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Abstract: This paper proposes a long-term adaptive distributed intelligent systems model which
combines an organization theory and multi-agent paradigm—ViaBots. Currently, the need for
adaptivity in autonomous intelligent systems becomes crucial due to the increase in the complexity
and diversity of the tasks that autonomous robots are employed for. To deal with the design
complexity of such systems within the ViaBots model, each part of the modeled system is designed
as an autonomous agent and the entire model, as a multi-agent system. Based on the viable
system model, which is widely used to ensure viability, (i.e., long-term autonomy of organizations),
the ViaBots model defines the necessary roles a system must fulfill to be capable to adapt both to
changes in its environment (like changes in the task) and changes within the system itself (like
availability of a particular robot). Along with static role assignments, ViaBots propose a mechanism
for role transition from one agent to another as one of the key elements of long term adaptivity.
The model has been validated in a simulated environment using an example of a conveyor system.
The simulated model enabled the multi-robot system to adapt to the quantity and characteristics of
the available robots, as well as to the changes in the parts to be processed by the system.

Keywords: multi-robot systems; adaptivity; multi-agent systems; viable systems model

1. Introduction

Today robots play an important role in modern manufacturing, service domains, and households
providing behaviors of significant complexity. The current mechatronics approach used in the design
of modern robotic systems has proven to be sufficient to automate the routine processes. However, the
requirement for robotic systems that can complete increasingly complex tasks is growing rapidly. This
need calls for a change in how such tasks are performed; in 2016, it was identified that there was a need
for novel design principles to make robots more intelligent, adaptive, and capable to collaborate [1].

The fact is that currently widespread robotic systems are capable to do only pre-programmed
tasks, thus lacking adaptivity at the level required by the trend in the modern use of robotic systems.
While many specific tasks can be indeed completed at a sufficient quality based on predetermined
instructions and a system’s configuration, such systems still require human intervention when changes
occur either in the external environment or in the system itself. A good example that illustrates this
problem is commercially-used feed pushing robots for cattle farms. Such robots are only capable of
following the pre-programmed path; if for some reason they stray off the trajectory, a human worker
must move the robot back manually [2]. Another example is fully automated production lines in
manufacturing plants; these systems can only do the work if the task does not change and the system
itself is fully functional. If something breaks down, it is not possible for the system to continue its
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operation even if factually it is capable to carry on. Moreover, usually even insignificant changes in
that manufacturing process require full manual reconfiguration to continue the production [3].

To address these issues, much effort has been put into building increasingly intelligent
autonomous systems that would be more adaptive. One of the approaches used during the last years
is neural network-based machine learning to acquire new knowledge for adapting to environmental
changes [4]. Significant success has been achieved in specific domains, such as game playing [5] and
autonomous driving [6]. Still, for now, the ability to learn general models is limited to one domain,
or to a single machine (e.g., in case of autonomous cars); neural network-based approaches cannot
explain the reasoning behind their decisions.

From a practical perspective, a conditioning control system for all possible scenarios is not
considered as a viable solution: The designer simply cannot foresee and design all the possible
situations that may occur during the lifetime of a system. It is particularly impractical and nearly
impossible in a system with a large number of components and multiple hierarchy layers, such as
a multi-robot system. Although there are certain challenges, multi-robot systems in general are
considered to have a high potential for future manufacturing plants. The main expected advantage
is possible synergy among teaming robots while a single large system might be less effective or too
costly. One highly anticipated example of the cooperation is the following: In case of malfunctioning
of a single robot within the team, other team members can rearrange the tasks among themselves to
continue production until the robot is available again. While the obvious benefits are desired by the
robotics and manufacturing communities, there are a number of challenges to develop such systems
arising from the fact that multi-robot systems can have innumerable different configurations depending
on type and number of robots within the teams. A multi-agent paradigm provides mechanisms for
standard situations, for example, Contract-Net protocol for allocating an isolated task to the best
performer [7]. Still, many other mechanisms for allocating multiple tasks, identifying the need to
reallocate tasks, etc., are necessary to ensure viability. Implementation of such capabilities requires
novel design approaches that manage this complexity.

Based on all these considerations, one can conclude that to enable the full potential of autonomous
robot-based solutions, multi-robot systems need capabilities to autonomously adapt to changes in the
external environment and system itself; this adaptivity must also be foreseen in the design phase of
the system. This is a high bar to achieve in robotic systems, yet in the system theory, in particular,
organization theory, where such systems have been researched considerably longer, this challenge
has already been tackled. A viable system model (VSM) has been developed to specify the functions
that must be implemented within human organizations to make them successful in the long term,
(i.e., viable) [8]. Human organizations and multi-robot systems (just as any system) are viewed as
similar from the system theory viewpoint. This leads to the hypothesis that system theory models that
refer to organizations can be adapted to technical systems providing benefits that have been available
in human organizations for decades.

The paper adapts the VSM to multi-robot systems in combination with novel task allocation
mechanisms among robots to enable long-term autonomy viability. The developed model has been
tested to ensure adaptivity at a case study of a conveyor system where autonomous robots must
process parts arriving via a conveyor belt. The experiments have been carried out within a simulated
environment where each robot has been simulated by an intelligent agent.

The remainder of the paper is organized as follows. Section 2 describes the related works in two
parts: First, the current approaches that can be used to develop adaptive autonomous systems, and
second, the domains where the VSM has been applied. Section 3 describes the ViaBots model and
VSM adaptation to robotic systems. Section 4 describes the application of the model to a conveyor
belt case study in a simulated environment. Section 5 analyzes the results achieved by the simulations.
Section 6 discusses the limitations of the ViaBots model and possible challenges in its implementation
for other scenarios. Section 7 concludes the paper and outlines future works.
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2. Related Works

The related research can be viewed from two perspectives: Studies and applications addressing
long-term autonomy as well as cybernetics approach of long-term autonomy as a general feature of
multi-robot systems.

Over the past decade, the research on autonomous multi-robot systems has come much closer to
a point where truly cooperative robot-robot and robot-human teams can be developed. Some early
approaches like Nerd Herds swarming or ALLIANCE subsumption architectures have been introduced,
and are well suited for focused tasks of limited complexity. These approaches, however, are not
designed for long-term autonomous operation [9,10].

To be fully autonomous, the system needs to address several specific issues. Both robot–robot
and human-robot scenarios have been extensively studied by the research community, and as a
result, certain challenges have been identified. While these include simpler, technology-related issues,
such as hardware and software malfunctioning that leads to performance drops or function failures, or
human-machine interaction failures due to improper system use [11], others are much more complex
and relate to the cognitive behavior of the system as a whole. This includes, but is not limited to,
improper priority selection in decision making, improper strategy selection, reduced trust, which
leads to mission level failures, conflicting goals of team members that leads to reduced collaboration
or even mission failures in case of human-machine scenarios [11]. In different application domains,
these challenges are addressed using different methods. For space exploration applications, NASA
has elaborated the Autonomous NanoTechnology Swarm (ANTS) concept, which is based on swarm
intelligence [12] ideas and comprises robot teams with the following main features: Self-configuring,
self-optimizing, self-healing and self-protecting [12]. The main enabling functionality in ANTS is
awareness, which maintains a dedicated control loop for knowledge updates and checking for changes,
thus comprising monitoring, recognition, assessment and learning capabilities. To ensure long-term
resilience, ANTS awareness is split into self-awareness and context-awareness [12].

Some narrow robot team applications like formations and flocking have been in research
concentrating on both environmental uncertainties, uncertain robot dynamics, and communications,
which usually are wrongly considered as available. Unfortunately, in the long-term, autonomous
operations all of the mentioned capabilities are challenging, therefore [13] proposed to use the extended
Brain Emotional Learning Based Intelligent Controller (BELBIC) algorithm. Resilient BELBIC or
R-BELBIC is based on flexible biology-inspired intelligent control, in order to achieve a long-term
operation [13]. Ref. [14] assumed instead that cooperativeness as a key element of resilience is not
guaranteed, thus compromising the whole system. Therefore, a Weighted Mean Subsequence-Reduced
(W-MSR) algorithm [15] was used to achieve consensus within the team at all times. Other applications
like logistics in [16] or even single robot resilience in [17] have been studied extensively as well.

Unfortunately, while most of the studies concentrate on specific missions or applications of robot
teams, only very few propose formal frameworks or methods of system design. One of them presented
at [18] used formal design methods, such as Event-B and PRISM, to derive a technical design of the
system through iterative steps and assessed the probability of goal achievement thereby providing
guidance for further developments.

Overall, it can be concluded that the need for long-term autonomous robotic systems has emerged
and rapidly grown over the past decade. The developments now are early and specific to narrow
applications. We see an obvious gap of general frameworks enabling a long-term resilient multi-robot
system design.

The question of long-term adaptivity and autonomy, however, is not distinctive only to technical
systems; it has been one of the key themes in system theory and organizational theory for more than
half a century. Initially, the research started with an empirical observation: Some enterprises and
organizations are persistent for long periods of time while others cease to exist rather quickly. Research
devoted to understanding this phenomenon resulted in the VSM—a framework which specifies the
characteristics and functions that ensure long term survival, (i.e., viability) [8].
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Primarily VSM has been intended to design an organization. However, it has been found that
VSM can be useful not only in organizations, but also in the technical systems area due to the properties
that are shared by organizations and technical systems (such as increasing complexity), and that it
is at least theoretically adaptable to technical systems [19]. The challenges that modern autonomous
multi-robot systems and organizations face are very similar. Both types of systems need to work
autonomously in a changing environment with a high quantity of components and increasing internal
complexity. Moreover, from the systems theory viewpoint, all systems are viewed as having a similar
structure [20], and the field of operation is merely an application. This implies that the approaches that
work cybernetically for non-technical systems, should also work in technical systems.

The two main aspects of the VSM are managing complexity and adapting to changes:
Organizations, as a rule, have a high quantity of elements, lots of internal links on the inside, and
a highly turbulent external environment on the outside [20]. This closely relates to the autonomous
multi-robot systems that have high complexity as well. The adaptivity is ensured, and structural and
functional complexity is managed and dissolved in the VSM by two main aspects: A well-defined
functional structure that involves information channels among functions and the fractal nature of
the model.

All systems, in particular, complex systems, consist of several to many abstraction levels. For the
system to be viable, each of these layers must be able to adapt and do so in a similar fashion—this
structural and functional hierarchy and repetitiveness on different hierarchy levels is called recursivity.
In the organization, recursivity is carried out via departments and the general structure of the
organization. When properly recognized, this property grants a crucial benefit—the system can
continue to work even if some part of it malfunctions or is completely lost (such level of adaptivity
characterizes living natural organisms, (i.e., human beings)). From the perspective of the design, the
recursive approach is resource-effective since the same design can be applied to different abstraction
levels enabling higher scalability [19]. In this sense, using a recursive model, such as VSM, for modeling
multi-robot systems would be highly beneficial.

In addition to its recursive nature, VSM strictly defines functional blocks and links among these blocks
thus defining the functions needed for long-term adaptivity. These functional groups are structured
in a way that allows self-determination to components of the system, yet keeps them in touch. Such
operational independence allows for a system to be less prone to fatal failures as well as gives freedom
to achieve goals in alternative ways, thus ensuring adaptivity. The management in VSM is structurally
de-centralized, (i.e., any of the system’s components can perform management functions).

Application of the VSM in organizations provides better fault-tolerance, more effective and
responsive management, and an overall structure that supports adaptivity of a system [19]. These
benefits would also be crucial for the autonomy of technical systems; we propose to use a viable
systems model [8] as a core framework for a multi-robot systems design.

The functional structure of VSM consists of five functional blocks that are often called subsystems
1, 2, 3, 4, and 5 [8]. They are however also denoted by their functionality, respectively operation,
coordination, control, intelligence, and policy [21]. These groups are defined and explained in detail
in the next section. The model also defines the links among these functional groups which are
characterized from two perspectives: The structure of the channel itself, as well as the dynamics,
(i.e., the data, information, or knowledge flowing). Stafford Beer, the author of the model, himself
has defined the structure of the channels [20]; these channels have also been classified based on the
semantics and type of flow [22].

Since the model primarily is focused on organizations, so far it has mostly been validated in
organizational structures and related areas. Some examples include information and knowledge
circulation modeling for organizations in their usual state [23] and in case of fluctuations (such as
emergency or crisis scenarios) [24,25]. The goal of the modeling can be either to prove the organization
is viable or more often, find flaws in the organization in case of missing functions or flows [21,26];
a key research area is managing complexity either in normal or crisis situations [27]. Arguably the
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most massive validation of the model was carried out by establishing a VSM-based economy in Chile
during the 1970s [28].

Increasingly often VSM is applied to the engineering (including IT) field, although mostly from the
perspective of project management [29,30]. In [31], VSM was used in the design of large and complex
IT projects with the aim to manage complexity. In general, VSM-based analysis is used in designing
information systems since slow or non-existent knowledge and information flows can be enhanced or
created with the help of information technology [23]. There has also been recent research on how VSM
could be adapted to the design of technical systems [19]. More specific technical VSM-based designs
include the design of smart distributed automation systems [32] and cyber security management [33].

It can be concluded that the idea of using a VSM for the design of complex technical systems
has been around for some years, yet the model has not been fully validated in technical systems.
We see two main reasons for that. First, the requirement for viability in technical systems has become
crucial during the past decade with the increasing complexity of the systems themselves as well as
the tasks given to the systems—to put it simply—there was no need to explore such models before
this requirement emerged. That is why the existing models that mix VSM and technical systems are
in an early development stage. Secondly, the fact that VSM is organization-oriented creates several
ambiguities and issues open to interpretation when adapting the model to technical systems. While
the adaptation of the overall organization of the system is straightforward, the content or semantics
of separate functional blocks, as well as the model dynamics, needs to be formalized and validated.
The next section explains VSM adaptation to technical domain.

3. ViaBots Model

Applying VSM for technical systems, including robotic systems, requires several interpretations
and adaptations. This section describes the ViaBots model for viable multi-robot systems’ implementation.
First, the VSM and the necessary adaptation for robotic systems is discussed, followed by the
description of the use of the intelligent agent paradigm within the model.

3.1. VSM as a Basis for Technical Systems

VSM serves as both the functional structure and the source of function’s semantic meaning.
For this reason, this subsection describes VSM in general and its subsystems in particular. While in
general VSM is meant to be used in organizational systems, there have been some efforts to apply it in
robotics; some examples of VSM function application to robotic systems are explained here.

The structure of the model can be roughly divided into operation and management. The functional
blocks of the VSM mostly contain managerial functions (subsystems 2, 3, 4, and 5) and are based on
the idea that the general structure of management is independent of the operation domain of the
system [34]. Figure 1 represents the structure of VSM.

S1 is the operation of the system and represents divisions and departments in an organization. In a
multi-robot system, depending on the abstraction level S1 functions can be carried out by individual
robots or by robot actuators [19]. There are more than one S1 in each system; S1 is the part of the
system that carries out the actual work. S1 also is a crucial part of the implementation of recursivity
since each S1 is organized based on VSM one abstraction layer lower (see Figure 1).

Each S1 has system-level local management attached. The main function of it is coordination and
it is the second subsystem, S2. S2 consists of a management unit that directly oversees each S1, and a
coordination block that coordinates all the S1 activities. In the organization, these functions are carried
out by department heads and their meetings, while in robotic systems the S2 functions are low-level
control mechanisms or communication mechanisms among several robots [19].

The S1 and S2 are needed to carry out the system’s purpose. However, it is not enough to create
a viable system. Such a system is fragile to schisms in case S2 units are unable to agree on resource
distribution. Moreover, the system cannot follow the same goal and only holds the view of the current
situation without any regard for future states. To solve these issues, senior management consisting
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of S3, S4, and S5 is introduced. S3 exerts control over S1 and S2. It compares the actual state to a
desirable state and steers the system towards its goals by allocating resources. In the organization,
there are several departments that carry out these functions, including the financial department as
well as human resources. In a multi-robot system, planning algorithms are used here [19].
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A system that carries out S1, S2, and S3 functions is a system that has a goal and ability to work
towards it in an environment with minor fluctuations. However, such a system is unable to adapt
to major changes and a turbulent external environment. To predict the future states of the external
environment and the system itself, an intelligence function, or S4, is needed.

S4 tries to predict the future by applying learning and analysis of the current situation. In the case
of an organization, S3 and S4 are often integrated. In robotic systems, this part must be carried out by
artificial intelligence techniques (e.g., distributed adaptation algorithm) [19].

Finally, a viable system needs to be able to redefine its goals and policies since otherwise,
the system is unable to adapt to drastic changes. S5, or policy function, monitors S3 and S4 as well as
the external environment to adjust the policy. In an organization, S5 is executed via shareholders while
in robotic systems a more dedicated planning algorithm might be needed [19]. Alternatively, the role
of S5 can be partially executed by the human user by defining the current goal of the system.

Among these subsystems, there are a variety of links. Based on the information carried, frequency,
and general qualities of channels these links are classified into five groups denoted by the letters a, b, c,
d, and k [22] in Figure 1.

Type a links are bidirectional links used to connect functions that have different degrees of variety.
In organizations, these are the channels via which the organization acquires the information needed
for the operations and communicates the results back to the external environment. These links have a
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specific construction: Attenuators on one end to reduce the number of states and an amplifier on the
other to amplify the effects of the system in order to have an impact. In the case of robotic systems,
these links enable interaction with the external environment via sensors and actuators by ensuring
that a robot only perceives a finite number of external environment states. It is up to the designer to
choose the appropriate physical architecture of the robots.

Type b links are specific to S2 and are used to coordinate (i.e., send content back and forth)
several units with the aim to come to consensus between independent units; these links allow for the
robots to communicate among themselves and share limited resources, including capabilities, physical
restrictions for performing one, or the other task.

Type c links are monitoring links which are directed to the observer and allow for higher systems
to make informed decisions. Type d link is an integration link—a bidirectional link between elements
of the same variety that cooperate and allow overall functioning of the system by balancing the actual
and future states. This means that the robots that fulfill functions connected with type d links need to
be in constant communication. Finally, type k links are control links that are used to give the orders;
the link itself serves as an amplifier and in the robotic system is used to pass commands.

3.2. Using a Multi-Agent System at the Logical Level of the System

Mobile robots comply with the notion of an intelligent agent that is characterized by interaction
with the environment via perceiving inputs and influencing it through the outputs. Main characteristics
of intelligent agents within multi-agent systems are autonomy, reactivity, and social capabilities. Robots
forming a multi-robot system need all of them as well. For these reasons, we are using an intelligent
agent paradigm at the design level by deeming robots as intelligent agents. Using agents at the logical
level offers several additional benefits. One of them is the possibility to use already existing interaction
mechanisms necessary to build collaborative multi-robot systems. Moreover, this enables using
agent-based simulations during the model development to prove the concept before implementing the
model on the actual multi-robot system.

Consequently, within the ViaBots model each agent represents a robot and agents, in turn, have
functions corresponding to a VSM; within this approach, all the elements of the system (robots, user
interface, any type of control algorithms that can run on hardware or software) are designed as agents.
The percepts and actions of the agents are taken directly from the VSM links and defined by the design
of the multi-agent system; the way how an agent processes the percepts and maps them to the actions,
(i.e., the internal architecture of the agents can greatly vary based on the purpose of the system and
the complexity of VSM functions). An agent-based approach at the logical level enables defining
interconnections between a VSM and technical system implementation. The overall structure of the
mappings is depicted in Figure 2. The concepts of the viable systems have been formulated in the
abstract domain which is the VSM itself. At the logical domain, the ViaBots model has been designed
based on general concepts of multi-agent systems. At this level, VSM concepts are tied to concepts
associated with the multi-agent system domain. Finally, to practically implement the ViaBots model in
a real development environment, the third mapping with concepts used at the implementation domain
is needed. Such a mapping can be performed on any of the environments for implementing simulation
or a real model. For example, Java Agent DEvelopment framework (JADE) [35] can be used to develop
a simulated environment.

First, concrete mappings to the logical domain must be performed which are based on a
multi-agent system design. Most multi-agent system design approaches include two general phases:
(1) External design, (i.e., designing a multi-agent system as a whole) and (2) internal design, (i.e., the
internal structure of individual agents) [36]. In this model, we focus on the internal design only as far
as the VSM functions go. The internal design of the agents involving implementations of the actual
tasks depends on the domain. One example of the internal design will be given within the description
of the case study.
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External design usually consists of two major parts. Firstly, the tasks that the system must do
have to be defined, grouped into conceptual structures (for example, roles), and assigned to the
agents. Secondly, the interactions must be designed, including simple message passing as well as more
complex interaction protocols.Robotics 2019, 8, x FOR PEER REVIEW 8 of 22 
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The VSM eases the external design since it already defines the requirements and thus determines
what kind of tasks and communications the system should have, as well as how these tasks should be
grouped into roles. The overall structure of the agent tasks and roles is depicted in Table 1. To define
ViaBots model based on the VSM, the functions (available in [19]) have been sorted and analyzed to
determine which functions belong to the agent functions and which belong to the interaction design.
It included the following four steps.

1. Organization-typical functions were excluded, in particular, “creation of working atmosphere”
which refers directly to the emotional and social needs of humans.

2. Functions that directly refer to the systems’ communication to other systems (such as “control
channel functions”) were assigned to interaction design, (i.e., communication).

3. The functions that are related to subsystems without the involvement of other subsystems were
mapped to tasks (such as “learning”).

4. Functions that involve communication with other subsystems, as well as specific tasks, were split
between the design of tasks and interactions (“resource relocation” serves as both, the task for S3
and as an interaction between two subsystems).

Since the VSM is structurally independent, the subsystems correspond to the roles that can be
given to any of the agents (structural units), and tasks correspond to internal design-specific functions
acquired before. Tasks are mapped straight-forward on the functions or parts of the channel (in case
of amplifier and attenuator). The only exception is operation (or S1) tasks where tasks are designed
depending on the domain of the system and thus there can be multiple tasks. The tasks are grouped
into roles according to the VSM; there are (5, n) roles since S1 again can, and most probably will, have
more than one role. The rest of the systems have one role assigned.

Finally, the role assignment to agents depends on the capabilities of agents. There are several
tasks that require specific capabilities. First, when interacting with the environment, the S1 agents
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should be able to have reduction and amplification capabilities, (i.e., sensors and effectors). S4 agents
should have environment monitoring capabilities.

Table 1. Task allocation to roles and role allocation to agents in ViaBots model.

VSM Function Task Role Agent

S1 Depends on the system (1, n) tasks depending on the
variety of the agents

(1, n) roles;
depends on the

domain
Either physical units that carry
out roles (i.e., robots), or the

ones that will run on one
computer or in one domain.
Assigned to agents having

variety reduction and
amplification capabilities

Type A Attenuators and amplifiers

Attenuate variety task and
amplify variety tasks between

external environment
and system

S2

S1 element coordination
Negotiation Task

S2

Solving conflicts of S1
S1 resource relocation

Type A Attenuators
Attenuate variety task

between Operation and
Management

S3 Resource distribution The resource distribution task

S3
Assigned to one agent

irrelevant from the already
assigned roles

S3 Interpretation of policy
decisions

Interpret high-level
instructions to lower level task

S3 Development planning
according to environment

and system states

Opinion task based on the
current situation

S4 Opinion task based on
future states

S4

Assigned to one agent
irrelevant from the already

assigned roles
Assigned to an agent having

monitoring environment
capabilities

S4 Suggestions for
safety policy Safety and resilience task

S4 Learning Learning task

S4 Management of
external contacts Search task

S4 Environment monitoring Monitoring of
environment task

S5 Representation Human-computer
interaction task

S5
Assigned to one agent

irrelevant from the already
assigned rolesS5 Investment in structure

and policy formation Policy task

It is also crucial to note, that in the VSM roles are distributed dynamically and the functioning
system’s structure can differ from the initial system’s configuration.

Depending on the function and channel it supports, the following interaction types were identified
(overview in Table 2):

• Type a and Type c: Channels that transfer information, in this case, a simple message is sent.
In the case when variety amplification is needed, a broadcast message is sent.

• Type k channels are control flows where feedback is required. For this reason, an inform type
message is sent and a mandatory confirmation must be sent back.

• Type b and type d channels include cooperation and negotiation that include complex interaction
protocols that must be designed separately.

The VSM provides guidelines on how a VSM-based system should be designed, however, there
are several functions open for interpretation; these questions (such as the content of the functions) are
described in the next subsection.
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Table 2. The interaction design in ViaBots model.

In VSM
Function MAS Interaction Type

System Channel
S2

Type b
S1 element coordination Coordination protocol

S2 Solving conflicts of S1 Negotiation protocol
S2 S1 resource relocation Resource negotiation protocol

S2 Type k Control channel function Sent once,
message-received response

S3
Type k Control and monitoring over S1

and S2

Sent once, message-received
response

Type c Inform message

S3 and S4 Type d
Development planning

according to environment and
system states

Negotiation protocol

S4 Type c Monitoring of the system itself Inform message

S5
Type c Monitoring of cooperation

of S3 and S4
Inform message

Type k Sent once,
message-received response

Channel Type a Amplify variety between
operation and management Broadcast

3.3. Agent-Based Model for ViaBots

This section outlines two contributions for the implementation of the model, namely suggestions
on how the tasks can be executed within the multi-agent system and the detailed ViaBots model
ensuring adaptation, which is the central part in developing an adaptive system.

For each of the systems S1 to S5 defined in the VSM, a set of functions and some recommendations
on how they should be implemented are given; yet task formalization for a technical system is
vague in the VSM. Based on the tasks listed in Table 1, Table 3 provides a minimal list of tasks to
implement adaptivity in autonomous systems, as well as suggestions on how it should be done (last
column). All the functions mentioned in VSM are included in this minimal set except “management of
external contacts” since the function is needed only if there are multiple autonomous systems in the
external environment.

Overall, the ViaBots model functions are further implemented as described and shown in Figure 3.
Operational units (i.e., robots or agents carrying out S1 functions) are capable to execute several
tasks. Upon receiving an order from S2, they reconfigure to execute tasks of the requested type.
Operational units also perceive the environment and send relevant information about current tasks to
the corresponding S2 for aggregation.

Table 3. The implementation of tasks in a ViaBots model.

In VSM Task Implemented as
S1 (1, n) tasks depending on the variety of the agents Various tasks (denoted as Task A, Task B, Task C)

Type A Attenuate variety task and amplify variety tasks
between EE and system Inputs and outputs

S2 Negotiation task Negotiating among S2 units based on the control value

Type A Attenuate variety task between operation and
management Data collection

S3 The resource distribution task Calculating control value

S3 Interpret high-level instructions to lower level
task Using the agents the user has created

S3 Opinion task based on the current situation Weights of the calculated distribution
S4 Opinion task based on future states Weights of the calculated distribution

S4 Safety and resilience task Calculating the overall resilience parameters, such as
battery level

S4 Learning task The period sequence which S4 learns

S4 Monitoring of environment task Due to the simplicity of the environment acquired
through S1 and S2

S5 HCI task UI
S5 Policy task UI
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S2 straightforwardly implements operational units’ exchange mechanisms, that allow the diverse
operational units to be used at the tasks where they are the most productive. The principle for the S2
negotiations is to respond to requests and give away the operational units that are relatively ineffective
at their current task. The operational unit exchange is based on a comparison of control values received
from the control subsystem, S3. If S2 has positive control value, meaning that task processing power
of the corresponding type of operational unit is insufficient, it sends requests to other S2. When S2
receives such a request, it calculates if the commitment of its current least productive operational unit
would be valid. The valid commitment of an operational unit means that after fulfilling request the
source S2 would stay with a lower control value than receiver S2.

S2 aggregates information from subordinate operational units and provides a control subsystem
with information of processing power available for tasks of the corresponding type, and number of
available tasks.

S3 collects information from all the S2, to get an overview of the current situation. This way,
S3 gets information on a number of tasks of each type available for execution and the total amount of
processing power the system has. Using this information, S3 calculates desired power for processing
tasks of each type currently available for execution. These values are combined with values of desired
power for processing the predicted number of tasks by using a weighted sum. S3 then calculates
control values for each of the S2 (i.e., each task type).

S3 provides intelligence subsystem S4 with current information on the system’s state. S4 stores
this information and uses it to update its model of the world. By using this model, S4 predicts a
possible number of tasks of each type and returns this information to S3.

In the case of technical systems, the mission of the system is human-defined. Also, the available
resource definition and other global configuration in many cases are done by the user. The S5 is also the
most complex; to balance the complexity of implementation and system’s ability to show adaptation
capabilities, policy level decisions can be reduced to determining the number of operational units and
thus are implemented as control elements in the user interface of the model. This means that in the
current version of the model, the user fulfills the functions of the S5.
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4. Case Study

We used a conveyor as a use case for the ViaBots model simulation and testing. Since the production
lines involving multiple robots doing various tasks are the type of systems where adaptivity is crucial
to achieve higher efficiency and avoid unnecessary downtime, a simple production line was chosen as
a case study within this research. We used agent-based modeling as a core technique for simulation
scenario implementation. The roles of the worker-robots and management within the simulated
environment are fulfilled by software agents which enables one to one mapping between the agents
used during the design and the agent-based model.

During the experiments, our goal was to validate the role allocation mechanisms over time to
minimize the conveyor idle time. The goal of this implementation was not to achieve the best possible
performance of the production line using given agents but to show how different aspects of the
proposed model influences the overall performance of the chosen system.

4.1. Problem Description

The system is based on a conveyor belt that supplies parts to the worker-robots. Each part must
be processed by one robot. Each robot can process only one part at a time. The parts are different,
each type of them can appear on the conveyor belt with a changing probability. Robots are different in
the sense of how much time each of them needs to process a particular part. Moreover, to change the
task that the robot is doing (change the type of parts that it is processing), it must change the tools,
which takes some time. Whenever there is no robot that can process the part, and the part has reached
the end of the conveyor, the whole conveyor system must be stopped until there is a robot that can
process it. The model of the system is illustrated in Figure 4. The conveyor carrying incoming parts
is considered the environment of the simulated production line because our production line has no
direct control over the rate and distribution of incoming parts. Consequently, there should be some
regulation/control mechanism to keep operational units effectively distributed.
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The production line must adapt to the following variables of the environment and the system itself:

1. The distribution of the incoming parts is changing over time due to varying part distribution
on time. To simulate a change in the environment, the simulation process includes four periods
with different part distributions. This model simulates four imaginary seasonal changes in the
processes and the necessity to adapt to them.

2. The number and types of robots within the system might change using availability distribution
of the robots.

The adaptation mechanisms must consider differences of the robots in terms of their capabilities.
In general, it should be known how much time (and other resources, if applicable) each robot needs
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to do a particular task (process the corresponding part). The system is using the ViaBots model to
determine which agent (worker) is taking which role. An example of role allocation between agents is
given in Figure 5. Gray color means that the agent is not executing a particular role at the moment
while other colors indicate the opposite.
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The main performance indicator we use during this case study is the idle time of the conveyor relative
to the whole simulation time, which indicates how well the system adapts to the changing operating
conditions. The system must minimize the idle time thereby maximizing production performance.

4.2. Implementation

The implementation of the conveyor system working in a simulated environment is based on
the ViaBots model described in Section 2. The system has been implemented with a purpose to
prove the concept of the ViaBots model for multi-robot systems. This section first describes the
implemented simulation environment and then outlines how the functions defined in the ViaBots
model are implemented in case of such a multi-robot system.

4.2.1. Simulation Environment

The system has been implemented in a multi-agent system development platform, JADE [35].
An agent development platform was chosen for the implementation because it had built-in mechanisms
for agent interaction and operation. The simulation was implemented based on ticks using JADE
TickerBehavior that has a cyclic nature of execution. TickerBehavior class has the timer that can be
set to the same frequency as a master simulation timer, thus achieving synchronous iteration flow
of components running in separate threads. Consequently, each ViaBots model role is implemented
as a subclass of TickerBehaviour and all functionality associated with the particular subsystem is
executed in these classes. JADE allows each behavior to be added for execution to an arbitrary agent,
which is useful since VSM defines the functionality and not the physical details of the unit carrying it
out. Physical aspects of the simulated robots are represented by a JADE agent subclass that contains
variables describing agents’ capabilities to carry out the roles. At each point, the tasks that an agent is
executing, are defined by the behaviors that are added to the instance of the agent.

Communication between subsystems defined by the ViaBots model was implemented using JADE
message passing mechanism. Topic-based broadcasting was mostly used, where behaviors subscribe
to topics they are concerned with. This approach allows virtually direct communication between
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behaviors, avoiding direct addressing of agents that execute them. Therefore, no centralized address
catalog that maps ViaBots model roles to agents executing them is needed, at least at a logical level.

The average part arrival rate is set by the parameter that describes part arrival probability at
each iteration. If a random number drawn from the uniform distribution is less than the given part
arrival rate, then the part is generated. The type of generated part is determined in a similar way.
The parts distribution is summed as the series of intervals, where the length of each interval is equal
to a percentage of one part type from a given distribution. Then a random number is drawn from a
uniform distribution and a part of the particular type is generated according to the interval where the
random number fits.

The user interface of the implemented simulator is given in Figure 6. The simulator has the following
functionality. The user can perform the following functions of S5 and set the following parameters:

• Define the types of parts and the probabilities of each part to be generated. The simulation is
divided into four periods simulating seasons and the probabilities of each part can be defined
separately for each period;

• The number of workplaces along the conveyor enabling the simulation of the situation when the
length of the conveyor is not sufficient for all of the agents to work at the same time;

• Define the robots (agents) included in the simulation. The following parameters can be defined
for each agent:

# The average speed of processing parts of each type,
# The power consumption of processing parts of each type.
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During the simulation, the main window of the simulation environment showed three lists: First
represented incoming parts, second—the robots processing parts at the current time, third—finished
parts. There were also control elements for creating robots, regulating simulation speed, and starting
or stopping the simulation.

Various parameters concerning overall systems performance and parameters of the management
subsystems were displayed at the lower part of the simulation window. Parts were represented by their
number, type, time of arrival, processing start time, and processing state. Robots were represented by
their name, list of roles they currently were carrying out, type of part they were configured to process,
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and part number. Part processing speeds, battery level, and general state were shown for each unit
as well.

4.2.2. VSM Function Implementation

In the case of the production line, the S1 functions are related to the part processing. The design
guidelines allow free interpretation of the number and type of roles and agents associated with S1.
For sake of simplicity, there were three different part types possible in this simulation, namely, A, B
and C. In this simulation, each agent can carry out S1 function and can be configured to process any
of the three types of parts, although just one at a time and thus at any time belongs to just one of
the S1 instances. For parts of each type, an agent has a particular speed (% per iteration) and power
consumption (Watts). Each agent in the case of S1 represents a robot. This approach means that robots
are the resources over which S1 systems compete. Any of the agents can be ordered to reconfigure
itself to process another part type, but it takes a defined number of iterations for an agent to be ready
to process it. On average a reconfiguration time equal to the time of processing three parts is used
throughout tests.

As simulated robots in this production line scenario are considered mobile, each agent also has a
battery, that has its capacity. The battery is discharged at each iteration by power consumption that the
agent has at that particular moment. Total power consumption for each agent is a sum of the required
power for all functions that the agent is carrying out at that moment. When the battery is discharged
to a critical level, agent ceases part processing and recharges its battery, but it continues to carry out
any management functions it has.

Attenuation and amplification tasks are fulfilled by agent’s ability to process incoming parts and
perceive these parts.

There is one main task for S2 and that is the ability to negotiate; it is associated with several
protocols and control channel function as well. In our simulation environment, it is implemented as
follows. The distribution of S1 instances over the agents is done by S2, based on control data provided
by control subsystem S3. There is one S2 function for each S1 instance (i.e., part type). According to
the ViaBots model, each S2 functionality (implemented as behavior) is concerned with a particular
type of task. Within the use case of the conveyor system, it is part processing of their corresponding
type. S2 possesses information about how many operational units at the moment are available to
process parts of the corresponding type. S2 adds up part processing speeds of every operational
unit available for processing parts of a particular type to calculate the total processing speed for that
part type. This information is passed further to control subsystem S3; this filters the information
necessary for S3 functioning and performs the attenuator task as well as control channel function.
S2 units negotiate based on the information provided by S3 using the following mechanism: If S2 lacks
resources, it requests an agent from all the other S2. When S2 receives a request, it calculates if it can
give one of its operational units while remaining in a better position than S2 which made the request.
Such an approach ensures that parts will be processed if there is at least one operational unit left.

S3, on the other hand, is concerned with the whole simulated production line performance and
provides each S2 with the control value for parts of the corresponding type. According to the ViaBots
model, there are three tasks in the S3. Within the conveyor case study, the resource distribution is
achieved via the control value which is a difference of desired and available part processing speeds.
Desired part processing speed would allow achieving continuous operation of the production line.
Positive control value means, that there are not enough operational units for processing parts of a
particular type. S2 use this control value provided by control subsystem S3 to exchange available
resources (i.e., operational units with other S2 subsystems). S3 interprets policy decisions by following
the user’s choices.

Control subsystem S3 calculates desired speeds as a weighted sum of current required speeds and
predicted speeds. Intelligence subsystem S4 provides S3 with predicted incoming part distributions
(rates), and current part distribution on the conveyor is perceived from the environment (via S1 and
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S2). Desired part processing speeds are calculated by multiplying part count of each type currently
on the conveyor by part arrival rate, because parts should be processed at least at the rate they are
arriving, to keep the production line from stopping. This enables the interaction of S3 and S4.

The main goal of S4 is to predict changes in the environment to enable adaptation to the upcoming
new situations. In this production line scenario, information of current and upcoming period part
arrival rates keeps operational units from unnecessary tool changes, since S3 has information only
about current distribution of parts on the line, which may not represent the average distribution.
S4 prediction of the distribution of the next period at the end of the current period is also used by S3 to
make operational units gradually change their tools so that when the next part distribution period
starts, there already are operational units ready to process parts at a different rate corresponding to
the new period. For the sake of simplicity and transparency of this simulation, S4 uses the same part
distribution values as are used for part generation. This approach allows evaluating the efficiency of
ViaBots model if the prediction is impeccably precise.

5. Results

This section describes the experiments done with the simulated multi-robot conveyor system.
The following experiments were executed to validate the implemented model. Firstly, the repeatability
of the experiments was analyzed to determine what were the differences between different simulations
with the same parameters since the environment by its nature is stochastic. Secondly, the importance
of prediction and current observations of the part distribution probabilities was analyzed. The model
uses both, the observed values and predicted ones, but the weights for both distributions must be
determined experimentally. Thirdly, the system’s performance depending on the number of the agents
processing the parts was analyzed to choose the number of agents for the analysis of the ViaBots
model’s efficiency since the results may differ in case of inadequately large or small number of agents.
Finally, the performance of the system with different active parts of ViaBot model was analyzed to
validate the proposed model.

In all experiments, a battery capacity of 100 Wh was used. Power measurement unit W used in
this simulation corresponds to Watt in the SI system, with the exception that time units were iterations.
The battery iwa charged at constant 5 W. Part processing of types A, B and C consumed 2, 3, and 4 W
(per iteration), respectively. Execution of any additional management role consumed one extra Watt.

Also, in all experiments, the length of the conveyor belt was equal to the number of agents, so that
all the robots, at least in the simulated environment, were able to work simultaneously. The pattern of
periods with distinctive average distributions of incoming part types is the same for all experiments
and is shown at the top of Figure 7.

5.1. Repeatability of the Experiments

Due to the stochastic nature of previously described simulation of ViaBot model production line
management, several simulation runs were done to determine how different the simulation results
can be with the same parameters. Four typical runs of the simulation are given in Figure 7. Twelve
identical robots were used in this experiment. Processing speeds for parts were set as a percentage of
the total part processing time per iteration (9% for part type A, 8% for part type B, and 7% for part
type C). The results differed up to 10% between different runs. Therefore, the mean values of four
different runs were obtained for evaluation of systems performance within further experiments.
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5.2. The Balance between Prediction and Observations

In this evaluation, the balance between the importance of the prediction and the observation in
terms of weights to be used by S3 was determined empirically. Generally, optimal weights for predicted
and observed incoming part rates would depend on the accuracy of prediction. To avoid analysis of
how the prediction accuracy influenced the results, during this study we used the advantage of the
simulated environment which allowed exploiting prediction with absolute accuracy. Other factors
that influenced these weights were systems characteristics, (e.g., mechanisms for operational unit
exchange between S2). The idle time was measured with changing weight distribution. As a result,
the dependency shown in Figure 8 was obtained. The results show that the most efficient output
of the production line for this specific setup was achieved using the weight of prediction between
0.6 and 0.8. Results were obtained by taking the average value of four consecutive simulation runs
at 1900th iteration after four periods of different average distributions of incoming parts. Again,
12 identical robots were used where processing speeds for parts A, B, and C were 9%, 8%, and 7% per
iteration, respectively.
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The fact was that the use of large prediction weight even with real prediction numbers caused the
system to ignore the actual distribution of incoming parts on the belt. Consequently, S3 used prediction
with a weight of 0.7 for further calculations of the control value.

5.3. Number of Agents

The main factor that influenced the performance of the system was a number of operational units
(agents in this case). To compare various aspects of the ViaBots model, the quantity of operational units
should not oversaturate the system, since the main goal of management is to make the system viable
with limited resources. Consequently, management quality would be visible best when the number of
operational units is limited. Figure 9 shows the dependency of the system’s performance (the time,
when the system is idle, was measured again) from the number of agents available in the system. As in
the previous experiment, identical robots were used where processing speeds for parts A, B, and C
were, respectively, 9%, 8%, and 7% per iteration. Based on these experiments, it was determined that
at 15 agents effective use of any agent can still significantly change the performance of the system,
therefore visibly indicating adaptivity.
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5.4. The Efficiency of the ViaBots Model

Finally, the ViaBots model has been validated based on the simulated production line by comparing
different levels of ViaBots model engagement using previously acquired parameters. Four different
usage scenarios were analyzed:

1. Normal operation, where ViaBots model is fully applied;
2. Operation without prediction updates from S4;
3. Operation without control value updates from S3;
4. Independent operation of processing units.

Since S5 functions were partially limited by specific implementation structure (i.e., system is
configured by the user and the goal of the conveyor system does not change), the implication of
S5 subsystem functionality was not considered in this evaluation and only use of systems S2–S4
was validated.

Four periods of distinctive distribution of incoming parts formed environment fluctuations to
which a group of 15 operational units of three different ability profiles adapts. Each ability profile had
a speed of 0.09 parts per iteration for two types of parts and 0.03 parts per iteration for one remaining
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type of parts. That means that there were five robots with speeds 3%, 9%, and 9% per iteration for
parts A, B, and C, five robots with speeds 9%, 3%, and 9% per iteration, and another five robots with
speeds 9%, 9%, and 3% per iteration, respectively.

When S4 was suppressed, production line continued to operate using prediction data (parts
distribution) that may have been be outdated and therefore would not correspond to the actual part
arrival rate (either current or future). S3 subsystem still calculated somewhat valid control values,
because it also used actual data with a weight of 0.3. The loss in performance after 4 distinct periods
was 14 % as shown by the red line in Figure 10.
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Suppression of control function S3 led to even less efficiency. When the agent that was carrying
out S3 role was paused, local management subsystems S2 stayed with the fixed control value, as no
updates were received. That can lead even to a complete stop of part processing if incoming part
distribution varies substantially. Nevertheless, the distribution of operational units is based on their
performance and matches the distribution of incoming parts of the first period. Furthermore, fixed
control values prohibit any operational unit transfer thus reducing the loss of part processing power
due to the reconfiguration time. However, inability to adapt to the changing environment due to a lack
of management overshadows such benefits as shown by the yellow line in Figure 10, leading to further
loss in performance by 40% compared to a case of fully engaged ViaBots model.

Finally, if local management subsystems S2 had selected operational units regardless of their
performance and ceased further collaboration, then it could be considered that there was no ViaBots
model applied at all. In this situation, operational units were not managed. The resources were
distributed according to the distribution of incoming parts in the first period without taking into
account their ability to process the parts of a particular type. The green graph shows such a scenario,
where the system’s idle time increased by 90% compared to the performance of a fully applied
ViaBots model.

6. Discussion

The ViaBots model for long-term adaptivity in multi-robot systems is general, and the proposed
algorithms can be applied to different types of multi-robot systems. The specific part that must be
developed for each application of the model is the evaluation mechanism determining the system’s
capabilities to deal with each particular type of task. The mechanism implemented in the case study is
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limited to the systems where each robot at a particular moment can have tools to do only one task.
More complicated mechanisms are necessary for systems where robots are capable to do multiple tasks
with the same configuration.

The conveyor case study included the typical task allocation challenges for production systems
and multi-robot systems overall. The experiments with the implemented simulator showed that the
ViaBots model enabled the system to adapt both to the changes in the environment (the tasks that
robots must do), as well as to the changes in the system itself, in particular, in the set of robots available.
These first results can be interpreted as follows: The ViaBots model is applicable to the systems that
need to redistribute tasks as a reaction to the changes in the system or environment itself. At the same
time, it is important to notice, that the results outlined in the paper are acquired at one specific setup
that is meant to correspond to some possible real-life scenario and could vary over different incoming
part rates and operational unit parameters. The actual efficiency of the model for other scenarios can
vary even more depending on the quality of implemented functions, for instance, on the accuracy of
S4 function, or the prediction model as well as depending on the nature of the system. To evaluate the
efficiency of the model further experiments with other systems must be done.

Another limitation of the current implementation was the fact that the S5 subsystem was
completely implemented by a human user. The system is not capable to autonomously change
its goals instead they can be changed by the user. This fully complies with the needs of production
systems where the change of the top-level goal, for example, producing one type of product, is up to a
user. Still, in missions where more long-term autonomy is necessary, the system might need also the
capabilities to change the top-level goal.

7. Conclusions

The main contribution of the paper is the ViaBots model that combines VSM with the multi-agent
paradigm to ensure long-term adaptivity or viability in technical systems. The proposed model
is unique in the sense that it applies principles from the organization theory to technical systems.
The model was validated on a typical production line scenario where multiple robots are working
on the same conveyor and processing parts. The adaptation within the production line scenario is
implemented as a capability to reconfigure the system or reallocate tasks among robots in case the
tasks change, or any robot is not available anymore (charging, breakdown), or a new robot is added to
the system. Application of every system, starting from S2 to S4 gave additional adaptation capabilities
and as a result increased the performance of the system. This proves that the functions of all these
subsystems are adequately defined and multi-robot systems can benefit from each of them. In total,
if the implementation of the ViaBots model is removed from the system, the time when the system is in
the idle state increases almost twice (by 90%) in a scenario when the task distributions have significant
seasonal change. This proves that efficiency of autonomous systems can be improved by applying
principles from system theory to make them adaptive.

At the moment, validation was done only in a simulated environment. Despite the fact that the
first results are promising, further validation of multi-robot systems is necessary. This defines the main
direction of future works. The model will be validated on two different multi-robot systems. First,
it will be implemented on heterogeneous robots with manipulators picking parts from a conveyor
belt. This will repeat the current experiments with a conveyor system in a real environment. Second,
a scenario with multiple small-scale mobile robots exploring the environment and collectively moving
objects in a dynamic environment will be implemented. Later, more intelligent behavior of S4, as well
as a partial implementation of S5, based on machine learning or other artificial intelligence methods
will further improve the model. Moreover, the use of VSM for other technical systems should be
investigated as well.
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