
robotics

Review

Heterogeneous Map Merging: State of the Art

Ilze Andersone

Department of Artificial Intelligence and Systems Engineering, Riga Technical University, Riga LV-1658, Latvia;
ilze.andersone@rtu.lv; Tel.: +371-29386371

Received: 24 April 2019; Accepted: 15 August 2019; Published: 20 August 2019
����������
�������

Abstract: Multi-robot mapping and environment modeling have several advantages that make
it an attractive alternative to the mapping with a single robot: faster exploration, higher
fault tolerance, richer data due to different sensors being used by different systems. However,
the environment modeling with several robotic systems operating in the same area causes problems
of higher-order—acquired knowledge fusion and synchronization over time, revealing the same
environment properties using different sensors with different technical specifications. While the
existing robot map and environment model merging techniques allow merging certain homogeneous
maps, the possibility to use sensors of different physical nature and different mapping algorithms is
limited. The resulting maps from robots with different specifications are heterogeneous, and even
though some research on how to merge fundamentally different maps exists, it is limited to specific
applications. This research reviews the state of the art in homogeneous and heterogeneous map
merging and illustrates the main research challenges in the area. Six factors are identified that
influence the outcome of map merging: (1) robotic platform hardware configurations, (2) map
representation types, (3) mapping algorithms, (4) shared information between robots, (5) relative
positioning information, (6) resulting global maps.
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1. Introduction

The cooperative mapping is an important task for any multi-robot system that requires a model
of the environment. Data sharing to achieve quicker creation of the environment map is critical in
time-sensitive situations, such as rescue operations, but is also useful in everyday situations to improve
overall multi-robot system performance.

However, environment modeling with several robotic systems operating in the same area
simultaneously is not a simple task. A detailed review of approaches and challenges in the multi-robot
SLAM (Simultaneous Mapping and Localization) can be found in [1]. If multiple robots are used for
the exploration of the environment, their collected information should be fused into a global map that
can then be used for navigation. Many methods have been developed that deal with the map merging,
and they generally address one or both of the following problems:

1. The map fusion. If the correspondences between the maps are at least approximately known,
the map fusion methods are used to merge the data from both maps [2–9]. The correspondences
between the robot maps can be acquired in several different ways: they may be known from the
start [2], acquired from mutual observations [3], or calculated by map matching [10–22].

2. The map matching. The methods that deal with the map matching [10–22] offer solutions to find
the correspondences between two robot maps, when they are unobtainable by other means.

When the robots with different specifications are used in the same environment, the resulting
maps are heterogeneous (see Figure 1 for example). In this paper, two maps are considered to be
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heterogeneous in respect to one another, if their representations of the same environment part are
different, and the differences are caused at least partially by the robot mapping system (such as map
format, map scale or used sensors).

While the existing robot map and environment model merging techniques allow us to merge
certain homogeneous map types [10,13,23], the possibility to use robots that produce heterogeneous
maps is still limited and relatively little researched. Heterogeneous robot map merging is a novel
research field and currently there are few solutions even for the most common map types. However,
the rising importance of robotic technologies in both industry and household motivates the
development of more universal and cooperative systems in the future [24]. Therefore this work serves
as both a review and as a problem definition article to highlight research problems in heterogeneous
map merging.

Figure 1. Heterogeneous map examples with the same room is depicted in both pictures (maps the
courtesy of collegues in Riga Technical university): (left) Occupancy grid map created with
a non-rotating LIDAR. (right) Occupancy grid map created with ultrasound sensor.

The goal of this paper is to review the state of the art in the homogeneous and heterogeneous
map merging research areas and to determine the main challenges in this field. An important part is
to determine limitations and how much the heterogenous map merging task can be abstracted and
where only specific solutions will work. Compared to the review in [1], this review focuses specifically
on robot map merging.

2. Homogeneous Map Merging

To give the context of the heterogeneous map merging problem, the homogeneous map merging
will be reviewed first.

2.1. The Map Fusion Methods

The map fusion methods are applied, when the correspondences between both maps are at least
approximately known. The knowledge of the relative positions simplifies the map merging process
significantly, but there are still challenges to be addressed. The relative positions are often known
only approximately, and the fusion method should account for the uncertainty [2,8,9,25]. There is also
a possibility that the maps themselves are inconsistent and require modifications [6].

2.1.1. Metric Grid Map Fusion Methods

The early multi-robot map fusion methods are adaptations of existing single robot mapping
methods for the multi-robot case [2,3,25,26]. In the simplest case [2] it is assumed that all robots start
the mapping close to each other, have significant overlaps in their initial range scans or their initial
relative positions are determined with other means.

An example of an extended single robot mapping method is the work by Thrun in [2]. Thrun
uses the combination of maximum likelihood estimation and particle filters to create consistent metric
grid maps from multiple robots. All involved robots share and update a single global map while
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maintaining their own individual pose estimates. To be successful, this approach requires the storage
and sharing of action/observation sequences.

The assumption of known robot relative starting positions requires that all robots start the
mapping in one place or determine their relative positioning with other means. This is a serious
limitation, which can be softened by introducing the concept of the robot meeting or rendezvous [3,25].
In this scenario, the robots map their environment independently until they observe another robot and
determine their relative positions.

One example of such an approach is the work by Howard [3], which uses Rao–Blackwellized
particle filter mapping and places no restrictions on the robot starting positions. Instead, it is assumed
that the robots will meet at some point during the mapping and accurately determine the relative
positions. Starting from this point, all the future data from both robots are merged into one common
global map. The past data is incorporated by creating and running two virtual robots backward in
time. For this approach to be successful, all the past data must be stored.

Adluru et al. [17] propose a method, where the global map construction is treated as a mapping
with a single virtual robot performing particle filter based SLAM, where the sensor readings from the
individual robots are merged in a global map by using sequential Monte Carlo estimation. The odometry
information of the virtual robot is acquired by matching local maps with the current global map, and the
matching is guided by shape information extracted from the maps (corner features).

Carlone et al. [25] offer to extend the Rao–Blackwellized particle filter based mapping algorithm
by incorporating the data from other robots during the encounters and considering the uncertainty in
relative position estimations. Every time a robot encounters another robot, they exchange the data
acquired since the last meeting. Then the data is transformed using the reference frame calculated
from the communicated data and the relative position measurements. Finally, the received data is
filtered and incorporated in the robot’s map as if it was collected by the robot itself.

The data fusion method by Carlone et al. [25] has a significant difference from the previously
mentioned works [2,3,17] in that it does not create one global map, but instead allows the robots to
continue the exploration independently. The requirement of constant data exchange and centralized
map computation is limiting in practice, therefore many researchers have worked on distributed
solutions, where each involved robot produces its own map and is not dependent on the continued
communication or a centralized computing node (metric map examples include [25,26]).

The methods of metric grid map fusion often incorporate the data from the other map as if it was
just another measurement. An example of a simple map fusion algorithm is employed by Burgard et al.
in [26] to fuse occupancy grid map cell probabilities from multiple maps (see Equations (1) and (2)).
Here, the P(occi

x,y) represents the probability that the location corresponding to the grid cell < x, y >

is occupied by an obstacle in the map of robot i. This merging method can be used at any time,
but requires the knowledge of the relative robot positions with a certainty.

P(occx,y) =
oddsx,y

1 + oddsx,y
(1)

oddsx,y =
n

∏
i=1

P(occi
x,y)

1− P(occi
x,y)

. (2)

Another commonly used sensor data fusion method is the log odds update [27]. In this
approach, additionally to the occupancy P(occt

x,y) each cell stores an additional log odds value L(x, y),
which represents the measurement history. The probability values are updated with a Bayesian filter
(Equations (3)–(5)).

P(x, y) = 1− 1
1 + exp(L(x, y))

(3)

L(x, y|z1:t) = L(x, y|z1:t−1) + L(x, y|zt) (4)
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L(x, y) = log
(

P(x, y)
1− P(x, y)

)
(5)

The summary of the reviewed metric grid map fusion methods is shown in Table 1. Abbreviations:
PF—particle filter; EM—expectation maximization; RBPF—Rao–Blackwellized particle filter.

Table 1. The summary of the reviewed metric grid map fusion methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Thrun [2] Metric grid PF-EM Known init. Shared All
High communication
requirements.

Howard [3] Metric grid RBPF Known (meet.) Shared All

Must support relative
position estimation.
High communication
requirements.

Adluru et al. [17] Metric grid RBPF Matching Shared Map only -

Carlone et al. [25] Metric grid RBPF Known (meet.) Separate All
Must support relative
position estimation.

Burgard et al. [26] Metric grid - Known Separate Map only -

2.1.2. Feature Map Fusion Methods

The main difference of the metric grid map and the feature map fusion is the procedure of how
the two maps are integrated when the transformation is found. Metric grid map merging generally
treats the maps as rigid bodies and integrates the new map cell occupancy values with the mapping
algorithm. The feature maps, on the other hand, are feature lists that must be fused with as few
unnecessary duplicates as possible.

Similarily to the cooperative metric grid map fusion [2,3], the global feature maps can be created
by extending existing mapping methods for multiple robots. An example of one such research is
done by Fenwick [4], where extended Kalman filter (EKF) point feature SLAM is extended for the
multi-robot case. This method is very similar to the single robot EKF SLAM, and the main difference
is the addition of all robot positions to the state vector. Such implementation requires that the initial
relative positions of the robots are known.

Rodriguez-Losada et al. [7] do not assume that robots work in a common coordinate system.
The relative locations are known, but each robot creates its own local line feature map with EKF
SLAM. These local maps are at some point fused in a global map with the possibility to correct
inconsistencies by updating robot positions. A special attention is paid to the matching of the features
and ensuring that the global map does not diverge due to the features not being correctly associated.
This is done by adding constraints between the features observed in the last step and all other features,
and then inverting the innovation covariance matrix with full pivot Gauss–Jordan elimination to avoid
numerical errors due to introduced constraints.

The work by Zhou and Roumeliotis [8] is an example of an EKF multi-robot mapping approach,
where the robot relative positions are discovered during mutual observations later in the mapping.
Zhou and Roumeliotis [8] address the EKF mapping with the corner features by identifying feature
duplicates with a fast neighborhood matching algorithm. The distance of the features from the
rendezvous point is used as one of the parameters when considering matching, to account for the
relative pose estimation inaccuracies. After the fusion the robots continue to update the global
map together.

Thrun and Liu in [28] focus on another mapping algorithm and fuse the data of the multi-robot
SLAM with a sparse extended information filter. This mapping method has two advantages over the
EKF-based mapping methods: the additivity and locality properties. The additivity property allows
multiple robots to fuse their data incrementally, and the data update is tolerant of the network latencies.
The locality property allows the robots to update only their own pose and detected landmarks,
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which means that each robot can continue to maintain a separate local map. The properties of the
SEIF SLAM reduce the map fusion problem to the concatenation of the corresponding information
states and information matrices and the incorporation of the correspondences with the collapsing
operation [28].

Apart from the EKF SLAM and SEIF SLAM, the particle filter based SLAM methods are commonly
used both in single robot and multi-robot SLAM [9]. Ozkucur and Akin [9] merge the point maps
created with particle filter based Fast SLAM algorithm. Given that the particle-based SLAM returns
a set of particles, where each particle represents one map, the first problem that must be addressed
is which particles to use for the merging. Ozkucur and Akin use the weighted mean of the map
estimation of particles with the importance of weight, and the other robot’s mean map estimation is
integrated into the map of each particle. To find the duplicate features, the nearest neighbor method
is used.

A related problem to the feature map fusion is the reduction of the feature maps by only keeping
the relevant features. Such sparsification is a necessity to support a long-term multi-robot feature
mapping system. Several authors have addressed the problem of the long-term mapping [29–31] by
discarding part of the collected data and only keeping the relevant features. The problem has been
addressed by only adding new features after they have been observed for some time and confirmed not
to be erroneous observations [29], by clustering the features and keeping only some representatives [30],
or summarizing the map and describing it in a simplified way [31].

The summary of the reviewed feature map fusion methods is shown in Table 2. Abbreviations:
EKF—extended Kalman filter; SEIF—sparse extended information filter; RBPF—Rao–Blackwellized
particle filter.

Table 2. The summary of the reviewed feature map fusion methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Fenwick [4] Feature EKF Known init. Shared All -

Rodriguez-Losada et al. [7] Feature EKF Known (meet.) Shared Map only
Must support relative
position estimation.

Zhou et al. [8] Feature EKF Known (meet.) Shared Map only
Must support relative
position estimation.

Thrun Liu. [28] Feature SEIF Unknown Separate Map only
Tolerant of the
network latencies.

Ozkucur et al. [9] Feature RBPF Known (meet.) Separate Map only
Must support relative
position estimation.

2.1.3. Graph-Based Map Fusion Methods

The graph-based map fusion methods differ from the metric grid and feature map fusion in that
the maps are fused on the graph level. The graph-based maps considered here are topological maps [5],
topological-metric maps [32] and pose graphs [6,33,34].

Dudek et al. [5] propose a topological multi-robot exploration method that assumes that the
robots start in one place and later meet at one common point. There the graph nodes that were visited
by both robots are fused while the robots are not moving. To avoid duplicate nodes, a node that is
found in only one map, is marked with a physical movable marker. The other robot then visits all the
nodes in its own map, and only if it does not discover the marker, the node is added to the global map.

Chang et al. [32] use hybrid metric-topological maps. Each node in this map type is represented
by a local occupancy grid, and the nodes are connected by edges that can be traversed. This map
representation allows us to fuse two maps simply by adding and optimizing an edge between two
maps after the robots mutually observe each other.

Work by Bonanni et al. in [6] assumes a known relation between two maps and relies on any
existing method to find the correspondence. Their research focuses on another problem: how to correct
the errors when the maps created by individual robots are inconsistent, not mergeable by a linear
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transformation and only resulting maps without full source data are available. Even with known
relative positions, this problem is not trivial, and Bonanni et al. address this by treating the maps as
deformable bodies and searching for the nonlinear transformation between two pose graphs. Pose
graphs are normally an output of graph SLAM-based algorithms [35], but the authors provide an
algorithm to extract pose graphs from occupancy grid maps.

Cunningham et al. in [33,34] propose a decentralized cooperative map sharing and fusion
approach for pose graph maps constructed with DDF-SAM (decentralized Ddta fusion smoothing
and mapping). To reduce the communication load, the local map summarization is implemented
before transferring it to the other robots. The early version of DDF-SAM [33] enforced the maintenance
of separate local and neighborhood maps for each robot, which resulted in two incomplete maps
of the environment. The later improved version [34] introduced the augmented local system map,
which blends both local and neighborhood information and acts as a replacement for the two maps.

The summary of the reviewed graph-based map fusion methods is shown in Table 3. Abbreviations:
EM—expectation maximization; RBPF—Rao–Blackwellized particle filter.

Table 3. The summary of the reviewed graph-based map fusion methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Dudek et al. [5] Topological Marker based Known (meet.) Separate Map only
Requires physical markers. Low
sensor requirements.

Chang et al. [32] Top./Metric RBPF-EM Known (meet.) Separate Map only
The map optimization is a high
cost process.

Bonanni et al. [6] Pose graphs Graph-based Known Separate Map only -

Cunnigham et al. [33,34] Pose graphs Graph-based Known Separate Map only
High computational scalability.
Low communication bandwidth.

2.1.4. Three-Dimensional (3D) Map Fusion Methods

The methods listed in the previous sections merge two-dimensional (2D) maps, but in the recent
years three-dimensional (3D) grid maps have become commonly used. Although the 3D maps
discussed in this section are metric maps (voxel grids, octrees, point clouds) [36–43], there are many
commonalities in the merging of 3D maps, which is why they are discussed together in this review.

The map fusion task of 3D maps is generally performed in two steps:

1. Some version of 3D iterative closest point (ICT) [44] or other algorithm is used to refine the
transformation [37,39].

2. The map data is fused based on the acquired more accurate transformation. The implementation
of this step depends of the used map representation.

The simplest 3D map fusion case is the fusion of discretized maps, e.g., voxel grids or octrees.
Voxel grid maps are an extension of occupancy grid maps in 3D space, where each voxel represents the
cell occupancy probability. The octree is a tree-based representation of the occupied, free and unknown
space, which when compared to the voxel maps, requires less memory and allows us to update the
map more efficiently [45].

The fusion of the voxel grid data is straightforward when the transformation between the maps is
known, and is very similar to the occupancy grid cell updates. One example of voxel grid data fusion is
performed by Michael et al. in [37], where they merge the 3D voxel grid maps from manually operated
ground and aerial vehicles. The ground vehicle generates most of the map as a sparse 3D voxel grid
(10 cm resolution), and the aerial vehicle is transported along and only maps the inaccessible places
to increase the map coverage. It is noted that due to the technical limitations of the aerial vehicle,
it abstracts the environment as a 2.5D elevation map. The map fusion is performed by registering both
maps via an initialization point near the aerial vehicle take-off location, and further refining the merge
with a version of the iterative closest point (ICP) algorithm [46]. The maps are fused by using the
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multi-volume occupancy grid model, which employs the hit and miss model to provide a probabilistic
measure of the cell occupancy [47].

Yue et al. [40] fuse the data of two voxel grid maps by using the log-odds based probability
update [27].

Jessup et al. [38,39] provide a method to merge octree based 3D voxel grid maps. Early work by
Jessup et al. [38] discusses how to fuse the data from two octree maps if the transformation between
the maps is known with certainty from the observations between the two robots. The authors offer the
solutions for four distinct fusion cases:

1. The new data is from an area not on the map. In this case a new leaf is added to an octree.
2. The new data is in a mapped area of the same level. In this case the value of the leaf node is

updated. The node’s probability is changed with the log-odds probability update.
3. The new data is in a mapped area of higher resolution. In this case lower level leaf nodes are

added to the node in the mapped area and updated.
4. The new data is in a mapped area of lower resolution. In this case lower level leaf nodes are

added to the new data node, updated and then integrated onto the map.

The later research [39] updates the method by acknowledging that an exact transformation is hard
to acquire and instead operates on the assumption of approximate relative positions. The uncertainty
regarding the relative robot positions is addressed by transforming the octree map to a point cloud
and refining the initial transformation with the 3D ICP algorithm [44].

The 3D point cloud representation differs from the voxel grids and octree maps in that they
only represent the occupied spaces. Additionally, unlike discrete maps, the point clouds can grow
indefinitely with new measurements or data from other robots, if they are not downsampled in some
way. The unbounded growth of the somewhat similar feature maps is usually reduced by finding
the duplicate features and fusing them [7–9,28], but the points of the 3D point clouds are not features
and remain in the final fused map. To avoid the unbounded growth of a 3D point cloud, various
resampling methods have been developed to reduce the point cloud size [48–50].

A different type of the 3D map fusion is performed, when the maps are represented as pose
graphs, which is a common output of graph-based SLAM. In such case the map fusion is usually
performed by adding a new set of constraints that expresses the relative positioning between the nodes
of both maps [36,41,42].

In the approach by Schuster et al. [41] the robots create point cloud submaps that are matched
by marker-based visual robot detections (if available) and a similarity search within their geometric
structure with CSHOT 3D feature descriptor [51]. The 6D transformation acquired from the matching
is then refined by applying the ICP algorithm on the full point cloud and the pose graph constraints
are accordingly updated.

Mohanarajah et al. [36] treat the fusion of multiple key-frame pose graphs as an optimization
problem of a single pose graph. The matching of key-frames is a background process and, if a match
between two key-frames from separate maps is found, then the smallest map is integrated into the
largest and the optimization continues as normally.

Bonanni et al. [42] search for the constraints between the 3D point cloud pose graphs by performing
a thorough matching between the two maps. They focus on deformed input maps and delay the addition
of new constraints until a sufficiently large area around the match supports the merging hypothesis.

The summary of the reviewed 3D map fusion methods is shown in Table 4. Abbreviations: PC
PG—point cloud pose graph. RBPF—Rao–Blackwellized particle filter.
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Table 4. The summary of the reviewed 3D map fusion methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Michael et al. [37] 3D voxel Scan matching Known Separate Map only
Employs ground and
aerial vehicles. Considers
computational limitations.

Yue et al. [40] 3D voxel RBPF Matching Separate Map only
Considers memory and
bandwith limitations.

Jessup et al. [38,39] Octree Octree mapping Known Separate Map only

Octree representation
requires less memory and
bandwidth than the voxel
grids.

Schuster et al. [41] PC PG Graph SLAM Known Shared Map only
Requires robot marker
detections.

Mohanarajah et al. [36] Key-frame PG Graph SLAM Matching Shared Map only

Considers the computation
limitations by performing
background matching in
the cloud.

Bonanni et al. [42] PC PG Graph SLAM Matching Separate Map only
The fusion is an offline
process.

2.2. Map Matching Methods

A completely new problem is introduced in map merging, if the relative positions of the robots
are unknown. Without the position information, the map overlaps must be found by map matching.
This problem is made harder by the fact, that it is generally unknown if such an overlap even exists. Given
that the correctness of solution itself is unknown and often there are several valid hypotheses, most map
matching methods assume consistent local maps and focus on finding the best match. When the match is
found, the maps can be fused by using any compatible map fusion algorithm.

2.2.1. Metric Grid Map Matching Methods

One prominent group of methods addressing metric grid merging with unknown positions makes
an assumption that the merging will be performed when the robots are somewhere in the other robot’s
explored area. In the method proposed by Ko, Konolige and others [13,14] the robots use the latest
sensor readings from other robots to localize them in their own maps. In [13] the feature importance
for successful localization is assessed (corner, junction and door features were manually extracted).
Ref. [14] addresses the localization correctness confirmation problem by organizing robot meetings at
designated points. Similar research to [13,14] is done by Liu et al. [15], where a virtual robot is created
to localize itself in other robot’s map with Monte Carlo localization. This virtual robot simulates
driving around the other robot’s map, and the measurements are used to localize it in the robot’s own
map. This approach, when compared to [13,14] does not require the robots to be in each other’s map
to find transformation, but the measurement simulation must be possible. The hypotheses proposed
by the virtual robot localization are used to arrange a meeting between both robots, similar to [14].

An alternative approach is to treat the merging problem as a search for transformation between
two local maps and evaluating the transformation results. Birk and Carpin [10] propose to search
the transformation between two occupancy grid maps by rotating and translating them and then
evaluating the results. The search is performed by a random walk algorithm and guided by image
similarity metric. In theory, this method is able to find an optimal solution even with small overlaps
(given infinite time), if the correct parameters are chosen, but in practice it is slow and scales poorly
to large maps. Several other authors have offered upgrades to this method [52,53]. Ma et al. [52]
uses a genetic algorithm for search instead of a random walk to improve the convergence speed
of the algorithm. Li and Nashasibi [53] also use a genetic algorithm to search for transformation,
but additionally propose a new improved metric to guide the search that excludes the need for
parameter characterizing weight of overlap between two maps.

Although the transformation search methods work well on unstructured environments and small
overlaps between the metric grid maps, and in general are the most domain-independent map merging
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methods, they generally take minutes to find good solutions and do not scale well with the size of the
maps due to the large search space. There are methods that use brute force (such as extensive use of
GPU [54] or cloud computing [36]) to speed up the search of state space, but most approaches do not
rely on the existence of high computing capability and use additional information or features to guide
the search [16–22].

In some cases, an additional information must be collected during the mapping, as there is no way
to extract it later. One such example is work by Ho and Newman [16] that collects image sequences
during mapping and associates them with the occupancy grid maps. Image subsequences are then
matched to find the overlap between two robot maps. It is impossible to acquire image subsequence
information later, if it is not done during the mapping.

Most approaches, however, extract features from occupancy grid maps without the need for
additional information collection during mapping, making them more universal when compared
to [16]. Adluru et al. [17] propose a method, where the global map construction is treated as
a mapping with a single virtual robot performing particle filter based SLAM, where the sensor readings
from individual robots are merged in a global map by using sequential Monte Carlo estimation.
Odometry information of the virtual robot is acquired by matching local maps with the current global
map, and the matching is guided by shape information extracted from the maps (corner features).
Alnounou et al. [18] uses the Hough transform to extract line segments and circles from the occupancy
grid maps. The line segments and circles are stored in a feature list, and feature matching is used
to find transformation. Feature matching is also used by Blanco et al. [19] (various interest point
detectors—SIFT, Harris points, salient points with Kanade–Lucas–Tomasi method and SURF). All these
approaches do not require the collection of specific information during the mapping, but the occupancy
grids must contain the relevant features (corners [17], lines and circles [18] or interest points [19]) for
the map matching to be successful.

Some methods transform the map into different representations that have useful properties.
These methods can still be considered feature extraction and matching methods, but they require the
map transformation to another format. One such example is Carpin in [20], who uses Hough transform
to compute the map rotations in a deterministic way by aligning Hough spectra and searching for
maximums. The assumption is made that the robot maps contain features (lines or curves) that can
be parameterized. The cross correlation between the spectra returns the rotation hypothesis, and the
rotated maps are then projected on translation axis and cross-correlated again to find translations.
Saeedi et al. [21] use a similar approach by using Hough transform to separately find the rotation and
then the translation between the two maps. Their method improves the previous work by Carpin [20]
with a more robust search for translations. Instead of relying on map projections on the translation axis,
the Saeedi et al. method use Hough images of already rotated maps, where special geometric shapes
called Hough peaks are extracted and used to find translation between the maps. This approach has
the advantage of being able to handle a smaller map overlaps. Lee et al. [22] extract sinograms by
Radon transform and identifies salient features within sinograms (a structure that contains features,
such as directionality of lines). The transformation is then found with particle swarm optimization.

The summary of the reviewed metric map matching methods is shown in Table 5. Abbreviations:
RBPF—Rao–Blackwellized particle filter.



Robotics 2019, 8, 74 10 of 29

Table 5. The summary of the reviewed metric map matching methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Ko et al. [14] Metric grid - Known Separate Map only -
Konolige et al. [13] Grid/features - Known Separate Map only -

Liu et al. [15] Metric grid - Known Separate Map only -

Birk Carpin [10] Metric grid - Known Separate Map only
Requires high computational
capabilities.

Ma et al. [52] Metric grid - Known Separate Map only
Requires high computational
capabilities.

Li Nashasibi [53] Metric grid - Known Separate Map only
Requires high computational
capabilities.

Ho Newman [16] Grid/images - Known Separate Map only
Sensors must support image
collection.

Adluru et al. [17] Metric grid RBPF Known Separate Map only -
Alnounou et al. [18] Metric grid - Known Separate Map only -

Blanco et al. [19] Metric grid - Known Separate Map only -
Carpin [20] Metric grid - Known Separate Map only -

Saeedi et al. [21] Metric grid - Known Separate Map only -
Lee et al. [22] Metric grid - Known Separate Map only -

2.2.2. Feature Map Matching Methods

Feature map merging methods, where the robot relative positions remain unknown, generally
find the map transformations by matching features. The feature matching approaches are similar to
those used in the metric grid map matching with features [16–19] and mostly differ by the used feature
types and their characteristics. Some commonly used feature matching algorithms are RANSAC, SVD
(singular value decomposition), iterative closest point (ICP) search and improved iterative closest
point (ImpICP) search [55].

One example that only deals with the map matching is an approach proposed by Ballesta et al. [55].
The algoritm merges 3D Harris point maps in a two-dimensional transformation space (robots are only
able to move in a single plane, therefore vertical transformation dimension can be ignored) with various
feature matching algorithms to compare their performance (RANSAC being the most efficient for the
studied case). Robots use Rao Blackwellized particle filter for mapping, similar to Ozkucur and Akin
in [9], but they only consider the matching of the most probable particle from each map.

Thrun and Liu in [28] provide a feature matching method in the framework of SEIF (Sparse
Extended Information Filter) mapping that not only matches the pairs of features in both maps,
but also takes into account the lack of features. The feature matching is performed with finding triplets
of features and searching for similar local configurations on the other map. The matches of triplets
serve as a starting hypothesis for the fusion process.

Another example of the feature map matching is the method by Lakaemper et al. [56], who use
shape analysis and similarity to find the common parts of polyline feature maps. The maps are fused
using perceptual grouping, which is a custom-made solution for polyline maps.

An interesting problem that is addressed by Dinnissen et al. [57] is the choice of the merging
time and method. They use reinforcement learning to create and train a model that helps the robots
to determine whether they should merge the maps and which method to use based on their current
particle filter states and sensor observations. If successfully trained, such model can determine,
when the maps can be merged with the feature matching methods, when the grid matching methods
should be used and when the merging is not recommended.

The summary of the reviewed feature map matching methods is shown in Table 6. Abbreviations:
RBPF—Rao–Blackwellized particle filter. SEIF—sparse extended information filter.
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Table 6. The summary of the reviewed feature map matching methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Ballesta et al. [55] Feature map RBPF Unknown Separate Map only -
Lakaemper et al. [56] Feature map Custom Unknown Separate Map only -

Thrun Liu. [28] Feature map SEIF Unknown Separate Map only
Tolerant of the network
latencies.

Dinnissen et al. [57] Metric/feature RBPF Unknown Separate Map only -

2.2.3. Graph-Based Map Matching Methods

Compared to the metric grid maps and feature maps, the topological maps are rarely used
independently as the only map representation due to their high abstraction level. Nonetheless,
there are several merging methods dedicated especially to topological maps [11,12].

Map merging method developed by Dedeoglu and Sukhatme [11] uses single vertex matches
to find possible transformations between two topological graphs. Huang and Beevers [12] base their
matching algorithm in the graph theory and use multiple vertex matches to compute the transformation
between the two maps.

Methods that specifically match pose graphs or hybrid metric-topological maps are rarely encountered.
The summary of the reviewed graph-based map matching methods is shown in Table 7.

Table 7. The summary of the reviewed graph-based map matching methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Dedeoglu, Sukhatme [11] Topological - Unknown Separate Map only -
Huang, Beevers [12] Topological - Unknown Separate Map only -

2.2.4. Three-Dimensional (3D) Map Matching Methods

The main difference of 3D map matching and fusion, when compared to the 2D map case, is
its high dimensionality, which is why memory [39,40], bandwidth [36,40] and processing [36,37,42]
requirements are more often explicitly addressed in 3D map merging research. Otherwise, the existing
approaches to 3D map matching are similar to their 2D counterparts, but reduce the computational
complexity by either using structural features [40], matching submaps [42], or both [36,41].

One such method, proposed by Yue et al [40], does not require known relative transformation.
The algorithm reduces the transformation search space by extracting structural edges (large change in
local curvature) from the voxel grid and using edge matching to guide the search for the transformation.
Additionally, to the structural information, the local voxel information is used to refine the result.

Besides the extraction of structural features, pose graph-based methods are often used in 3D
map matching [36,42]. These methods represent the map as pose graphs connected with deformable
constraints and associated with a submap. This representation has two main advantages: (1) it reduces
the size of the matched maps (only submaps are matched) and (2) allows nonlinear transformation
between two maps as both individual submap matches and pose graphs can be optimized.

One example of 3D point cloud matching is a work by Bonanni et al. [42], who propose a map
merging approach specifically designed to deal with distorted pose graph maps. The pose graph
representation is chosen, because it allows us to deal with nonlinear transformations between two maps
and allows us to develop merging methods that improve the quality of the global map. The submap
point clouds are matched with the NICP algorithm [58] taking into account the graph topology
to reduce the search space. It is noted by the authors that the point cloud matching time takes
up a significant portion of the execution time and should be sped up with some appearance-based
matching strategy. The main emphasis in this work is put on submap matching strategies and alignment
quality evaluation.

Work by Mohanarajah et al. [36] pays special attention to the bandwidth and computational costs
of 3D mapping and map merging. The submaps are represented as pose graph associated key-frames,
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on which SURF key-point matching is performed by using RANSAC. Key-frames are a subset of
frames that summarize the full frame set. This representation is chosen to reduce the bandwidth
requirements, and the robot map optimization and map merging are mostly done in cloud.

Dube et al. [59] offer a centralized approach to 3D pose graph map creation. The central node
optimizes the map based on incremental sparse pose-graph optimization by using sequential and place
recognition constraints. The local submaps are matched by extracting 3D segments with SegMatch
algorithm introduced in [60].

It should be noted that the structural feature matching is a key to successful and real-time 3D
map matching, as noted in [42]. Besides the already mentioned feature extraction methods [36,40,59]
there are many other methods that can be used for the matching purpose, some of which are line
extraction [43], plane extraction [61], 3D segment e or 3D model approximation [62].

The summary of the reviewed 3D map matching methods is shown in Table 8. Abbreviations: PC
PG—point cloud pose graph.

Table 8. The summary of the reviewed 3D map matching methods.

Method Map Type Algorithm Relative Pos. Global Map Shared Data Hardware

Yue et al [40] Voxel grid - Unknown Separate Map only Addresses bandwith limitations.

Bonanni et al. [42] PC PG Graph-based Unknown Separate Map only
Requires significant processing
capabilities.

Mohanarajah et al. [36] Key-point PG Graph-based Unknown Separate Map only
Addresses bandwith limitations.
Utilizes cloud computing.

Dube et al. [59] PC PG Custom Matching Shared Map only
Designed to work online with
LIDAR sensors.

2.3. A summary of the Homogeneous Map Merging Methods

The reviewed map merging methods are summarized in the Table 9 by two parameters: the map
representation type and the map merging type (fusion or matching). The main ideas and challenges of
each group are presented along with references to the specific methods that address these problems.

Table 9. The summary of the homogeneous map merging methods.

Method Type Commentary

Metric grid map fusion The methods deal mainly with the data fusion and map optimization [2,3,17,25–27].

Metric grid map matching

The researchers most often address the problem of the map matching and assume that the data from
the other map will be treated as if it was just another measurement [10,16–22,52,53]. The matching
is usually performed in one of four ways: (1) using localization techniques [13–15]; (2) as a heuristic
search in the transformation space [10,52,53]; (3) through feature extraction and matching [16–19];
or (4) using the map transformations to other representations, e.g., Hough spectrum [20,21].

Feature map fusion
Most methods deal with the fusion of the features in the context of specific mapping algorithm (EKF
mapping [4,7,8], Particle filter based mapping [9], SEIF [28]). Special attention is paid to the discovery
of duplicate features and avoiding the map divergence.

Feature map matching
Most methods in this category address both the feature map matching and the map fusion problem
[28,55,56]. The features are most often matched by using some RANSAC, SVD (singular value
decomposition) or iterative closest point (ICP) search algorithm version [55].

Graph-based map fusion
One group of methods deal with the the fusion of graph nodes while avoiding duplicates (topological
and topological-metric maps) [5,32]. Pose graph fusion addresses the addition strategies of new
constraints between the maps [6,33,34]

Graph-based map matching
The methods use graph matching methods to find the correspondence between the graphs [11,12].
The main difference from feature matching is the observation of the connectivity constraints between
the maps.

3D map fusion
Most methods use some version of 3D iterative closest point (ICP) algorithm to refine the
transformation [37–39,41]. Volumetric maps are transformed to point clouds to make ICP algorithms
applicable [37].

3D map matching
The methods in this group generally search for the transformation, which is then usually refined in a
similar way to the map fusion [37–39,41]. The computational complexity is reduced by either using
structural features [40,59] matching submaps [42], or both [36,41].
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3. Map Merging Influence Factors

Six important factors that influence the map merging were identified during the review of the
map merging that should also be considered when addressing the heterogeneous map merging case.
These factors are: (1) robot hardware, (2) map representation, (3) mapping algorithms, (4) shared data,
(5) relative positions, (6) global maps.

The relations of these six factors are shown in Figure 2, where solid arrows represent mandatory
relations and dashed arrows—optional relations. Each individual robot is designed to fulfill a specific
purpose (mainly environment mapping in the context of this review), and is equipped with a proper
hardware to fulfill this task. The map representation and the mapping algorithm are chosen according
to the purpose of the map, but are limited by the robot hardware configurations. Every map merging
algorithm requires the map matching part, which is influenced by map representations, shared data,
knowledge about relative positions and sometimes the mapping algorithms. If the map fusion is
performed, it is influenced by the map representation, mapping algorithm and shared data. The global
maps are always produced by the merging process (either fused map/s or just correspondence between
two maps).

Figure 2. The relationships of the map merging factors.

Every map merging algorithm must take into account the hardware, map representation and
mapping algorithm as well as the restrictions ( shared data and relative positions) and the desired
output ( resulting global maps):

1. Robot hardware. Does the robot hardware support map merging? Is it possible to exchange the
data, is the processing capability adequate, do sensors support the acquisition of the necessary
data (e.g., relative positions of the robots)? These considerations must be taken into account
at least indirectly through other factors (through the map representation, relative positioning
information, shared data).

2. Map representation. How are the maps represented and can they be matched? Can they be merged?
3. Mapping algorithms. How will the map data from the other robot be integrated in the robot’s map?
4. Shared data. Are there any restrictions for shared data between the two robots (map data,

full sensor data)?
5. Relative positions. Is the information about the relative positions available? If yes, when and how

can it be acquired, how reliable is it?
6. Global maps. If the two maps can be matched, then how will the global map be handled? Will it

be merged in one global map, will each robot incorporate the other robot’s map data in its own
map, will a hybrid map containing both maps be created?
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As will be illustrated in subsequent sections, in several cases heterogeneous maps provide
significant additional challenges when compared to their homogeneous merging counterparts.

3.1. Map Representation

One of the most obvious factors that differentiates various map merging methods is the map
representation, therefore in this review the map merging methods will be divided in four main sections:

1. Metric maps (see Figure 3a) [2,3,6,10,13–20,52–54]. These maps describe the geometric properties
of the environment. Occupancy grids are the most common metric grid map type, and they
represent the map as arrays, where each cell’s value shows the probability that the corresponding
area in the environment is free or occupied with obstacle [63].

2. Feature maps (see Figure 3b) [4,7–9,55,56]. In these maps information about the environment
is represented as a feature list, where each feature is described with a location and parameters,
if they are required for the particular feature type. Features can be points (for example, trees or
furniture legs), lines (for example, walls or furniture sides) or other objects. When compared
with metric maps, feature maps generally require less computational resources and memory,
but they often represent the environment incompletely and do not represent the free space of
the environment.

3. Graph-based maps (see Figure 3c) [5,6,11,12,42]. These maps represent the environment as
a graph, where the nodes represent the environment locations and the edges are paths or
constraints between these locations. For topological maps, the link connecting two locations
shows that the robot can move between these two places without traversing any other significant
locations. Topological maps lack the geometrical information density of metric maps, but require
relatively low memory and significantly simplify the path planning task [64]. Pose graph and
hybrid-topological maps are also included in this category.

4. Three-dimensional (3D) maps [36–43]. A common 3D map type is a point cloud map. 3D data
can also be represented as discretized volumetric pixel (voxel) grids. However, voxel grids are
memory inefficient, and in practice abstractions (Multi-Level Surface maps [65], 2.5-dimensional
elevation maps [66]) or octree map compression [38,39,67]) are used.

Figure 3. Map type examples: (a) occupancy grid map. (b) Point feature map. (c) Topological map.

Besides the map types listed above many other map types exist (for example, image-based
maps [68–70] and manifold maps [71]), but they are used comparatively rarely for robot navigation.

It must be mentioned that often the map types listed above are used together and are not
necessarily mutually exclusive, for example, metric maps are used together with feature maps [72,73]
or topological maps [32,64,74], or topological maps are combined with feature maps [75]. Any map
type may also be supplemented with semantic information [76] or object data [77].

Another important aspect to consider is the purpose of the map. The map types differ significantly
not only between the groups listed above, but also within them. Metric grid maps have different
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resolutions (scale), feature maps represent various features, topological maps contain different
locations, 3D point clouds have different sparsity, etc. The map representation is chosen with the
purpose of the robot in mind—driverless car navigation [31] has other map representation requirements
than the semantic object recognition [77] or the rescue operations [37] It is especially important when
merging heterogeneous maps, for while the fusion of homogeneous maps usually produce a map of
comparable quality to the originals, it may not always be the case in the heterogeneous map merging.

3.2. Robot Hardware Configuration

Robot hardware influences the mapping algorithms and map representations that the individual
robot is capable of using. There are several main hardware categories, which play a role in robot
mapping and consequently in map merging:

• Sensor configurations. Sensor configuration determines the environment characteristics the robots
are able to detect. Internal and external sensor combination directly influence the types of maps
robot is capable of creating, mapping algorithms that can be applied and the accuracy of created
maps. Homogeneous map merging approaches generally assume that map differences due to
different quality sensors are insignificant—both maps are assumed to have the same quality
and have the same weight in merging, but this is not the case for heterogeneous map merging,
where different sensors are often the source of map differences. Sensor configuration also impacts
whether the robots are able to estimate the position of another robot during an encounter and
how accurate this estimate is.

• Communication hardware. It is assumed that all robots involved in mapping are capable of
data transfer and reception, otherwise, the map data exchange is fundamentally impossible.
Communication channel bandwidth influences the data amount that can be transferred and
may limit both homogeneous and heterogeneous map merging possibility [1]. Some existing
solutions to the bandwidth limitations are periodic data transfer [54], choosing memory-efficient
map representations (for example, octree based representation of 3D maps [38,39,45]) and map
compression [40,54].

• Processing capabilities. Processing requirements for different sensor configurations and mapping
algorithms significantly differ. Map merging itself can also be computationally expensive and if it
is impossible to delegate this task to a more capable team member, a robot with low processing
capabilities may be unable to benefit from an improved map. Sharing of processing capabilities
has been studied by many researchers, with one approach having robots delegate tasks to more
capable team members [68] or cloud [36] and the other creating computing clusters [78] to solve
complex tasks. In the recent years solutions have appeared that use the efficient parallel processing
capabilities of GPU for multi-robot related tasks, for example, submap matching [36,54]

• Available memory. Memory determines the map size and resolution limitations and also the stored
and received data amount. Memory limitations are especially important when considering 3D
maps, and 3D octree representation is mainly motivated by memory, bandwidth and processing
capability limitations of the robots [38,39,45]. In some cases the available memory allows us to
store more data than the robots can process or transfer, and it is possible to acquire higher quality
maps after the end of mapping [79].

3.3. Shared Information

Based on stored data, communication channel bandwidth and willingness to share information,
different data amount may be shared between robots:

• Maps only. Only the current map is shared with the other robot. Sharing the map requires
comparatively little communication channel bandwidth and is therefore one of the more common
shared information types [10,12,20,23,80–82].
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• All relevant map data. All control and sensor data is shared with the other robot [2,3]. Full data
sharing has the benefit of integrating sensor measurements in the map directly and could be
especially useful for heterogeneous robots, but is rarely used due to the heavy communication
channel load.

3.4. Relative Position Information

Map merging difficulty is influenced greatly by the knowledge of relative robot positioning both
for homogeneous and heterogeneous maps. There are two main cases starting from the easiest to
most difficult:

• Known positions. The relative positions of robots are initially known or found out during mapping.
The mapping can be done by the robots cooperatively updating the global map [4] or each robot
can operate as an independent entity and periodically merge their maps [2,3,6–9]. A widely research
problem with approximately known positions is the refinement of the transformation [2,3,6–9,37–39,41].

• Unknown positions (relative positions completely unknown, existence of common map part
unknown) [10,13–22,40,52–57]. The solution space, where transformation of two maps must
be found, is generally huge and hard to find without some feature identification in maps.
The problem is that overlap between maps is unknown and may not exist. This case is especially
hard for heterogeneous maps due to the possible lack of common and easily identifiable features.

3.5. Mapping Algorithms

The mapping algorithm is an important factor in the map merging due to the different data
requirements and produced output. Depending on the used mapping algorithm, some merging
methods are influenced significantly because of differences in map representation. In the reviewed
works three prominent SLAM approaches were most often used:

• EKF based SLAM. Extended Kalman filter (EKF)-based SLAM used in [4,7,8] represents both
robot position and map features as state vectors with associated uncertainty.

• Particle filter based SLAM. Particle filter based SLAM [2,9,17,55] represents robot map with
a set of particles, where each particle contains a hypothesis about robot position and a separate
map. In the map merging regarding particle filters, a decision must be made how to handle the
particle merging. Ballesta et al. [55] merges only the most probable particles, Ozkucur et al. [9]
merges the estimated weighted average map of one robot with all the particles of the other robot,
and Adluru et al [17] creates a virtual robot, which treats the data from all involved robots as
sensor data.

• Graph based SLAM. Graph based SLAM methods [6,36,41,42] represent the map as pose graphs
connected with deformable constraints and associated with a submap. The deformable graph
like representation allows for nonlinear transformation between two maps even for grid maps,
which normally use linear transformations [6], but they are most widely used in 3D point cloud
merging [36,41,42].

Additionally, data availability and shared information can significantly influence the map merging
result for compatible mapping algorithms. If not only resulting map, but also control and sensor data
is available, then, if similar sensors are used and relative positions are known, the other robot gains
the opportunity to incorporate this data directly in their maps without the need for map merging [3].

3.6. Resulting Global Maps

In the homogeneous map merging two map fusion results are the most prevalent:

• Shared global map, which the robots update collectively [2–4,7,8,17,36,41,59]
• Separate maps, which can be updated by each robot separately even after the merging. These maps can

usually be acquired asymmetrically meaning that each robot has a different map [6,9,10,13,14,18,20].
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It makes sense that given different map representations of two robots, the general heterogeneous
map merging result should be not one common, but two different maps, where each is represented in
the format used by involved robots. However, when heterogeneous maps are fused, another possibility
becomes an option:

• Hybrid map incorporates the matching result of both maps not by fusing the data, but by putting
another layer atop the existing map (e.g., creating a grid-appearance map [83]).

4. Heterogeneous Map Merging Overview

As stated in the introduction, the heterogeneous map merging field is in a relatively early
development stage and few researchers have addressed this problem. The majority of the map merging
research focuses on homogeneous robot teams that produce similar maps (some of the most widely
cited examples are [10,12,20]). Even if a heterogeneous robot team is used, often an assumption is
made that their produced maps do not differ in a significant way and are readily mergeable [37,84,85].

Not all factors or their aspects will always be included in the comparison of the heterogeneous
map merging methods (see Table 10 for details). The shared information is omitted in comparison,
because relatively few of the reviewed homogeneous map merging methods exchange all collected
data (out of all reviewed homogeneous map merging works only some methods [2,3] do this).
No reviewed heterogeneous map merging methods assume that all observation/action data is available
for both robots.

Table 10. Updated heterogeneous map merging factors.

Factor Values Commentary

Map representation

Metric grid maps
Feature maps
Graph-based maps
3D maps
Other maps

There is no single best map representation as each has
benefits and shortcomings. Additionally to the general
map type, other differences may be present: scale, quality
or sparsity.

Positions
Known
Unknown

Methods that work with unknown relative positions are
generally more universal. If the merging method works for
unknown positions, it can also be used for known positions
if an appropriate data fusion method is proposed.

Global map
Shared
Separate
Hybrid

Global map handling determines whether the output is the
the same global map for both robots that (shared), different
global map for each robot (separate) or the same map for
both robots that differs from original map representations
(hybrid)

Hardware
LIDAR
Camera
Other

Only the sensors will be considered in this group
(if relevant), as they are one of the most important sources
of heterogeneity in the heterogeneous map merging.

Mapping algorithm

EKF SLAM
Particle filter based
SLAM
Graph-based SLAM
Other

The mapping algorithms will be considered when they are
an important part of the heterogeneity

4.1. Metric Map Merging

The most prominent work in heterogeneous map merging has been performed regarding metric
grid map matching (more specifically occupancy grid maps). Topal et al. in [23] propose the first
method that can match different scaled heterogeneous metric grid maps not only theoretically, but is
specifically intended to do so. To merge different scaled occupancy grids SIFT (scale-invariant feature
transform) features are extracted from both maps and used to find a transformation by using nearest
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neighbor algorithms with minimum Euclidean distance. Several other works have also later addressed
different scale occupancy grid merging with different methods [81,82,86].

Ma et al. [86] and Ferrao et al. [82] also use SIFT features to find common key-points in the
maps with some differences in how map transformation is found and optimized. Ma et al. [86] uses
the random sample consensus (RANSAC) algorithm to find the initial transformation between maps
and then optimizes it by solving an objective function based on non-common areas of the maps with
trimmed and scaling iterative closest point (TsICP) algorithm. Ferrao et al. [82] addresses the problem
similar to [86] with some slight differences in transformation computation.

Park et al. in [81] offer another approach to solve the problem of different resolution occupancy
grid map merging. For the merging specific environment features are required: the maps should have
at least three separate rectangular space features. Such spaces are common in indoor environments,
but rare in outdoor environments.

Shahbandi and Magnusson [87] address the merging of different scale and quality occupancy grids.
They use region segmentation and alignment to operate at a high level of abstraction and make the
approach more robust to the dissimilarity of maps. This also allows us to treat the scaling parameter as
just another transformation parameter additionally to translations and rotation. The main drawback of
the method is the computation time, which, as the authors admit, is too high for real-time applications.
Similar to the method by Park et al. in [81], it is also limited to mostly indoor environments as it must
include distinct regions. The research is expanded in the work by Shahbandi et al. [88], where a method
for nonlinear transformation between occupancy grid maps is proposed. Initial alignment provided
by a decomposition-based technique is optimized by transforming occupancy grid maps to gradient
maps and then using them to find the optimal nonlinear transformation.

Several methods address only different scale grid map merging, but do not account for
significantly different levels of noise [23,81,82,86]. There is one method, which is robust against
noise and dissimilarities between maps, but it is limited by computation time and environment
characteristics [87]. All these methods are capable of yielding separate global maps if the merging is
performed twice—once for each map with regards to the other map. When the different scale occupancy
grids are matched by any proposed method [23,81,82,86] and the transformation is found, the fusion
can be performed by using any metric grid map fusion approach discussed in the homogeneous
mapping review section [25–27].

Another research direction in the heterogeneous map matching is the matching of the robot map
with some kind of prior map (building plan, sketch, CAD plan) [89,90].

Mielle et al. [90] offer an approach for the matching of sketch maps and occupancy grid maps.
They explore the idea that due to their representation of spatial configuration the human-drawn
sketches are useful as a prior map for mapping despite their poor accuracy. To find the match between
a sketch and a robot map the Voronoi graphs are extracted from both structures and matched with
the error-tolerant Neuhaus and Bunke’s algorithm for matching planar graphs [91]. This approach
cannot be directly applied for real-life SLAM, and Mielle et al. have continued the research direction
by developing a new approach [92] that implements a version of graph-based SLAM, which supports
the incorporation of the information from an approximate prior. Instead of human-drawn sketches,
emergency maps are used in this research. Normal distribution transform (NDT) is used as a map
representation, and maps are matched by extracting and using corner features. Unlike the original
research [90], this method allows us to not only match the maps, but also to integrate the prior’s data
in the robot’s map.

Boniardi et al. [89] uses the graph-based SLAM to build a pose graph map that is consistent with
a prior: CAD floor plan. The CAD map lacks important information about the environment (the room
contents), but is useful as a prior for the building wall configurations. The initial location of the robot
in the CAD map is assumed to be known.

Another prominent direction in the heterogeneous metric map merging is the matching of maps
from different sensors for the localization [93–95] or map building purposes [96].
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Caselitz et al. [95] provide a method for the localization of the robot equipped with a monocular
camera in a dense 3D point cloud map constructed with the LIDAR. The monocular camera provides
a sparse 3D point set with the ORB SLAM algorithm, and this point set is then aligned with the
ICP algorithm. A good guess of an initial estimation is assumed in this work. It must be noted
that this method does not provide a map, but only performs continuous localization in an existing
map representation.

Gawel et al. [93] extends upon the work by Caselitz et al. [95] by removing the constraint of
known initial correspondences. To find the match between the LIDAR point cloud map and the sparse
vision keypoint set, they first reduce the density of the LIDAR map to be comparable with the sparse
vision point map. They then employ three different structural descriptors (Boxli, 3D Gestalt and NBLD)
to find the match between the point clouds. In their further work [94] the registration is performed by
clustering geometric keypoint descriptor matches between the map segments. It is assumed that the
IMU sensor is available and with it the z-direction is known.

Lu et al. [96] use a 2D prior map constructed by a high precision LIDAR mapping system to
improve a low-quality monocular vision 3D point cloud map. The 2D prior map is used to correct the
vertical planes constructed by the visual SLAM. 3D point cloud planes are periodically detected and
matched with the prior, which is assumed to be more accurate. In the case of a match the mapping
error is minimized according to the reference map.

A case of metric grid vs feature map fusion is presented in Husain et al. [79], where the merging
of 2D occupancy grid maps and 3D point clouds to create a more complete environment representation
is addressed. The robot relative positions are known, and the authors note the need for postprocessing
due to limited bandwidth and processing capabilities of individual robots, and the robots only use
coarse 2D maps during the mapping.

The current state of the art in heterogeneous metric grid map merging can be seen in Table 11.
Abbreviations: NDT—normal distribution transform; PC—point cloud.

Table 11. Heterogeneous metric map merging approaches.

Map Type Mapping Alg. Relative Pos. Global Map Hardware Methods Comments

Grid (scale) - Unknown Separate - [23,81,82,86]
All methods deal with different
scale occupancy grid merging

Grid (scale, qual.) - Unknown Separate - [87,88]

Methods can merge different
scale and quality maps, if the
environment has distinct
regions. [87] finds nonlinear
transformation.

NDT/prior - Unknown Separate - [92]

Method fuses Normal
Distribution Transform (NDT)
map with prior emergency maps
by using graph-based SLAM
and corner feature matching.
Only robot uses the resulting
map.

Pose graph/CAD Graph-based Known Separate - [89]
Method uses the CAD map prior
to correct the pose graph map
constructed by the robot.

Dense/sparse 3D PC - Known - LIDAR/Mono-cam. [95]

The dense LIDAR 3D point cloud
map is used for the localization
with a monocular camera that
produces sparse point set.

Dense/sparse 3D PC - Unknown - LIDAR/Mono-cam. [93,94]

These methods improve the
work by [95] by addressing the
dense and sparse point cloud
matching with unknown initial
correspondences.

3D PC/prior - Known Separate LIDAR/Mono-cam. [96]

The LIDAR constructed prior
map is used as a reference map
for low quality vision based
mapping improvement.

3D PC/Grid - Known Hybrid Different LIDAR [79]
The method merges 2D
occupancy grid with 3D point
cloud in postprocessing.



Robotics 2019, 8, 74 20 of 29

4.2. Metric Grid vs. Feature Map Merging

Map types used in robotics can be fundamentally different in their representations, but some
methods exist to transform one map type into another. For example, it is possible to get feature maps
from metric maps by applying feature (line, point, corner, etc.) detection algorithms [17,18]. Feature
maps can be transformed into metric maps by creating an occupancy grid and marking cells containing
features as occupied [97].

However, such transformation methods do not exist for all map types and in some cases,
the reliable merging of two maps is fundamentally impossible. An example for such a case are
two robots, which sense the environment with different sensors: one robot uses a camera to detect and
map colored landmarks, but the other robot uses LIDAR, which cannot detect colors and therefore
features detected by other robot are useless to it. It must also be noted that the merging of different
type and format maps does not necessarily work in both directions. For example, it may be possible to
incorporate information from the feature map in the occupancy grid, but not the other way around.

The most relevant research concerning metric grid vs feature map merging relates to the feature
extraction from metric grids (some examples are [17,18,98]. These works do not directly deal with
heterogeneous map merging, but feature extraction from metric maps can help find the correspondence
between metric and feature maps if the features are similar. Although not exactly map merging, finding
the correspondence (matching) of two maps is the map merging’s first step, and the works that deal
with feature extraction from metric maps can be considered relevant.

Li and Olson in [98] offer to use scale-independent corner feature detectors to find a transformation
between two scans. Corner detection in occupancy grid maps can serve as a starting point in the
corner feature map—occupancy grid merging. Corner extraction from grid maps is also used for map
merging by Adluru et al. [17].

Feature extraction from occupancy grid maps idea is also used by Alnounou et al. in [18] with the
difference that hybrid occupancy grid-feature maps are created during the mapping process. Instead
of corner features, the line-segments, circular arcs, and curve features are extracted.

The state of the art in heterogeneous metric grid vs. feature map merging is shown in Table 12.
The grid vs. feature map merging methods are currently limited with feature extraction from occupancy
grid maps, but no research on incorporating these features in feature maps has been done.

Table 12. Heterogeneous metric map merging approaches.

Map Type Mapping Alg. Relative Pos. Global Map Hardware Methods Comments

Grid vs feature - Unknown - - [17,18,98]

Methods deal with feature
extraction from occupancy
grids, but not feature and grid
map merging. Cited methods
are examples dealing with
feature extraction; not an
exhaustive list.

4.3. Metric Grid vs. Topological Map Merging

This section addresses the methods that establish the matches between the topological and metric
maps. There are many methods that extract topological maps from occupancy grids (some examples
are [99–102], but the outputs are very different.

Fabrizi and Saffiotti [99] extract the topology based on the shape of free space in grid maps focusing
on large open spaces connected by narrow passages. Joo et al. [100] construct topological maps by
detecting virtual doors with the help of corner features. These virtual doors then serve as edges between
nodes that represent rooms. Schwertfeger and Birk [101] extract topology graphs derived from Voronoi
diagrams that are themselves extracted from 2D grid maps. These graphs are used to assess the map
quality by matching it and comparing it with the ground truth. Kakuma et al. [102] also extract topological
graph for matching with the ground truth, but acquires it through region segmentation.
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Table 13 shows the list of methods (not exhaustive) that deal with topological map extraction
from metric grid maps. There are no known methods to the author of this review that would deal with
generating grids from topological maps in robotic mapping or map merging context.

Table 13. Heterogeneous metric map merging approaches.

Map Type Mapping Alg. Relative Pos. Global Map Hardware Methods Comments

Grid vs topological - Unknown - - [99–102]

Methods deal with extraction
of topological structures from
occupancy grids, but not
topological and grid map
merging. Cited methods
are not an exhaustive list
of topological structure
extraction methods.

4.4. Other Maps

A prominent research area, related to heterogenous map merging, deals with cross-view image
matching, where aerial view images are matched with data collected on the ground (some examples
are [103–105]). Yamamoto and Nakagawa [103] consider a problem where 3D LIDAR data and satellite
image data must be merged to improve building classification. Although the demonstrated results are
satisfactory, this research has limited use in multi-robot map merging. The transformation is manually
determined and satellite data is rarely used as a data source for robot mapping due to the lack of details
necessary for robot’s size. Work by [104] uses a deep convolutional neural network to detect buildings in
aerial and ground images. They then retrieve the k nearest neighbors from the reference buildings using
a Siamese network and use an efficient multiple nearest neighbor matching method based on dominant
sets to find the nearest neighbors of buildings and match them. Work by Fanta-Jende et al. [105] addresses
matching of mobile mapping data and aerial images by searching for mutual planes in both images and
homogenizing images to achieve pixel-level accuracy. Some methods address the cross-view matching by
using semantic information [106,107]. It must be noted that these methods do not comprise an extensive
review of all cross-view image matching methods, but are examples of this promising research direction,
which is related to heterogeneous map merging, but is currently not used in actual multi-robot systems.

Hofmeister et al. in [68] demonstrates the creation of heterogeneous maps with robot team,
where a ‘parent’ robot is equipped with LIDAR and ‘child’ robots use cameras. When the occupancy
grid map with ‘parent’ robot is acquired, the other robots create image maps suitable for independent
localization under the guidance of parent robot. This research, however, only demonstrates cooperative
creation of heterogeneous maps, but did not address the merging issue, if the maps are already created.

To the best of author’s knowledge the article by Erinc et al. [83] presents the only research
addressing both matching and fusion of fundamentally different map types. In the solution proposed
by [83], additionally to the normal mapping, each robot is required to record the wireless signal strength
of all access points. This wireless signal strength model is then later used to find overlap between
different map types. The solution is tested by merging an occupancy grid and appearance-based map
(undirected weighted graph, in which every vertex represents a camera image at a certain position),
however, authors claim that any map types can be merged in this way [83].

The overview of methods merging various map types is depicted in Table 14.
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Table 14. Heterogeneous metric map merging approaches.

Map Type Mapping Alg. Relative Pos. Global Map Hardware Methods Comments

Aerial/Ground - Various Hybrid Aerial/Ground [103–107]
Currently limited use in
multi-robot systems for real
time mapping.

Grid/Image map Cooperative Known LIDAR/Camera Separate [68]
Requires cooperative
mapping, image maps
can’t be independently built.

Grid/Appearance - Unknown - Hybrid [83]

Requires creation of wireless
signal strength maps for
all robots. Only considers
finding correspondences,
but not integration of
map data.

5. Discussion and Challenges

The overview of the state of the art in heterogeneous map merging is summarized in Table 15.
Various map matching and fusion algorithms have been created over the years for homogeneous maps,
but the field of heterogeneous map merging is still full of challenges. Most of the progress has been
made in the different scale occupancy grid merging. Another research direction in the heterogeneous
map matching is the matching of the robot map with some kind of prior map (building plan, sketch,
CAD plan) [89,90]. One more direction in the heterogeneous metric map merging is the matching of
maps from different sensors for the localization [93–95] or map building purposes [96]. Some solutions
also exist for fundamentally different map merging, but there are restrictions—either the relative
transformation of maps must be known [79] or other information is required (WiFi signal strength map
in [83]). Some solutions exist, that may support the metric grid vs feature map merging [17,18,98] and
metric grid vs topological map merging [99–102], but those are developed for other purposes and their
use for heterogeneous map merging purposes remains unknown.

Table 5 shows the overview of the heterogeneous map merging approaches. A map
merging method must consider at least one heterogeneity factor (format, sensors or scale) to be
considered heterogenous.

Based on the review and discovered factors and challenges, two main heterogeneous map merging
steps can be defined:

1. Exchange of meta information. This step is necessary to determine whether the map merging
is possible and which algorithm should be used. It must be noted that merging of different
type and format maps may not necessarily work in both directions. For example, it can be
possible to incorporate information from the feature map in the occupancy grid, but not the
other way around. Meta information should include all important factors required to perform
successful heterogeneous map merging or reject the merging attempt due to incompatibilities or
non-existant algorithms.

(a) Map type and any significant specific information that can be objectively described.
Such information is, for example, the scale for occupancy grids, feature types for feature
maps, stored topological information, etc. Additional information about extracted features,
object data, semantic data should also be included.

(b) Data that each robot is capable (and willing) to share and receive. The data can be just
the map, or also include trajectory and raw sensor data. Hardware and communication
channel limitations must be taken into account when determining shared information.

(c) Relative position information. Map merging difficulty both for homogeneous and
heterogeneous cases differs significantly based on the knowledge about the relative
positioning of the robots.
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2. Merging of maps. This is the main challenge, where specific heterogeneous map merging
algorithms must be developed. Unfortunately, there is no universal solution as evidenced by the
review of existing homogeneous and heterogeneous map merging methods, therefore case-specific
algorithms must be developed. The merging is asymmetric, as each robot seeks to incorporate the
data from another robot in its map.

Table 15. Heterogeneous metric map merging approaches.

Methods Heterogeneity Comments

[23,81,82,86,87] Different scale occupancy grids

All methods focus on the map matching with
unknown positions and are able to produce
separate maps. [87] also considers different quality
maps.

[87] Different scale and quality occupancy grids
The approach focuses on the map matching
with unknown positions and is able to produce
separate maps.

[89,92,96] Robot map versus a prior map.
The methods deal with matching the prior with a
robot map. The result is intended to improve the
robot map.

[93–96] Different sensors

The methods address the maps constructed with
different sensors. [95,96] assume known positions
and perform localization [95] or map improvement
[96]; [93,94] work on finding the transformation
between the maps.

[79] 2D and 3D maps
The method fuses 2D and 3D map in one hybrid
map, when the relative positions are known and all
data is collected.

[17,18,98] Feature and grid maps
Methods deal with the feature extraction from
occupancy grids, but not feature and grid
map merging.

[99–102] Topological and grid maps
Methods deal with the extraction of topological
structures from occupancy grids, but not
topological and grid map merging.

[103–107] Aerial and ground view matching
Methods address the cross-view localization
problem for aerial and ground views.

[68] Grid and image maps
The approach addresses cooperative heterogeneous
map creation for robots with various capabilities.

[83] Grid and appearance maps

The approach matches the maps that have little
commonalities with the help of wireless signal
strength maps. In the end both maps are fused
in one hybrid map.

IEEE 1873–2015 [108] is a significant step towards a common standard regarding robot map
data exchange and supports the representation and exchange of 2D grid, geometric (feature) and
topological maps in XML format along with the corresponding metadata. It also allows us to represent
the environment with all supported maps in combination in a coherent way. Notably, map positions
can be specified relative to the coordinate system of another local map, which is a very useful
feature when merging maps. Although several options are still missing for this standard to cover all
metadata requirements listed above, in a few years this representation could cover most of the needs
in heterogeneous map merging data exchange:

• Representation of all map types, most notably any type of 3D maps (noted in [108] as possible
future development).

• Semantic information (noted in [108] as possible future development).
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• Data other than map (trajectory, raw sensor data). This is a minor issue, as based on the most
recent methods, very few map merging methods require this type of data.

6. Conclusions

This article provides a state of the art of the homogeneous and heterogeneous map merging field
and the main challenges that must be overcome to successfully implement the capability to merge
different maps in a multi-robot team. Six factors are identified that influence the outcome of map
merging: (1) robotic platform hardware configurations, (2) map representation types, (3) mapping
algorithms, (4) shared information between robots, (5) relative positioning information, (6) sharing
level of resulting global maps.

The influence of most important factors is analyzed in the context of heterogeneous map merging
and two main steps for problem-solving are defined for the general merging case—(1) meta-information
exchange and (2) asymmetric merging of maps based on algorithm tailored for the specific case.

It is concluded that heterogeneous map merging still has numerous challenges that must
be addressed:

1. Heterogeneous map merging algorithms for specific cases. So far only some algorithms to
merge different scale occupancy grid maps or heterogenous maps with specific restrictions exist,
and even these solutions do not address asymmetric merging, where a separate global map is
produced for each involved robotic platform.

2. The incorrect merging chances are higher with heterogeneous maps, therefore it is necessary
to research mechanisms to reduce the risk of map corruptions due to mistakes. Some possible
solutions include multi-level map storage solutions or meeting strategies to confirm merging
decisions.

3. The merging of different quality maps is currently severely lacking even for same-type maps.
To facilitate the propagation of the higher quality maps, map quality assessment algorithms
are necessary.
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