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Abstract: In this paper, an investigation is presented that demonstrates the application of a new
approach for enabling the reduction of liquid slosh by implementing optimized motion profiles over
a continuous range of operating speeds. Liquid slosh occurs in the packaging process of beverages.
Starting by creating a dynamic process model, optimal control theory is applied for calculating
optimal motion profiles that minimize residual vibration. Subsequently, the difficulty of operating
speed dependency of the herewith synthesized motion profiles is examined. An approach in which
the optimal motion profiles are consolidated into a characteristic map of motion specifications, which
can be executed by a programmable logic controller in real time, is discussed. Eventually, the success
of this novel approach is demonstrated by the comparison with state-of-the-art motion profiles and
conventional motion implementation.
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1. Introduction

Packaging machines are used in various areas of the consumer goods production industry.
They are developed with the aim of packaging everyday products such as food, beverages,
and pharmaceuticals. In order to meet the worldwide demand for consumer goods, packaging
machines are operated with the intention of a maximum machine output [1] at each desired operating
speed. The achievement of this objective is made more difficult by restrictions that often result from the
behavior of the material to be packaged, rather than from the mechanical or the mechatronical machine
assemblies. One possibility that can continue to increase the machine output is the deployment
of parallel working machines; however, this would be associated with increased investment and
operating costs. One opportunity that machine developers have is the optimal adaption of the process
control. An illustrative example, which is considered here, is the intermittent transport of liquids,
whose abstracted process depiction is displayed in Figure 1.

In pharmaceutical applications, liquids are conveyed intermittently in containers, whereby one
machine cycle is used for filling and the subsequent machine cycle is used for the accurate weighing
of the filled fluid. Due to the necessary space requirements of the individual assemblies, there must
be a distance between the filling and weighing station. Between these stations, the container filled
with fluid has to be conveyed. The problem that results out of this kind of process conducting is
that, with increasing operating speed, the machine’s output theoretically increases too. In practice,
the process cannot be implemented at any operating speed due to the resulting fluid liquid slosh
that disables accurate weighing. Therefore, one possibility that machine designers can pursue is the
optimization of conveying motion to prevent liquid sloshing, even at high operating speeds. This
paper provides some novel aspects to be considered in the implementation of optimal motion profiles
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with modern motion control systems. In particular, the dynamic process behavior and the resulting
optimal motion profile’s operating speed dependency is considered. For handling this, solutions are
introduced, and their effectiveness is shown both with a computer model as well as experimentally
with a physical model on a test station.
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Figure 1. Schematic illustration of the underlying practical problem in packaging machines: An empty
container is intermittently conveyed to a filling station, filled with liquid, and afterwards transported
to a weighing station. To realize a valid weighing result, it is important to achieve as little residual
vibration of the liquid’s surface as possible. In this study, a conveying stroke of sstroke = 100 mm,
a ratio of motion time to cycle time of b = 0.4, and operating speeds up to 60 1/min are treated.

The problem of dynamical liquid slosh behavior induced by transporting dates back to the 1960s
during aerospace research [2,3]. Based on this initial work, further investigations followed both in
the field of modeling liquid slosh behavior, e.g., in [4] or [5], and in the field of motion optimization.
An often applied approach for motion optimization is optimal control theory, which was used in [6,7].
In these works, special attention was paid to the formulation of different cost functionals and their
effect on the optimization result. While [6] limited the investigations to computer simulation, [7]
investigated the optimized motion profile’s effect on physical models too. Furthermore, theH∞-theory
was additionally applied to increase the motion’s robustness in [8]. In [9,10], optimal control theory
was used to implement an optimal closed-loop feedback controller in order to minimize the liquid slosh.
Hereby, it must be mentioned that a closed-loop feedback controller requires appropriate measurement
possibilities of the process state values. This is hardly realizable in a real production process of
packaging machines due to the requirements of hygienic design, accessibility, and, eventually, costs.
For the sake of completeness, it should be mentioned that motion optimization aiming to implement a
slosh-free process behavior is not limited to one-dimensional motion. Instead, in [11,12], it was shown
that multi-dimensional trajectories can realize slosh-free behavior. However, in addition, very simple
motion profiles synthesized without optimization, consisting only out of acceleration pulses, can
lead under some considerations to slosh-free behavior [13]. Nowadays, even leading motion control
producers have implemented modules that enable slosh-free conveying [14], which underlines the
practical importance of the considered example.

Due to the effectiveness of optimal control theory, this tool will be applied here, whereby special
attention is paid to the optimal motion’s resulting operating speed dependency. This property is
essential for the real operation circumstances of packaging machines because packaging machines
have to fulfill quality criteria for each targeted operating speed. Hence, a question arises as to how
optimal pre-calculated motion profiles, which differ concerning their planned operating speed, can be
implemented with modern servo drives, if no closed-loop-control system can be applied due to the
reasons mentioned above. Therefore, an approach that uses optimal pre-calculated motion profiles
for specifically chosen operating speeds and that interpolates these specifications for the application
of other operating speeds in real-time is experimentally investigated here. Hence, no closed-loop
feedback system is necessary, but it must be shown that all quality requirements are still satisfied.
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2. Materials and Methods

2.1. Experimental Setup and Data Evaluation

In order to investigate the liquid slosh reacting to a motion profile, an experimental test station
is applied, displayed in Figure 2. In essence, the station is composed of a linear direct drive that
is controlled by programmable logic controller (PLC) of type BECKHOFF TWINCAT3 with a cycle
rate of 8 kHz. A model container filled with liquid can be mounted to the drive, whereby, due to
the high drive system’s dynamic stiffness, an accurate realization of the motion profile is possible.
Furthermore, the container is constructed with stiff walls. Thus, the liquid’s behavior has no effect on
the container, and the motion control system and hence an absence of retroactivity can be assumed.
In addition, a high-speed camera and an LED light is fit to the setup. The high-speed camera records
frames induced by trigger pulses that are sent by the PLC. Hence, the system input is synchronized
with the measured output. This enables a precise evaluation of the gathered data. The recording
frame rate (FR) adaptively results from the operating speed n. Hence, the number of recorded and
frames to be analyzed is independent of the observed operating speed. The liquid’s surface is analyzed
frame by frame by firstly setting a region of interest, secondly binarizing the image with a suitable
threshold value, and thirdly deriving the surface’s edge (ξ, η(t, ξ)) and approximating a straight line
with slope θ(t). The determination of this deflection is part of a data compression that facilitates the
process modeling.

ξ

η

a) Trigger pulses

t

e) Detected surface and 

line approximation

c) Captured high-speed frame

θ

d) Binarized frame

w

b) Mechanical setup of test station

Figure 2. Procedure of measuring a liquid’s slosh surface: A container is filled with colored water
(volume’s dimensions: width w = 40 mm; hecight h = 67 mm; depth d = 60 mm) and coupled to a direct
linear drive (b). The drive is controlled by a PLC, which also sends trigger pulses (a) to the high-speed
camera, wherefore the captured frames are synchronized to the motion profile. After setting a region of
interest to the captured frames (c), the frame is binarized (d), which eventually leads to the detection of
the liquid surface and line approximation (e).
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For evaluating the motion profile’s influence on the residual vibration, the effective value of the
fluid’s vertical displacement during the dwell phase is defined as follows for each experiment:

ηeff,dwell =

√√√√√√ 1
(1− b) · Tcycle · w

Tcycle∫
b·Tcycle

w/2∫
−w/2

η2(t, ξ)dξ dt. (1)

In order to assess the effect of the optimal motion profile and the applied motion control principle
over a continuous range of operating speeds, two more characteristic values are introduced, and they
are additionally evaluated in this paper for each investigation: first, the mean value mean{ηeff,dwell}
of the effective residual vibration over all operating speeds, and, second, the corresponding maximum
value max{ηeff,dwell}.

2.2. Process Modeling Taking into Account the Operating Speed

A necessary condition for a successful motion optimization in which the process is considered is
the availability of a process model in a suitable form. A common model approach, e.g., used before
in [4,6,7], is the mechanical pendulum, which is applied in the following. The underlying idea is that
the interaction of the conveyed fluid and the moved container is a dynamical system, represented
as an ordinary differential equation (ODE) that can be described by an input, an output, a system
equation, and suitable model parameters. It has to be mentioned that this model approach is a very
strong simplification and only applicable in a limited range of operating speeds in which the system’s
first natural frequency is prevalent.

The system equation of the mechanical pendulum model is defined as follows:

M : θ̈(t) = −2ζω0 · θ̇(t)−ω2
0 · θ(t) +

ω2
0

g
· u(t). (2)

Herein, ζ describes the damping ratio, ω0 represents the undamped natural frequency of the system,
and g is the gravitational acceleration.

The rectangular acceleration pulse motion profile, whose definition is displayed in Equation (3),
is used as a system input for operating speeds ranging from 12 to 60 1/min with the aim of identifying
the model’s parameters. For each operating speed, an experiment is carried out 10 times, and the
associated fluid surface values are evaluated for obtaining the approximated slope regime θ(t). These
experimental results are used for deriving optimal model parameters (ω0, ζ), which reproduce the
system behavior for all investigated operating speeds in the most suitable way. This is done by solving
a least-square problem in which the gradient-based LEVENBERG–MARQUARDT algorithm minimizes
the residuals between the simulated and measured state values, taking into account all experiment
repetitions at once. This ensures a high model quality and minimizes the influence of measurement
outliers and measurement uncertainties:

arect(t) = u(t) = 4 · sstroke

(b · Tcycle)2


1, 0 ≤ t ≤ b·Tcycle

2

−1,
b·Tcycle

2 < t ≤ b · Tcycle

0, b · Tcycle < t ≤ Tcycle

. (3)

For the considered container and fluid geometry, the best accordance between measured and
simulated system output is achieved for model parameters ω0 = 27.347 rad/s and ζ = 0.05.

In Figure 3, two exemplary system inputs as well as the measured and simulated outputs are
displayed for two investigated operating speeds. There is no high variance in the experimental results,
wherefore the motion profile’s robustness is not discussed here. Moreover, the simulated system
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outputs fit the measured results in a satisfactory way. Therefore, the derived model approach in
combination with the identified optimal model parameters ω0 and ζ are used in the following.
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Figure 3. Illustration of the system input in the form of the motion’s profile acceleration graph,
the experimentally derived system’s answer, and the corresponded simulation responses for an
operating speed of 30 1/min (a) and 48 1/min (b).

It should be noted that the experiments additionally show that a motion profile with a maximum
absolute acceleration value higher than 2.5 m/s2 violates the approach of considering the fluid surface
as a straight line. Therefore, the acceleration is limited correspondingly in the following motion
optimization.

2.3. Motion Optimization with Optimal Control Theory Considering the Operating Speed Dependency

Regarding the discussed requirements of the process behavior at the beginning of this paper,
the aim is to synthesize a horizontal container motion profile that minimizes the residual vibration
of the transported fluid and implements the claimed stroke in the demanded time. Optimal control
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theory [15] deals with the synthesis of trajectories for the controlling dynamical systems under
consideration of specific conditions and with the aim of minimizing a cost functional. Considering
the limited time horizon t ∈ [0, Tcycle] and defining a control variable u(t) ∈ R1 and the state vector
x(t) ∈ Rn, the problem to be solved can be formulated generally as follows:

J =

Tcycle∫
0

f0(t, x, u)dt→ min
(u)

(4)

being subject to

ẋ(t) = f (t, x, u) system differential equation,

x(0) = x0 initial condition,

x(Tcycle) = xTcycle end condition,

|u(t)| ≤ umax(t) control restrictions,

|x(t)| ≤ xmax(t) state value restrictions.

Hereby, f : [R1 × Rn] → Rn describes the system dynamics. Applying PONTRJAGIN’s maximum
principle [16], these demands lead analytically to a boundary value problem (BVP), which yields the
optimal control trajectory. This strategy, often mentioned as an indirect approach, is only expedient
for some special cases. Therefore, numerical approaches are common for solving such problems,
which do not aim to solve necessary conditions. Instead, the continuous optimization problem is
transferred to a static problem with a finite number of optimization variables. This strategy is called
the direct approach [17]. In the following, the direct collocation method with quadratic trial functions
is applied [18]. Thereby, the dynamic optimization problem is transferred to a static problem by
discretization of the time domain as well as of the control and state variables.

Considering the process model M, derived in Section 2.2, setting the state variables x1 = s,
x2 = v = ṡ, x3 = θ, x4 = θ̇ and the motion’s profile acceleration as the control variable u = a(t) leads
to the following first order system of differential equations:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 −ω2

0 −2ζω0




x1

x2

x3

x4

+


0
1
0

ω2
0/g

 · u(t). (5)

The boundary conditions, resulting from the process requirements, are given by

x1(0) = 0 m, x1(b · Tcycle) = 0.1 m,

x2(0) = 0 m/s, x2(b · Tcycle) = 0 m/s, (6)

x3(0) = 0 deg, x3(b · Tcycle) = 0 deg,

x4(0) = 0 deg/s, x4(b · Tcycle) = 0 deg/s.

These conditions enforce the adherence of the motion’s requirements and demand zero residual
vibration during the motion’s dwell phase. In addition, the control variable is limited during the
motion phase, since the validity of the model is limited to an maximum acceleration of 2.5 m/s2 and is
set to zero during the dwell phase:

|u(t)| ≤
{

2.5 m/s2, 0 ≤ t ≤ b · Tcycle,

0 m/s2, b · Tcycle < t ≤ Tcycle.
(7)
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Eventually, the cost functional aims to minimize the control effort and is given by

J =
1
2

Tcycle∫
0

u2(t)dt→ min
(u)

. (8)

Thus, the optimization problem to be solved is fully described by Equations (5)–(8). Applying the
collocation method, this problem is solved with K = 601 discrete time steps. Hence, the static
optimization problem consists of 3005 free parameters and 2400 equality constraints, which is
numerically solved by the open-source library IPOPT [19]. In Figure 4, three optimal motion
profiles depending on the targeted operating speed are displayed. For each optimal motion profile,
the corresponding model response is additionally illustrated. The optimization was successful in each
case due to the zero residual vibration of the model response and due to the adherence of all boundary
conditions stated to the motion profile.
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Figure 4. Stroke (a), velocity (c), and acceleration (d) graphs of the optimized motion specifications
resulting from solving the corresponding optimal control problems for three different operating speeds.
The simulated model responses are also displayed (b). Obviously, no residual vibration is achieved,
which must be why the optimization was successful. For a better comparison, the motion profiles are
displayed over their normalized time τ = t/Tcycle.

2.4. Implementation of Operating Speed Dependent Motion Profiles

It is obvious that the resulting optimal motion profiles displayed in Figure 4 are not scalable to
each other, as it is expected from classical motion profiles. Instead, an operating speed dependency
is observable, which leads to the question of how these profiles can be executed on a motion control
system. In order to face this difficulty, the way in which the process behaves if only one optimal motion
profile is applied and implemented with a state-of-the-art motion control approach should be initially
discussed. Thereby, the motion profile’s stroke, velocity, and acceleration specifications are provided
for one operating speed. If another operating speed is considered, the PLC provides the specification
by scaling the motion to the specific operating speed. Figure 5 shows the simulated residual vibration
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of the fluid over the investigated range of operating speeds for this approach. Thereby, three different
operating speeds are considered for which the optimized motion profile is provided.
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Figure 5. Process simulation for applying one optimal motion profile that is optimized for a specific
operating speed and scaled to other operating speeds. Three results, which differ in the operating speed
for which the motion profile is optimized, are displayed: 12 1/min (a), 30 1/min (b), and 48 1/min (c).

As can be seen in Figure 5, the residual vibration is expectably zero at those operating speeds for
which the motion profile is optimized. When the motion profile is scaled to other operating speeds,
the optimization loses its effect and the residual vibration increases. This coherence occurs in all
investigated cases, whereby the effect of the operating speed dependency varies with the operating
speed for which the motion profile was optimized, as can be seen in Figure 5. Assuming that due to
process quality requirements ηeff,dwell should be less than 0.5 mm, a usable range of operating speeds
can be derived for applying the specific motion profile. The aim is to ensure that this range is coherent
so that the machine can be operated at any speed.

Therefore, this state-of-the-art approach of implementing optimized motion profiles without using
closed-loop-feedback controllers cannot fulfill necessary process quality criteria for a continuous range
of operating speeds. Due to the necessity of conducting packaging machines at any feasible operating
speed, the operating speed dependency of the optimized motion profiles has to be considered.
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One approach of implementing operating-speed-dependent motion profiles in real time was firstly
presented in [20] and as a result experimentally applied in [21]. The aim is to enable the provision of
motion specifications for any targeted operating speed without executing the optimization in real time.

It is assumed that there is a set of chosen operating speeds Nopt = {nopt,1, nopt,2, . . . , nopt,N} with
nopt,1 < nopt,2 < · · · < nopt,N for which optimal motion profiles are pre-calculated. The optimal
motion profiles are placed at one’s disposal in form of their path-, velocity-, and acceleration-profile
Mopt,i = {sopt,i(t), vopt,i(t), aopt,i(t)}, ∀i ∈ {1, 2, . . . , N}. Considering that the PLC must provide a
motion specification at the targeted operating speed nappl, one can distinguish between two main
concepts of implementing the operating speed dependency:

Discrete Execution with Scaling Principle:

Step 1: Determine the index i∗ of the operating speed for which an optimal motion profile
specification exists that is closest to the target operating speed:

i∗ = arg min
{

min
(i∈{1,2,...,N})

(
nappl − nopt,i

)2
}

. (9)

Step 2: Calculate the motion specification for the desired operating speed by scaling as follows:

sappl(τ) = sopt,i∗(τ), (10)

vappl(τ) =
nappl

nopt,i∗
· vopt,i∗(τ), (11)

aappl(τ) =

(
nappl

nopt,i∗

)2

· aopt,i∗(τ). (12)

The output obtaining this approach is illustrated in Figure 6 for considering two and three optimal
motion profiles. It is obvious that there are discontinuities in the resulting characteristic map of the
velocity specifications. In the real production process, these discontinuances may lead to undesired
vibration effects that could decrease the machine’s output. Hence, this approach is not expedient for
controlling dynamical processes, despite its outstanding simplicity.

Figure 6. Discrete execution of operating-speed-dependent motion profiles for two (a) and three (b)
optimal specifications whereby each motion profile is scaled proportional to the operating speed.
Exemplarily, the characteristic map of the velocity is displayed with obvious discontinuities.
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Continuous Execution with Linear Interpolation:

Step 1: Determine the index i∗ of the operating speed for which an optimal motion profile
specification exists that is closest to the target operating speed:

i∗ = arg min
{

min
(i∈{1,2,...,N})

(
nappl − nopt,i

)2
}

. (13)

Step 2: If i∗ = 1 and nappl < nopt,1 or i∗ = N and nappl > nopt,N , then calculate the motion
specification as already displayed in Equations (10)–(12).

Step 3: Otherwise, determine the index i∗∗ of the operating speed for which an optimal motion
profile specification exists that is second closest to the target operating speed:

i∗∗ = arg min
{

min
(i∈{{1,2,...,N}\{i∗}})

(
nappl − nopt,i

)2
}

. (14)

Step 4: Derive the necessary values:

imin = min{i∗, i∗∗} (15)

imax = max{i∗, i∗∗} (16)

c =
nappl − nopt,imin

nopt,imax − nopt,imin

(17)

Step 5: Calculate the motion specification for the desired operating speed by interpolation as follows:

sappl(τ) = (1− c) · sopt,imin(τ)+ c · sopt,imax(τ), (18)

vappl(τ) = (1− c) ·
nappl

nopt,imin

· vopt,imin(τ)+ c ·
nappl

nopt,imax

· vopt,imax(τ), (19)

aappl(τ) = (1− c) ·
(

nappl

nopt,imin

)2

· aopt,imin(τ)+ c ·
(

nappl

nopt,imax

)2

· aopt,imax(τ). (20)

The output of applying this approach is displayed in Figure 7, considering two and three optimal
motion profiles. In contrast to the previous approach, no discontinuities occur in the characteristic
map of the velocity specifications. This property allows the application of the continuous execution
approach over a coherent range of operating speeds in the real production process.

Figure 7. Continuous execution of operating-speed-dependent motion profiles for two (a) and three (b)
optimal specifications by linear interpolation in the direction of the operating speed. Obviously, no
discontinuities occur in the characteristic map.
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Determining a Suitable Distribution of Optimal Motion Profile Specifications

In order to apply the continuous execution principle, how large the number of optimal motion
profile specifications to be considered should be and how they should be distributed remain unknown.
Once a valid process model is available, this question can be answered. Figure 8 displays an algorithm
that systematically investigates all possible distributions of optimal motion specifications for a given
number K of specifications to be considered and N possible operating speeds, at which they can
be distributed.

Start

Stop

Calculate all possible 

combinations C(K,N) of operating 

speed distributions for generating 

the characteristic map
 N = {n1,…,nN}

Set of operating speeds 

for which optimal 

motion specifcations 

were calculated

K

 Number of optimal 

motion specifications to 

be taken into account

i = 1

i = i + 1

M: u → θ

Model for describing 

the fluid’s surface 

deflection caused by 

acceleration u

i > #{C}?

Generate characteristic map for 

the i-th combination of motion 

specifications

 U = {u1(t),…,uN(t)}

Set of calculated optimal 

motion specifications

Simulate the model response for 

the i-th characteristic map and all 

operating speeds n   N

Derive characteristic values from 

model responses



mean{ηeff,dwell(n)}

  max{ηeff,dwell(n)}

:

:

Yes

No

Figure 8. Algorithm for evaluating all possible distributions of optimal motion specifications to generate
a characteristic map for a given set N of operating speeds and number K of motion specifications to be
considered. For each generated map, the characteristic values are evaluated from a simulation run.
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Figure 9 illustrates the simulated process behavior over the investigated range of operating
speeds for two possible distributions of optimal motion specifications during the execution of
the presented algorithm. Thereby, two optimal motion profiles are considered. In order to
enable a comparison between the simulated results, the process behavior has to be evaluated.
Therefore, the two characteristic values mean{ηeff,dwell} and max{ηeff,dwell} are calculated for each
considered distribution.
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b) Optimal motion specifications at 39 1/min and 51 1/1min

mean{
eff,dwell

} = 0.427 mm

  max{
eff,dwell

} = 1.126 mm

mean{
eff,dwell

} = 0.189 mm

  max{
eff,dwell

} = 0.351 mm

Figure 9. Exemplary results of simulated model responses considering two different characteristic
maps regarding two optimal motion specifications: Case (a) considers optimal motion profiles at
operating speeds 33 and 48 1/min; Case (b) considers optimal motion profiles at operating speeds 39
and 51 1/min. The measure for evaluating the residual vibration ηeff,dwell is displayed for the same
range of operating speeds. Solutions that result from operating speeds at which optimal specifications
have been considered are highlighted and are expectably zero.

3. Results

3.1. Experimental Results Applying Standard Motion Profiles

In order to estimate the success of the optimal motion profiles and their continuous linear
interpolated implementation of operating speed dependency, at first a benchmark has to be performed.
Therefore, two standard motion profiles, as they are provided in each purchasable motion control
system, are applied—namely, the rectangular pulse acceleration motion profile and a 5th order
polynomial motion profile. The main differences are that the rectangular pulse motion profile has a
constant absolute value of acceleration and, in addition to that, contains three acceleration steps.

In Figure 10, the results of applying these two motion profiles to the observed container filled
with fluid over the investigated range of operating speeds are illustrated. In order to obtain a better
impression, the value ηeff,dwell depicting the residual vibration during the dwell phase is evaluated.

Assuming a tolerable maximal residual effective value of the liquid slosh of 0.5 mm leads to
a usable range of operating speeds for the specific motion profile. The quintic polynomial motion
profiles exceeds the tolerable value at an operating speed of 39 1/min. Thus, 65% of the investigated
operating speed range is applicable. In contrast, the rectangular pulse acceleration motion profile
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crosses the tolerable value three times, namely at operating speeds of 30, 47, and 56 1/min. This leads
to a cumulative range of usable operating speeds of 39 1/min, which is the same as that when applying
the quintic polynomial motion. However, it should be noted that the maximal realizable operating
speed is higher than it is when implementing the polynomial motion. Furthermore, the mean and
maximal parameters of the derived effective values are depicted in Figure 10. This enables a better
comparison between the effectiveness of the different motion profiles.
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Figure 10. Experimental results by applying the rectangular pulse motion profile and a 5th order
polynomial motion profile for operating speeds n ranging from 12 to 60 1/min. The characteristic
value ηeff,dwell is a measure for the residual vibration of the fluid surface.

3.2. Determining a Suitable Distribution of Optimal Motion Profile Specifications

Applying the algorithm presented in Section 2.4 leads to possible distributions of optimal motion
profile specifications. To enable a better comparison, both the mean as well as the maximal value of
the simulated residual vibration is calculated for each considered distribution. Thereby, the derived
solutions are classified into feasible and non-feasible solutions. Due to the requirements already
discussed, the maximum value should be less than 0.5 mm, and the mean value should be less than
0.3 mm. As several solutions are expected to fulfill these requirements and hence will be applicable, it
is important to select the best of them. In order to identify the best solution, the two derived parameters
are consulted to build an objective value, which is defined as the square of the EUCLIDEAN distance:

max{ηeff,dwell(i)}2 + mean{ηeff,dwell(i)}2 → min
(i)

. (21)

The results of these investigations are displayed in Figure 11 for considering the specification of
one, two, three, and four optimal motion profiles. Obviously, no feasible solution can be achieved
considering one specification. With an increasing number of considered optimal specifications,
the number of possible solutions increases as well. The value of the incorporated objective value
constructed in Equation (21) does not significantly rise with an increasing number of motion
specifications. In addition, it can be stated that simulative results are obtained that, when the optimal
motion profiles are implemented, provide even worse results than when the standard motion profiles
are applied.

Finally, considering the optimal distributions, Figure 12 shows the corresponded characteristic
velocity maps. It is obvious that the optimal motion profiles are not equidistantly distributed.
Furthermore, the minimum operating speed at which a specification is applied changes depending on
the number of optimal specifications.
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Figure 11. Determining the best distribution of optimal motion profiles for different numbers of
specifications. A solution is feasible, if the characteristic values are inside the gray rectangular box.
From all solutions, the best solution, which exhibits the smallest distance to the origin, is chosen.
One (a), two (b), three (c), and four (d) optimal motion profiles are considered.

Figure 12. Optimal characteristic velocity maps for two (a), three (b), and four (c) optimal motion
profile specifications applying the continuous linear interpolation principle.
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3.3. Simulative and Experimental Results Applying Optimal Characteristic Maps

The application of the characteristic maps displayed in Figure 12 finally leads to the experimental
investigation of the effectiveness of the presented approach. Figure 13 depicts the simulative and
experimental results for applying the identified best distributions for considering two, three, and four
optimal specifications. The experiments on the test station were carried out five times in order to
achieve statistical safety. Hence, in contrast to the simulated results, the experimental results are
provided with their standard deviations.

0 10 20 30 40 50 60
n in 1/min

0

0.5

1

1.5

2

2.5

ef
f,

dw
el

l 
 in

 m
m

a) 2 optimal specifcations at n = {39, 51} 1/min - mean{
eff

} = 0.357 mm

0 10 20 30 40 50 60
n in 1/min

0

0.5

1

1.5

2

2.5

ef
f,

dw
el

l 
 in

 m
m

b) 3 optimal specifcations at n = {27, 36, 51} 1/min - mean{
eff

} = 0.328 mm

0 10 20 30 40 50 60
n in 1/min

0

0.5

1

1.5

2

2.5

ef
f,

dw
el

l 
 in

 m
m

c) 4 optimal specifcations at n = {27, 33, 36, 51} 1/min - mean{
eff

} = 0.324 mm

Simulated results Experimental results Tolerable value

Figure 13. Comparison of simulated and experimental results for applying linear interpolated and
optimal operating-speed-dependent motion profiles for controlling liquid slosh. The measure for the
residual vibration ηeff,dwell is displayed for different numbers of optimal motion specifications: two (a),
three (b), and four (c) optimal motion profiles are considered for generating the characteristic map.

At first, the simulation results are observed. As expected, the simulated results show local minima
at those operating speeds used to set an optimal motion specification. The associated experimental
results display analogous behavior, whereby a systematical offset can be determined. The local minima
at operating speeds for which optimal motion specifications are set are especially obvious at the
experimental results. Furthermore, the trend of decreasing mean value of effective residual slosh
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with a rising number of motion specifications, already indicated by the simulated results, can also be
obtained from the experiments. In contrast to the simulated results, the obtained experimental results
show that the objective value ηeff,dwell cannot be set completely below the desired tolerance value over
the entire range of investigated operating speeds.

Nevertheless, for 90% of the investigated range of operating speeds, the aim is achieved, which
confirms an increase of almost 40% in contrast to applying standard motion profiles. Even better is the
reduction of the maximal residual slosh occurring at an operating speed of 60 1/min. Regarding this,
a reduction of 63% is achieved with the optimal motion profiles compared to when the rectangular
acceleration pulse motion is applied, and even a reduction of 73% is reached in relation to the
application of the quintic polynomial motion profile.

Regarding the mean value of ηeff,dwell, a reduction of 38% (considering two optimal motion
specifications) and 43% (considering three and four optimal motion specifications) is notable in
contrast to when the rectangular acceleration pulse motion is applied. Regarding the application of the
quintic polynomial motion, the percentage reductions amount to 45% and 49%.

4. Discussion

The local minima observed for the residual slosh after applying the rectangular acceleration
motion profile are due to the dynamic behavior of the process. The acceleration pulses and deceleration
pulses generate phase-shifted vibrations, which cancel each other under specific circumstances. This
effect is known as in-phase interception and is discussed in more detail in [13] for the observed
example. Furthermore, the dynamic process behavior is decisive for the non-equidistant distribution
of optimal motion profile specifications. In fact, a non-equidistant distribution is related to regions
of high dynamic impact, which occurs within specific ranges of operating speeds. The location of
this region is basically dependent on the system’s significant time constant, which is in this case the
damped natural period, in relation to the motion time.

The obvious offset between measured and simulated results in Figure 13 can be explained by the
simplified model approach of representing the fluid surface as a straight line. Hence, smaller waves
on the surface are measured and evaluated, but are not considered in the model evaluation during
optimization. In essence, this is the reason why the original aim of setting the objective below the
desired tolerance is not achieved. Another obvious effect that has to be explained is the measured equal
maximal value of ηeff,dwell for all considered numbers of optimal motion specifications. This is due to
the fact that, for all distributions, the highest operating speed for which an optimal specification is made
is identical, namely 51 1/min. Thus, considering the presented continuous interpolation principle
discussed in Section 2.4, the optimal specification is only scaled to the targeted operating speeds and is
thus independent from all other optimal specifications used in building the characteristic map.

The fact that only one optimal motion specification leads to no feasible solution, and that some
profiles, compared to when standard motion profiles are applied, lead to worse results over the
complete range of operating speeds, underlines the specificity of the synthesized motions. Standard
motion profiles do not consider specific process behavior and hence do not achieve the same
optimality at specific operating speeds, but are nevertheless a good compromise between simplicity
and applicability. The benefit of model-based optimal motions can only be obtained if the operating
speed specificity is considered, as it is in the investigation presented here.

5. Conclusions

The optimization of conveying motions considering a dynamic process model can be performed
by applying optimal control theory. The resulting optimization problem can be solved by a direct
approach such as the collocation method. Solving such a problem leads to operating-speed-dependent
motion profiles. For realizing such motion profiles, a real-time implementation approach by building
a characteristic map out of a specific number of optimal motions profiles was considered. How
many and in what way these specifications have to be distributed was investigated. An algorithm
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was presented that automatically investigates all possible combinations and finds the best solution.
Eventually, experimental results showed that a crucial increase in the usable range of operating speeds
is possible when the presented method is applied. Furthermore, a significant reduction in the maximal
residual slosh was obtained in comparison with the application of standard motion profiles. In future
work, the problem of distributed model parameters will be incorporated by considering the motion’s
robustness. Thereby, it will be investigated how suitable such robust motion profiles are for continuous
linear interpolation in overcoming their operating speed dependency.
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Abbreviations

BVP Boundary value problem
FR Frame rate
ODE Ordinary differential equation
PLC Programmable logic controller
Nomenclature
ζ Damping ratio
ω0 Undamped natural angular frequency
M Identifier for process model
θ Deflection of fluid surface
θ̇ Time derivative of fluid surface’s deflection
θ̈ Second time derivative of fluid surface’s deflection
t Time
x State vector
ẋ First time derivative of state vector
sstroke Container’s conveyed stroke in one cycle
b Ratio of motion time to cycle time
Tcycle Cycle time
J Cost functional
n Operating speed
ξ Local horizontal coordinate
η Measured fluid surface’s vertical displacement
ηeff,dwell Effective value of η during the dwell phase
w Fluid volume’s width
h Fluid volume’s height
d Fluid volume’s depth
d Damping constant
g Gravitational acceleration
s Motion profile’s stroke
v Motion profile’s velocity
a Motion profile’s acceleration
u Control variable
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