
robotics

Article

On a Two-DoF Parallel and Orthogonal
Variable-Stiffness Actuator: An Innovative
Kinematic Architecture

Matteo Malosio 1,*,†,‡ , Francesco Corbetta 2,‡, Francisco Ramìrez Reyes 2,‡, Hermes Giberti 3 ,
Giovanni Legnani 1,4 and Lorenzo Molinari Tosatti 1

1 Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale
delle Ricerche, via Alfonso Corti 12, 20133 Milano, Italy; giovanni.legnani@stiima.cnr.it or
giovanni.legnani@unibs.it (G.L.); lorenzo.molinaritosatti@cnr.it (L.M.T.)

2 Dipartimento di Meccanica, Politecnico di Milano, Via la Masa 1, 20156 Milano, Italy;
francesco1.corbetta@mail.polimi.it (F.C.); franciscoalberto.ramirez@mail.polimi.it (F.R.R.)

3 Dipartimento di Ingegneria Industriale e dell’Informazione, Università di Pavia, Via ferrata 5,
27100 Pavia, Italy; hermes.giberti@unipv.it

4 Dipartimento di Ingegneria Meccanica e Industriale, Università di Brescia, Piazza del Mercato 15,
25121 Brescia, Italy

* Correspondence: matteo.malosio@cnr.it; Tel.: +39-0341-235-0204
† Current address: Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato,

Consiglio Nazionale delle Ricerche, c/o Polo Universitario di Lecco, via G. Previati 1/E, 23900 Lecco, Italy.
‡ These authors contributed equally to this work.

Received: 19 April 2019; Accepted: 23 May 2019; Published: 27 May 2019

Abstract: Variable-Stiffness Actuators are continuously increasing in importance due to their
characteristics that can be beneficial in various applications. It is undisputed that several
one-degree-of-freedom (DoF) solutions have been developed thus far. The aim of this work is to
introduce an original two-DoF planar variable-stiffness mechanism, characterized by an orthogonal
arrangement of the actuation units to favor the isotropy. This device combines the concepts forming
the basis of a one-DoF agonist-antagonist variable-stiffness mechanism and the rigid planar parallel
and orthogonal kinematic one. In this paper, the kinematics and the operation principles are set out
in detail, together with the analysis of the mechanism stiffness.

Keywords: parallel kinematic architecture; agonist-antagonist variable-stiffness actuator; tendon-driven
mechanism; stiffness analysis; planar movements

1. Introduction

A Variable-Stiffness Actuator (VSA) permits the adjustment of both the position and stiffness
of the load [1]. The fundamental aspects of a VSA are: (i) real-time adjustable stiffness requiring
neither force sensors nor transmission backdrivability; (ii) robustness to external perturbations and
unpredictable model errors; (iii) adaptability and force accuracy in the interaction with the operator;
(iv) suitable for direct interaction with humans in the presence of safety requirements, limiting the
force of collisions in the event of a malfunction or unexpected movements.

The above aspects, as well as the onset of new field of applications, are making them increasingly
viable solutions. In fact, a first attempt to organize the numerous available technologies and solutions
presented in the scientific literature was considered necessary and fundamental to establish a common
language for designers and potential users [2]. Different types of VSA actuation schemes have been
developed thus far [1,3]. In particular, it is worth mentioning, the so-called principle of operation of
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the agonist-antagonist [4], commonly used in such devices and adapted to the kinematic architecture
set out in the present work.

Usually these are made up of two Series Elastic Actuators (SEA) arranged in parallel to a
mobile mass as shown in Figure 1. SEAs are constituted by a rigid actuator and a non-linear spring
assembled serially [5]. The nonlinearity of the elastic element is necessary to allow the adjustment
of the VSA stiffness [6]. Non-linear springs can be realized in different ways. An example of these,
are non-homogeneous coil springs, obtained by varying the pitch or the diameter along the axis.
With the same objective an alternative solution would be to employ cams with variable-radius, e.g., [7,8].
In fact, the vast majority of the VSAs developed thus far are characterized by a one-DoF actuation
scheme. To the authors’ knowledge only one two-DoF mechanism enabling planar movements has
been developed up to now [9]. This is a cable-driven device arranged on a triangular framework, with
three non-linear SEAs. Due to the presence of three tendons, the possibility to adjust the stiffness of
the load along different directions is limited. Moreover, each tendon is controlled independently by
two actuators, thus requiring six of these.

Figure 1. Schematic representation of a one-DoF agonist-antagonistic VSA: two antagonist non-linear
SEAs si, made up of a rigid actuator ai and a compliant element with stiffness ki exerting opposite
forces fi, control the position and the stiffness of a mobile mass m.

To take the existing architecture one step further and enhance the isotropy in terms of stiffness
and decoupling of degrees of freedom, an original kinematics two-DoF planar solution based on
two orthogonal tendon-driven VSA actuation schemes was developed and is presented in this work.
Its original kinematics allows one to tune, at the same time, both the equilibrium position and the
stiffness of a mobile platform along two orthogonal directions. The orthogonal configuration is an
arrangement that helps to reach an isotropic behavior in the entire workspace [10–12].

Moreover, the architecture has been conceived with the aim of minimizing the number of actuators
required. In fact, the architecture presented within this work uses only four actuators, being the
minimum number required to control both the equilibrium position and the mechanical stiffness of a
mobile mass along two orthogonal directions. Combining the typical modularity of VSA antagonist
actuators, the architecture presented herein is essentially made up of two orthogonal VSAs, as shown
in the scheme set out in Figure 2, within which each one of these are characterized by two antagonist
identical submodules.

Figure 2. Schematic representation of a two-DoF agonist-antagonist VSA: two one-DoF VSAs are
arranged orthogonally with respect to a mobile mass.
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The paper is organized as follows: the nomenclature is listed in Table 1; the kinematic architecture
is presented in Section 2; the force and stiffness analysis is described in Section 3; conclusions are
drawn in Section 4.

Table 1. Table of symbols.

Symbol Description

P... Geometric point
{ f } Reference frame. {w} denotes the global reference frame.
P...( f ) =, [P...,x( f ), P...,y( f )]

T Coordinates x and y of point P... WRT { f }. If no { f } is indicated, {w} is
understood.

Ṗ First time derivative of P
O f Origin of { f }
{e f ,x, e f ,y} Axes of { f }
d(P, Q) Distance between point P and Q
v = [vx( f ), vy( f )]

T , v = vuv Vector v, with components vx( f ) and vy( f ) WRT { f }, of magnitude v and
direction uv

v(Q, P) = Q− P Vector from P to Q applied in P.
u(Q, P) = v(Q,P)

|v(Q,P)| Unit vector from P toward Q.
u(v) = v

|v| Unit vector of v.

2. Kinematics

Let us refer to Figure 3 and to Figure 4 for a graphical representation of the kinematic architecture
under consideration. The former is a simplified scheme of two main embedded submodules. The latter
is a completed scheme of all the main components and sets out all the required symbols for a complete
geometrical and analytic description.

(a) Tendons subsystem (b) Carriages subsystem
Figure 3. Simplified representations of the two main submechanisms embedded in the presented
architecture. Continuous lines refer to the two horizontal antagonist actuators, dotted lines refer to
the two vertical antagonist actuators. (a) The tendons subsystem includes two orthogonal pairs of
antagonistic non-linear SEA. The direction of the tendons is defined by four carriages cij which embeds
deflecting pulleys. (b) The carriages subsystem depicts the principle of operation of the tendon-based
system which guarantees that the tendons are constantly orthogonal if no external force is applied to m.
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(a) Global view (b) Carriage cij

Figure 4. Top view of the mechanism. Modules g00 (dotted black lines) and g01 (dashed black lines)
apply pulling forces along the horizontal direction. Similarly, g10 (dotted grey lines) and g11 (dashed
grey lines) apply pulling forces along the vertical direction.

The two-DoF planar VSA presented in this work is made up of four almost identical actuation
modules, orthogonal and antagonistic in pairs, identified by gij, where i ∈ {0, 1} and j ∈ {0, 1}.
The subscripts (ij) indicate hereafter both the direction and the orientation with respect to {w},
being the global planar reference frame. This notation has been chosen for the sake of generality.
Nevertheless, referring to Figure 4, the subscript i is the actuation direction and, specifically, i = 0 and
i = 1 correspond to i = ew,x and i = ew,y, respectively, whereas, the subscript j refers to its orientation
and, specifically, j = 0 and j = 1 correspond to the same or the opposite orientation of the specified i
unit vector, respectively. Moreover, let us define ī and j̄ the complement to 1 of i and j, respectively.
Accordingly, given that gij refers to, generically, one of the four actuation modules, gī j and gī j̄ refer to
the two actuation modules perpendicular to gij and antagonists between them.

A mobile body m is connected to the ground by means of four wires wij tensioned by non-linear
springs kij, each of these belonging to gij. Wires wij are wrapped around four pulleys concentric to the
center of m, indicated by M.

By hypothesizing that the inertial and external forces acting on m are disregarded, this system
configuration shows the characteristic of applying to m a set of forces fij, parallel to i with orientation j,
antagonist and orthogonal in pairs.

The generic module gij is made up of:

• a rotational actuator aij characterized by the rotational coordinate θij and the torque τij;
• a non-linear spring kij, assumed to be identical ∀i, j, with length lij = d(Sij, Gij) = ∆lij + lij,eq,

indicating Gij as ground point, Sij the free endpoint of wij, lij,eq the preload length of the spring,
and ∆lij the length variation from the preload length;

• a wire wij actuated by aij at one of its endpoints, exerting on M the pulling force fij due to the
elongation of kij;

• a carriage cij, ensuring the correct direction of fij;
• a set of synchronous belts bijl , with l ∈ {1, 2, 3}, with the task of synchronizing the motion of the

carriages cī j and cī j̄ with respect to M thus assuring the orthogonality of the antagonist force pairs
(fī j and fī j̄) acting on the end effector.
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As can be seen from Figure 4a, the only difference between g0j and g1j (for each j) is the length of
belts bijl for assembly purposes. We can moreover denote:

• fm the external force applied to m;
• vi each couple (gi0, gi1) constituting an antagonistic VSA.

Referring to Figure 5 and ignoring inertial effects, the position of m (i.e., M) can be obtained by
solving the equilibrium equation:

2

∑
i=1

2

∑
j=1

fij + fm = fs + fm = 0. (1)

where fs denotes the total force exerted by the springs on m.

Figure 5. Representation of forces applied to m in a generic configuration of the mechanism.

The mechanical transmission of this architecture, constituted by cij, wij and bijl , ensures that the
forces applied to m are orthogonal and antagonistic in pairs, as set out below (Figure 4):

f01 = −f00, f11 = −f10, f00 ⊥ f10, (2)

and assuming that all kij are identical and no external forces are applied, i.e., fm = 0. This is an aspect
which can be anticipated to control both the equilibrium position and the stiffness of m along two
orthogonal directions in performing planar movements.

We will now focus on the generic carriage cij to illustrate the transmission mechanism represented
in Figure 4b where {cij} denotes its local reference frame. Each cij includes four pulleys qijk, with
k ∈ {1 . . . 4}, each center being indicated by Qijk. Pulleys qij1 and qij2 are configured so that
v(Qij1, Ocij) = − v(Qij2, Ocij), and ecij ,x = u(Qij1, Ocij). Pulley qijm is fixed to m and centered in
M, pulley qij5 is affixed to the ground. It must be pointed out that qijm∀i, j are four pulleys (one per
gij) centered in M, coaxial, and placed side by side along their axis. By hypothesizing fij as coplanar,
notwithstanding the slight displacement which might occurs among pulleys for construction reasons
(Figure 6b).

The wire wij, connected to the ground point Gij through kij at its endpoint Sij, partially enveloped
in series on qij1 qijm qij2 qij5, applies the pulling force fij on m.

The transmission mechanism of two antagonistic modules (Figure 6) has the objective of
synchronizing cij among them so that

M ∈ ecij ,y ∀i, j (3)
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in this way (2) is respected, since fij ‖ u(Ocij , M).

(a) Global view

(b) End effector (c) Carriage
Figure 6. Three-dimensional representation of the VSA v0. Greyed pulleys are drive pulleys actuated
by a00, white pulleys are driven pulleys. Dashed pulleys are connected to a00, dotted pulleys are
connected to a01. Conceptually it represents even v1, neglecting a few mechanical details due to the
different lengths of the belts.

Referring to Figure 4b and Figure 7, it is

Ṁi =
θ̇i0rw − l̇i0

2
= − θ̇i1rw − l̇i1

2
∀i, (4)

where Ṁi denotes the velocity of M along the i direction.

(a) θ̇00 = −θ̇01: M moves, stiffness is constant (b) θ̇00 = θ̇01: M is steady, stiffness changes

Figure 7. Effects of opposite or same rotation velocities of a00 and a01. The red and black tendons are
antagonist and control the position and the stiffness along the horizontal direction.
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If no external force is applied to m, the result is
∣∣fij
∣∣ = ∣∣∣fi j̄

∣∣∣ by reason of (2) above and as the
fij are exerted by kij, the result is li0 = li1 = li. Differentiating with respect to the time, one obtains
l̇i0 = l̇i1 = l̇i. Therefore, (4) can be written in the following form

l̇i = rw(θ̇i0 + θ̇i1)/2 (5)

which, if substituted in (4), will result in

Ṁi =
(θ̇i0 − θ̇i1)rw

4
(6)

Referring to Figure 6, rw,rb indicate the radius of the pulleys enveloped by wij,bijl and actuated
through aij, respectively. If Bijl is a generic point of the belts bijl , the following relationship results:∣∣∣Ḃijl

∣∣∣ = rb θ̇ij ∀Bijl ∈ bijl ∀i, j. (7)

Each cij includes two pulleys qij3 qij4 enveloped by the belt tij arranged in a manner that
v(Qij3, Qij4) ‖ ecij ,x. The velocities of two opposite points Tij1, Tij3 ∈ tij with respect to the velocity of
cij are set out in (Figure 4b, Figure 7):

Ȯcij = (Ṫij1 + Ṫij3)/2 ∀i, j (8)

Therefore, constraining Bij1 and Bi j̄3 (chosen for the sake of convenience), to Tī j1 and Tī j3,
respectively, and combining (6), (7) and (8) so that Ṁi = Ȯcī j

∀i, j in order to satisfy condition (3),
the result is

rw = 2rb, (9)

that is used as a design parameter to ensure (2).
It is noteworthy to underline that the architecture presented herein minimizes the total number

of actuators required for the functional specification needed. In fact, four is the minimum number of
actuators to independently control position and stiffness along two orthogonal directions.

The deformations of tension springs due to the application of an external force to the mobile mass
M is set out in Figure 8.

Figure 8. Springs elongation if an external force is applied to M, deviating it to M f from its equilibrium
configuration Meq.
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3. Force and Stiffness Analysis

Generally, because of its intrinsic compliance, if fm 6= 0, m deviates significantly from its
equilibrium position, thus causing it not to comply with (2) even if it complies with (9). Consequently,
the orthogonality between v0 and v1 is no longer respected. Therefore, it is necessary to evaluate the
actual mechanical characteristic of m, i.e., the relationship between the displacement and the force fm,
taking into consideration the possibility of large displacements from the equilibrium configuration.

Let us refer to Figure 9, a zoomed view of Figure 5, for symbols and nomenclature used in this
force and stiffness analysis. In particular, we have defined Meq the position of M if fm = 0, and M f the
position of M if fm 6= 0. We can moreover denote by ∆M = M f −Meq. Given a force fm, the resulting
position of M can be obtained by solving Equation (1). However, to characterize the mechanism and
given the intrinsic nonlinearity of the system, it is necessary to evaluate fs, opposite to fm, in function
of the position of m. It is moreover useful to take into consideration the representation of fs both in
Cartesian and polar components. For the sake of convenience, we will define:

• fs,x = fs · ew,x, x component of fs with respect to {w};
• fs,y = fs · ew,y, y component of fs with respect to {w};
• fs,r = fs · u(∆M), component of fs parallel to ∆M;
• fs,t =

√
f 2
s − f 2

s,r, component of fs normal to ∆M.

Figure 9. Detailed view of Figure 5 representing forces applied on m.

More particularly, fs,r denotes the amount of force oriented toward the equilibrium point
and fs,t denotes the amount of force perpendicular to the displacement vector, due to reasons of
non-orthogonality, misalignment, and asymmetry.

The local stiffness of m along different directions can be evaluated by partial derivatives of fs with
respect to space

kx =
∂ fs,x

∂x
ky =

∂ fs,y

∂y
kr =

∂ fs,r

∂r
kt =

∂ fs,t

r∂θ
. (10)

where x = M f ,x(w), y = M f ,y(w), r = |∆M| and θ = arctan 2(∆My, ∆Mx).
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Some numerical evaluations are reported and commented hereunder to better understand the
mechanical behavior of the mechanism. Without loss of methodological generality, let us refer to a
mechanism with unitary quantities by considering the International System of Units. The following
assumptions are made:

• referring to Figures 5 and 9 the analyzed workspace is in the interval −1 m≤ x, y ≤ 1 m;
• kij is assumed to be a quadratic spring exerting a force fk,ij = akl2

ij = ak(∆lij + lij,eq)
2, with

ak = 1 N/m2;
• l0j,eq = l1j,eq = 1 m, i.e., halfway through its available stroke (Figure 4b).

The choice of a quadratic spring is due to the fact that a quadratic force-length function of the actuators
in antagonist VSA makes the stiffness of the mobile body independent from the load externally applied
to it [6]. This makes it the most common and sought-after spring characteristic in one-DoF VSAs. It is
important to numerically assess how the asymmetries and non-orthogonalities, which take place by
varying the M position, affect this aspect.

Regardless of these assumptions, the reasoning and the methodology behind the simulations
presented can be adapted to any type of spring and dimension by using a developed parametric
numerical routine.

Referring to Figure 10, let us firstly analyze force components fs,r, fs,t and stiffness kr in some
specific points within the workspace. It is evident that the majority of the isotropic behavior occurs if
Meq is placed in the center of the workspace and that the symmetry of this configuration considerably
limits any tangential force fs,t which deviates from the line connecting M f to its equilibrium point Meq.

Approaching the boundaries of the workspace, edge effects and asymmetries are increasingly
evident. It is noteworthy that if both M f and Meq are on one the symmetry axes of the workspace,
no tangential force occurs due to existing force symmetries. It is further worth noting that not all
the workspace is reachable because of the limits of the kij stroke. In any event, for the purposes of
this work, force and stiffness values for all the points under investigation in the workspace have
been plotted. In this way one can obtain a more general overview of force and stiffness variations
with the focus being placed on the architecture analysis and overlooking potential limitations due to
construction reasons.

Referring to Figure 11, and more specifically to the condition l0j,eq/l1j,eq = 0.2 which is indicated
by a dot, Figure 12 highlights how, by using two different preload lengths on VSAs v0 and v1, one can
deform the force field in order to obtain different values of stiffness along two orthogonal directions of
the workspace.

Figure 13 shows how the stiffness between two orthogonal directions can be modified by varying
the preload length of one of the two VSA and disregarding the other.

By using the force maps, such as the one shown in Figures 10 and 12 one can easily estimate the
applied force as a function of the actual displacement of m with respect to its equilibrium position.
Moreover, stiffness ellipsis, for specific values of spring preloads, are set out in Figure 14.
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(a) fs,r(N); Meq = (0 m, 0 m)
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Figure 10. Radial force fs,r, tangential force fs,t and radial stiffness kr with Meq in some notable points,
by assuming l0j,eq = l1j,eq = 1 m (i.e., halfway through its available stroke) and quadratic springs.



Robotics 2019, 8, 39 11 of 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

30

35

40

Figure 11. Stiffness ratio along y and x in the center of the workspace, i.e., Meq = M f = (0, 0),
as function of the ratio l0j,eq/l1j,eq, varying ∆l1j,eq, ∀j (colored lines). High ratios, i.e., increasing the
difference between stiffness along x and y, can be achieved applying short preload lengths. Therefore,
high values of forces can be obtained increasing the stiffness of the springs ak.
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Figure 12. Force components and stiffness mapped in the neighborhood of Meq with Meq considered
in the center of the workspace, i.e., Meq = (0, 0), assuming l0j,eq = 0.1 and l1j,eq = 0.5.
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Figure 13. Stiffness along x and y as function of l0j,eq assuming l1j,eq = 0 in the center of the workspace,
i.e., Meq = M f = (0, 0). It represents how stiffness varies considering only VSA0 with different preload
lengths, neglecting VSA1.
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Figure 14. Stiffness ellipsis as function of the preloads l0j,eq and l1j,eq.

4. Conclusions

This work presents a novel variable-stiffness mechanical architecture. It features an innovative
two-DoF parallel and orthogonal architecture capable of favoring isotropic behavior and tuning
stiffness ellipsis along two independent axes. The orthogonality of agonist-antagonist tendons is
ensured by a custom-made mechanical transmission. Analytical aspects and numerical simulations
have been presented to illustrate and investigate the kinetostatic characteristics of this mechanism.

The mechanism allows configuration of stiffness ellipses with axes approximately parallel to the
axes of the structure with very different components. This result is true in the center of the work area
and worsens depending on the proximity to the boundaries. This is a general result of the theory and
not limited to any particular prototype. This happens despite the use of pairs of quadratic springs,
which allow tuning of the stiffness of the mobile body if employed in one-dimensional antagonist VSA,
independently from its displacement from the equilibrium position. Asymmetries and non-linearities
of force and stiffness characteristics are increasingly evident, the closer the equilibrium point is to the
boundaries. This aspect must be considered in developing a control system of a mechatronic device
based on the presented architecture, to properly estimate the externally applied force and to control
the mechanical stiffness of the mechanism.

To exploit the potentialities of the mechanism it is convenient to add sensors to measure both the
positions of the motors and the elongations of the springs. By combining them, it is possible to measure
the actual position of the mobile body and to estimate the externally applied force. Additional limit
switches could be embedded for resetting purposes if incremental position sensors are used. The actual
resolution of the selected sensors will depend on the target actual resolution of a real device. As a
general remark, the higher the resolution and the acquisition frequency of the sensors are, the higher is
the performance of force-feedback and vibration control algorithms eventually implemented.

Being a cable-driven mechanism, its main limitation is related to the risk of slacking wires,
as in other wire-based VSAs. This aspect requires that all the tension springs and wires are enough
preloaded, in accordance with the maximum force applied to the load, which should not be greater
than the preload.

The current work refers to a general description of the mechanism to analyze it peculiarities,
independently from the actual dimensions of a possible prototype. To correctly dimension a real
device, it will be required to perform specific calculations based on the presented model.

The mechanism presented in this paper is proposed to be embedded in two-DoF planar haptic
devices, for which high mechanical backdrivability is foreseen and where a compliant tunable behavior
is required. For this reason, it is embedded within PLANarm, the prototype of a two-DoF end-effector
planar device for upper-limb neurorehabilitation (Figure 15).
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(a) Kinematics (b) CAD model

(c) Prototype

Figure 15. PLANarm prototype which exploits the variable-stiffness kinematic architecture presented
in this work and embeds cam-based non-linear springs.
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