a: design, Figure 4b: implementation) was developed
for ground testing of RINGS using SVGS feedback. This section presents the system identification
and controller design for motion control of SVGS–RINGS on a flat glass surface using ducted fans.
The motion platform provides alternative actuation to the one provided on ISS by the free-flying robot
attached to RINGS, enabling assessment of the functionality of RINGS using the ground units.
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2.1. State-Space Model of the 3-DOF Ground Motion Platform

The translation and rotation dynamics of the RINGS assemblies are derived from the Newton–Euler
equations [25,26]:

F =
.
P (1)

M =
.

H (2)
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where F is the resultant external force applied to the system,
.
P the rate of change of linear momentum,

M the sum of external torques, and
.

H the corresponding rate of change in angular momentum. For a
rigid-body rotating about the center of mass, linear and angular momentums can be expressed as
P = mv and Hc = Icω, where v is the linear velocity and ω the angular velocity vectors of the system.
The Newton–Euler equations can therefore be written as:[

m 0
0 Ic

]{ .
v
.
ω

}
=

(
F
M

)
+

(
0

−ω× Icω

)
(3)

where m is the mass matrix, Ic the mass moment of inertia,
.
v the linear acceleration vector of the center

of mass, and
.
ω the angular acceleration vector. Since the motion is planar, the angular momentum can

be simplified into Hc = Ic
.
θ, and the Newton–Euler equations can then be:

Iz
..
θ

m
..
x

m
..
y

 =


Mz

Fx

Fy

 (4)

where x, y, θ are two translational and one attitude coordinates that describe the planar motion of the
3-DOF platform relative to the inertial frame. This corresponds to the linear time-invariant state-space

model {A,B,C,D} with state vector: x(t) =
{
θ

.
θ x

.
x y

.
y

}T
, as described in Section 2.2:

.
x(t) = Ax(t) + Bu(t) (5)

y(t) = Cx(t) + Du(t) (6)

2.2. System Identification of the 3-DOF Motion Dynamics

A system identification procedure was used to experimentally identify the unknown parameters
in the state-space model (Equations (5) and (6)). Chirp excitation signals were used as speed commands
to the ducted fans that control forces and torques applied to the system. The sinusoidal chirp function
has frequency f (t) (Equation (7)), where f0 and f1 are the initial and final frequencies of the chirp
signal, and the rate of frequency change is k =

f1− f0
T , where T is the total duration of the signal:

f (t) = f0 + kt (7)

The chirp signal covers the desired frequency range of the system (0.1 to 2 Hz) and has a total
duration of 10 s. Experimental measurements for displacement and velocity are shown in Figure 5.Robotics 2020, 9, x FOR PEER REVIEW 5 of 18 
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A prediction error method was used to estimate the unknown system parameters of the state-space
model (Equations (5) and (6)) based on experimental input-output sequences. SVGS provides an
update of the six-state position and attitude vector on each control cycle (every 35 msec in this case).
The position and attitude vector is sent as a serial data packet to the local motion control computer,
where it is decoded to the corresponding floating point values. The system identification procedure
uses the forces and torques directly available from linear regression curves of the fan thrusters as input,
and uses the six-state position and attitude vector available from SVGS as output. Position and attitude
measurements (x, y, θ) and linear velocity estimates (based on finite differences) were obtained from the
SVGS sensor, while a MEMS gyroscope was used to collect angular velocity data. While SVGS provides
good estimates of attitude (roll angle in this case), the estimation of angular velocity from SVGS
measurements by finite differences is noisy compared to MEMS gyro measurements. Each motion
control platform uses a MEMS gyro to estimate angular velocity in real time.

Figure 5a shows linear displacement predictions compared to measured response, and Figure 5b
linear velocity estimation of the same axis, compared to finite-difference velocity estimation using
SVGS measurements. The procedure was performed for all three degrees-of-freedom of the planar
motion dynamics, achieving model fits of 97.2% and 79.8% in linear position and velocity estimation,
and 96.4% and 88.64% for angular position and velocity estimations (θ axis). The estimated state-space
model of the 3-DOF motion dynamics of the RINGS motion platform is:

.
x1
.
x2
.
x3
.
x4
.
x5
.
x6


=



0 1 0 0 0 0
0 −0.009521 0 0 0 0
0 0 0 1 0 0
0 0 0 −0.03117 0 0
0 0 0 0 0 1
0 0 0 0 0 −0.03238





x1

x2

x3

x4

x5

x6



+



0 0 0
0.02374 0 0

0 0 0
0 0.00663 0
0 0 0
0 0 0.005813




u1

u2

u3



(8)



y1

y2

y3

y4

y5

y6


=



0.5693 0 0 0 0 0
0 1 0 0 0 0
0 0 2.14 0 0 0
0 0 0 1 0 0
0 0 0 0 2.145 0
0 0 0 0 0 1





x1

x2

x3

x4

x5

x6


(9)

The state-space matrices are computed by a prediction error method (PEM), a gradient-based
optimization that calculates model parameters from a set of input–output sequences; the PEM method
and system identification procedure is described in detail in [27]. The C matrix in Equation (9) is
initialized as a unity matrix, but is later updated by the gradient descent algorithm to provide minimum
mean square error to the predicted output for the given input–output data sets.

2.3. 3-Degree of Freedom Motion Control via LQG-Servo

A linear quadratic Gaussian (LQG) full-state feedback controller [28–30] was designed based on
the experimental model of the 3-DOF dynamics (Equations (8) and (9)). The LQG-servo combines a
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linear quadratic regulator with an optimal state estimator (Kalman filter). The formulation of a linear
quadratic (LQ) servo controller starts with the typical LQR cost function:

J =

∞∫
0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt (10)

An LQR controller with diagonal Q and R matrices considers the minimization of (Equation (10))
for the state equations (Equations (5) and (6)):

J =

∞∫
0

[
qθθ2 + qxx2 + qyy2 + q .

θ

.
θ

2
+ q .

x
.
x2

+ q .
y

.
y2

+ ρθu2
θ + ρxu2

x + ρyu2
y

]
dt (11)

where the semi-positive definite state weighting matrix Q is:

Q = NTN =



qθ 0 0 0 0 0
0 q .

θ
0 0 0 0

0 0 qx 0 0 0
0 0 0 q .

x 0 0
0 0 0 0 qy 0
0 0 0 0 0 q .

y


(12)

where N is a diagonal matrix with entries equal to the square root of the diagonal entries of Q, qi are
the weight penalties to each state, and the control weighting matrix, R is:

R =


ρθ 0 0
0 ρx 0
0 0 ρy

 (13)

If the system (A, B) is stabilizable and (A, N) is detectable, a unique solution K to the optimal
control problem can be found by solving the Algebraic Riccati equation:

KA + ATK + Q−KBR−1BTK = 0 (14)

The optimal control gain matrix G is:

G = R−1BTK (15)

A critically damped response (damping ratio ~1) was desired, to provide fast rising and settling
times with minimal overshoot and zero steady state error. The effects of varying the state weighting
matrix Q and control weighting matrix R are shown in Figure 6, for one degree of freedom (x-axis).
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Similar analyses were done to tune the other two axes of motion (y- and θ-axis). The full state
weighting matrix Q and control weighting matrix R were finally chosen as:

Q = 103
∗



1 0 0 0 0 0
0 4 0 0 0 0
0 0 8 0 0 0
0 0 0 100 0 0
0 0 0 0 8 0
0 0 0 0 0 100


; (16)

R =


0.3 0 0
0 0.6 0
0 0 0.6

 (17)

Larger penalties correspond to the velocity states of the system (q .
θ

, q .
x, and q .

y) to restriction
velocity in all three axes to prevent overshooting. The optimal control gain matrix G was then:

G =


57.7 134.5 0 0 0 0

0 0 115.5 444.2 0 0
0 0 0 0 115.5 448.8

 (18)

To implement a tracking LQ-servo from the LQR control law, the control gain matrix is decomposed
to separate the gains for the tracking states, Gy, from the gains of the regulated states, Gr, such that G =[

Gy Gr
]
:

Gy =


0 0

115.5 0
0 115.5

; (19)

Gr =


57.7 134.5 0 0

0 0 444.2 0
0 0 0 448.8

 (20)

The states x(t) are divided into output vector yp(t) =
{

x y
}T

and the remaining state vector

xr(t) =
{
θ

.
θ

.
x

.
y

}T
. The optimal feedback control vector u(t) =

{
uθ ux uy

}T
for the

LQ-servo formulation is:
u(t) = Gy e(t) −Gr xr(t) (21)
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where the tracking error is e(t) = r(t) − yp(t), and the reference command r(t) =
{

xd yd
}T

.
Figure 7 shows a block diagram of the proposed 3-degree of freedom LQ-servo system.
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SVGS provides only relative position and attitude information. Implementation of a full-state
feedback law requires a real-time velocity estimation. Finite differences provide noisy velocity
estimates, and low-pass filtering the corresponding estimates introduces delays that can significantly
affect stability and performance. A Kalman state estimator [31–33] was implemented to provide
robust estimation of the non-measurable states, and integrated with the LQ-servo control law as a
model-based compensator. A state-space model of the 3-DOF planar motion system subject to both
process and measurement noise is:

.
x(t) = Ax(t) + Bu(t) + Pξ(t); (22)

y(t) = Cx(t) + θ(t) (23)

where ξ(t) and θ(t) are process and sensor noise, respectively. It is assumed that the statistical
properties of the process and measuring device do not change with time, therefore a steady-state
Kalman filter can be used. A design parameter, µ, was added to the Kalman formulation to shape
the response of the filter. The state estimation error is ε(t) = x(t) − x̂(t), and the cost function J to be
minimized is defined as the sum of error variances, i.e., the trace of the error covariance matrix:

J = tr
(
E
{
ε(t)εT(t)

})
=

n∑
i=1

E
{
(xi(t) − x̂i(t))

2
}

(24)

If (A, P) is stabilizable and (A, C) detectable, a unique solution to the optimal error covariance
matrix Σ ≥ 0 can be found by solving the filter algebraic Riccati equation:

AΣ + ΣAT + PPT
−

1
µ

ΣCTCΣ = 0 (25)

The noise and error statistics of SVGS were estimated using accuracy assessment experiments,
in which SVGS measurements were compared to known motion profiles in each axes of motion.
The “true position” was estimated from encoder readings from a computer controlled motion stage
used to apply known motion profiles to a SVGS target while collecting SVGS readings. By these means,
the statistics of sensor noise (mean, standard deviation, variance and covariance) were estimated.
The sensor noise covariance matrix Θ is:

Θ = E
{
θ(t)θT(t)

}
= µIδ(t− τ) (26)
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where the diagonal entries represent the variance σ2
xi

, and the off-diagonal entries the covariance σxiσ .
xi

between state variables. Both were estimated from SVGS accuracy assessment tests, yielding:

Θ = µ



σ2
θ σ .

θ
σθ σxσθ σ .

xσθ σyσθ σ .
yσθ

σθσ .
θ

σ2
.
θ

σxσ .
θ

σ .
xσ .
θ

σyσ .
θ

σ .
yσ .
θ

σxσθ σxσ .
θ

σ2
x σxσ .

x σxσy σxσ .
y

σ .
xσθ σ .

xσ .
θ

σ .
xσx σ2

.
x

σ .
xσy σ .

xσ .
y

σθσy σ .
θ
σy σxσy σ .

xσy σ2
y σ .

yσy

σ .
yσθ σ .

yσ .
θ

σxσ .
y σ .

xσ .
y σ .

yσy σ2
.
y


(27)

Θ = µ



0.000027 −0.000003 0 0 0 0
−0.000003 0.000016 0 0 0 0

0 0 0.006 −0.0069 0 0
0 0 −0.0069 0.0552 0 0
0 0 0 0 0.0051 0.0003
0 0 0 0 0.0003 0.0405


(28)

Angular position is measured in radians, while linear position state variables (x and y) are in
meters. The process noise covariance matrix Ξ is defined as:

Ξ = ΨI6 = Ψ



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(29)

where µ and Ψ are design parameters used to shape the performance of the model-based state estimator:
small values of µ in Equation (28) represent “accurate” sensor measurements, leading to larger values
of filter gain. ψ is a tuning parameter: the chosen value was selected by optimizing performance of the
nominal Kalman filter so that it gives less weight to noisy measurements. After tuning, these parameters
were selected as µ = 1.6 and Ψ. = 0.01, respectively. After solving Equation (25) for the optimal error
covariance matrix, the gain matrix of the Kalman filter L is:

L =
1
µ

ΣCT =



0.0381 0.05 0 0 0 0
0.1088 0.998 0 0 0 0

0 0 0.1194 0.0346 0 0
0 0 0.494 0.2782 0 0
0 0 0 0 0.1188 0.0316
0 0 0 0 0.281 0.2957


. (30)

The state estimate x̂n based on the Kalman filter is a discrete-time process based on the model
matrices, the previous state estimate x̂n−1 and the control effort un:

x̂n = Adx̂n−1 + Bdun + L
(
yn −Cdx̂n−1 −Ddun

)
(31)

where Ad, Bd, Cd, and Dd are the matrices of the discretized state-space model at a nominal sampling
rate of 50 msec. The estimated output ŷn based on the state estimator is:

ŷn = Cdx̂n (32)
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Figure 8 shows the proposed LQG-servo controller, where the estimated plant output is

ŷp(t) =
{

x̂ ŷ
}T

, and the estimated remaining state vector is x̂r(t) =
{
θ̂

.̂
θ

.̂
x

.̂
y

}T
.
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2.4. Path Following and Formation Maneuvers

Figure 9 shows the experimental setup to demonstrate the use of SVGS in path following and
formation maneuvers. The setup consists of two RINGS units integrated to their 3-DOF motion control
platforms using SVGS. In this implementation, the first SVGS device provides position and attitude
information to the RINGS leader relative to the inertial frame, while the second SVGS unit provides
motion information to the RINGS follower relative to the leader. The workspace has a dimension of
2.1 × 1.2 m. In both units, SVGS data are transmitted to the corresponding 3-DOF motion control
computer using Bluetooth serial links.
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The path following problem for a leader-follower formation maneuver is illustrated in Figure 10,
where the leader tracks a predefined path, while the follower keeps a fixed coaxial distance to the
leader (de) while holding a constant relative attitude (θe).
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The position of both spacecraft relative to the coordinate system attached to the workspace is
defined as follows. The first SVGS device is fixed relative to the ground, and its position (

⇀
r sA ) is

⇀
r sA = xsA î + ysA

ĵ (33)

where xsA and ysA
are constants given by the fixed location of SVGS relative to the origin. The position

of the leader spacecraft
⇀
r A is defined as:

⇀
r A =

⇀
r sA +

⇀
r ρ =

(
xsA + rρx

)
î +

(
ysA

+ rρy

)
ĵ (34)

where rρx and rρy are position data for the x and z states from the first SVGS device, respectively.

The position of the follower spacecraft (
⇀
r B) can be now defined as:

⇀
r B =

⇀
r A +

⇀
r e =

(
xsA + rρx − rex

)
î +

(
ysA

+ rρy + rey

)
ĵ (35)

where rey and rex are position data for the x and z states from the second SVGS device, respectively.
During all maneuvers, the motion of both leader and follower spacecraft are controlled using the SVGS
devices relative to this coordinate frame.

3. Results

3.1. Response to Single Axis and Dual Axes Commands, and Response to External Disturbances

SVGS is only functional in proximity operations: it requires line of sight and a clear picture of all
four illuminated points in the target to provide an estimate of the 6-DOF position and attitude state.
The preconditions to use SVGS need to be met by an additional navigation system until proximity
is reached.

Figure 11a shows the time response of the 3-DOF closed-loop system using SVGS feedback during
a single axis maneuver: a 0.5 m pulse command in x-axis while the remaining 2-DOFs (z and θ) were
kept constant at 1.5 m and 0◦, respectively. The command signals are internally generated by the
motion controller, whereas position and attitude output is measured by SVGS. Figure 11b shows the
3-DOF closed-loop response by SVGS feedback in a dual-axis maneuver: a 0.5 m pulse command
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(starting at −0.25 m in the x-axis) and 0.3 m pulse commands (starting at 1.35 m in the z-axis) in x- and
z-axis, respectively, while the remaining DOF (θ) is regulated at 0◦.
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Figure 11. Response of the 3-DOF LQG-servo system using SVGS feedback: (a) response to X-axis
pulse command, (b) response to dual-axis pulse command.

Figure 12 compares the SVGS velocity estimation using filtered finite differences vs. Kalman
velocity estimates for all 3-DOFs. The Kalman filter leads to a significant improvement in velocity
estimates compared to finite difference followed by a first order filter. This is important since the
LQG-servo controller gives high penalties to the velocity states to achieve higher control gain values,
thereby requiring lower error/noise in the velocity estimates. The 3-DOF motion controller uses x- and
z-axes velocity estimates from the Kalman filter and MEMS gyro measurements for angular rate.
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Figure 12. Velocity estimates in x- z- and θ-axes by finite differences (SVGS measurements followed by
a low pass filter), compared to Kalman velocity estimates.
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Figure 13 shows the response of each degree-of-freedom (x, y, θ) to a position hold command
(red trace) in the presence of externally applied disturbances. Four external disturbances d1, d2, d3, and
d4, were applied as external forces and torques at approximately 25, 34, 45, and 60 sec., respectively,
illustrating the ability of the LQG-servo controller to regulate disturbances that do not exceed the limits
of the available thruster forces.
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3.2. Performance in Proximity Operations and Path Following Maneuvers

To assess the capabilities of SVGS in formation maneuvers, three different experiments were
implemented: coaxial, colinear, and combined maneuvers, where the leader spacecraft follows a
predefined path, while the follower tracks the leader’s path while keeping a constant coaxial distance
and constant attitude relative to the leader. The maneuvers were chosen to demonstrate RINGS
functionality in support of their proposed science missions on the ISS using the RINGS ground units,
which implied motion control while keeping a zero relative attitude angle. This also enables to assume
that the dynamics of the slave RINGS are pure translation, since the motion control system is actively
regulating the attitude angle at zero, and the master unit is keeping zero attitude relative to the
inertial frame.

First path following maneuver. The leader RINGS moves from the home position to waypoint
“1” and then returns home. The follower RINGS is kept colinear and coaxial relative to the master, at a
constant separation distance of 0.8 m, as shown in Figure 14.
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Second path following maneuver. The leader RINGS moves 0.4 m from the home position to
waypoint “1” and then returns home along the same line. The follower RINGS is kept coaxial relative
to the master at a constant separation distance of 0.8 m, as shown in Figure 15.
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Figure 16a shows the time domain performance of the first path following maneuver: a 0.3 m
pulse command of 6 s of duration is applied on the Y-axis while the X and θ axes are regulated at zero.
Figure 16b shows the time domain performance of the second path following maneuver: a 0.4 m pulse
command of 12 s duration is applied on the X-axis while the Y axes is regulated at 1.2 m and the θ axes
is regulated at zero degrees.
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Third path following maneuver. The leader spacecraft follows a predetermined path (Figure 17)
from the home position to waypoints “1”, “2”, “3” and back home, while the follower keeps a constant
separation distance and zero-degree attitude relative to the leader. The experimental performance is
shown in Figure 18a,b.
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4. Discussion

The single and dual axis tracking capabilities of a real-time trajectory control system based on
SVGS are demonstrated in Figure 11. Figure 13 shows the ability of the SVGS-based LQG-Servo system
to reject external disturbances, while Figure 12 illustrates the performance of the SVGS Kalman filter to
provide robust velocity estimates in all three axes of motion (X, Y, θ).

The performance of the SVGS-based system in proximity operations and path following maneuvers
is shown in Section 3.2 using three basic maneuvers (Figures 1, 14b, 15b and 18a). The X, Y, θ trajectories
of both leader and follower spacecraft for all three maneuvers are shown in Figures 16 and 18b.
In all three maneuvers, the leader (RINGS-1) shows good tracking of the desired path. The follower
(RINGS-2) was also capable of maintaining good overall performance in keeping the desired motion
relative to the leader; however, the response of the follower relative to the workspace coordinate frame
shows less accurate tracking and overshoot at the edges of the commanded paths compared to the
leader, reflecting the fact that the absolute position of the follower is calculated from the position states
of the leader: any positioning errors in the leader therefore accumulate and reflect in the absolute
position errors of the follower. The overall performance shown in Section 3 underscores the ability of
the SVGS-based system to successfully control multi-axis position and attitude in proximity operations.
SVGS is particularly well suited for cooperative maneuvers since it provides a direct measurement of
the relative position and attitude between two agents within the line of sight of each other, as required
in operations such as docking, landing and formation maneuvers. SVGS does not burden the motion
control computer with the computation of the position-attitude state estimate since the SVGS algorithm
runs on a separate auxiliary system, enabling implementation in real-time at closed loop rates up to
20 updates/s with the hardware used in this study.

5. Conclusions

This paper presents the first demonstration of real-time motion control, proximity operations and
formation maneuvers using SVGS as position and attitude sensor. SVGS is a compact, self-contained
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sensor for relative position and attitude that can be used for a variety of robotic proximity operations
(docking, landing, line of sight approach) and not just in space guidance and control, as the Advanced
Video Guidance Sensor (AVGS, [13–16]) has been. The demonstration was implemented on the
3-DOF planar motion platform of two RINGS ground units. Test results on glass table experiments
demonstrate the capabilities of the proposed approach to perform 3-axial motion control of a single unit
and formation maneuvers of two units using SVGS and the proposed LQG-servo controller. A Kalman
filter based on the noise statistics of SVGS was used to provide improved x- and z-velocity estimates,
compared to filtered finite difference velocity estimates. The process noise model used in the Kalman
filter design provides successful results within the accuracy required in this application. Three different
path following maneuvers were implemented to demonstrate performance of SVGS and the proposed
LQG-servo controller in providing accurate tracking and regulation in three degrees of freedom.

SVGS has the potential to be used in a variety of robotic applications where proximity operations
such as landing, coordination of agents or docking is needed, and can therefore be of potential use to a
larger community outside aerospace applications. The error statistics of SVGS enable its incorporation
(by synthesis of a Kalman estimator) in advanced motion control systems for navigation and guidance.
Future work will investigate the performance of the integrated SVGS with LQG-servo control in the
demonstration of electromagnet formation flight (EMFF) of RINGS using SVGS, where reduction in
power consumption by the use of electromagnetic motion-assist will be investigated.
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