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Abstract: Autonomous underwater vehicles (AUVs) have changed the way marine environment is
surveyed, monitored and mapped. Autonomous underwater vehicles have a wide range of applications
in research, military, and commercial settings. AUVs not only perform a given task but also adapt
to changes in the environment, e.g., sudden side currents, downdrafts, and other effects which are
extremely unpredictable. To navigate properly and allow simultaneous localisation and mapping
(SLAM) algorithms to be used, these effects need to be detected. With current navigation systems,
these disturbances in the water flow are not measured directly. Only the indirect effects are observed.
It is proposed to detect the disturbances directly by placing pressure sensors on the surface of the
AUV and processing the pressure data obtained. Within this study, the applicability of different
learning methods for determining flow parameters of a surrounding fluid from pressure on an AUV
body are tested. This is based on CFD simulations using pressure data from specified points on the
surface of the AUV. It is shown that support vector machines are most suitable for the given task and
yield excellent results.

Keywords: navigation; learning algorithms; computational fluid dynamics; autonomous
underwater vehicles

1. Autonomous Underwater Vehicles

1.1. Introduction

Autonomous underwater vehicles (AUVs) are a sub-group of unmanned undersea vehicles
(UUVs), which have changed the way marine environment is surveyed, monitored, and mapped.
Autonomous underwater vehicles have a wide range of applications in research, military,
and commercial settings. Especially, the oil and gas industry shows great interest in using autonomous
underwater vehicles for finding new underwater oil fields and for pipeline inspection [1]. They are
utilised when the use of manned undersea vehicles is too dangerous, impossible, or too expensive [2].
In general, AUVs not only perform a given task but also adapt to changes in the environment [3].
In the underwater surroundings, typical influences are sudden side currents, downdrafts, and other
effects, which are extremely unpredictable. To navigate properly, these effects need to be detected.

1.2. Underwater Navigation

Typically, an AUV uses dead reckoning, e.g., Doppler velocity log [4], and some form of inertial
measurement unit (IMU) to obtain its current position. High-end IMUs with fibre optic gyroscope
have a sensor drift of about 10−3 ◦/h (recently developed instruments show a sensor drift that is
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even as low as 10−4 ◦/h [5]) which translates into a positional error of less than 100 m per hour [6].
Further technologies in use are sonars, pressure sensors, compasses, magnetometers, and cameras [5].
Sonars currently have an along-track resolution of 0.4 ◦ to 2.0◦ and a cross-track resolution of 5 cm to
10 cm [7]. Pressure sensors are only used to determine the underwater depth at the moment [8] with
an accuracy of about 10 cm. Compasses (accuracy 1◦ to 2 ◦ [5]) and magnetometers require a good
knowledge of the local magnetic field. Cameras are quite accurate but only work close to the sea floor.
An extensive review on AUV navigation and localisation can be found in Paull et al. [5].

In the past years, there has also been research towards the use of multiple pressure sensors for
underwater navigation [9]. Inspired by the lateral-line of fish, pressure sensors are placed along lines
on the sides of underwater robots to register obstacles in the environment [10,11]. Recently, it has been
demonstrated that robots can successfully navigate along walls making use of pressure variations due
to the wall effect [12]. Wall detection with differential pressure sensors (DPS) was also achieved by Xu
and Mohseni [13]. Pressure sensors have the advantage of requiring almost no power to operate and
can be placed easily on the surface of existing AUVs [14,15].

A different approach with multiple pressure sensors was taken by Shang et al. [8] who used an
array constituting four pressure sensors. The four sensors are placed on the AUV’s surface at the top,
bottom, and the two sides at the centroid. This allows the estimation of the attitude of the AUV with
an extended Kalman filter (EKF).

Various systems are usually combined by means of sensor fusion algorithms [16,17]. This way the
position of the AUV can be determined quite accurately.

1.3. Determination of Sea Current

Except for the pressure sensors, however, the disturbances in the water flow are not measured
using the systems mentioned above. Only the indirect effects, e.g., a change in acceleration, can be observed.

Computational fluid dynamics (CFD) was already used by Suzuki et al. [18] to obtain
hydrodynamic force coefficients of an AUV. However, a reverse solution allowing the determination
of the flow parameters from the hydrodynamic force coefficients was not available at this point.
Li et al. [19] established that it is in principle possible to determine the attitude of an AUV from
pressure data with the help of a CFD-based hydrodynamic model.

Bayat et al. [20] addressed the problem of localising an AUV under the influence of unknown
currents. The unknown currents are assumed to be constant. It is shown that the system becomes
observable under the influence of these currents once depth measurements are available, hence making
a compensation possible in this case.

In [21], an onboard acoustic Doppler current profiler (ADCP) is used to measure the currents
in the vicinity of an AUV. The method is shown to be very accurate. However, due to the sensor’s
capabilities, not the actual current experienced by the AUV is determined, but the current at a distance
of a few meters.

Osborn et al. [22] applied an EKF to estimate the north and east component of the current. It is
shown that the estimation is accurate in simulations even when the AUV changes direction.

An unscented Kalman filter (UKF) was used by Allotta et al. [23] to estimate the current
experienced by an AUV which is assumed to be uniform. The current estimation is based on an
extended model of the vehicle dynamics including sea current. The estimate is then obtained by
regarding the available data from all sensors.

Pressure sensors have also been applied successfully to detect currents. Kottapalli et al. [15] used
the artificial lateral-lines mentioned above to determine the velocity of an oncoming flow. Gao and
Triantafyllou [24] obtained the angle of attack and its change of an oncoming flow through the pressure
information of artificial lateral-lines.

As an alternative, differential pressure sensors have been shown to allow the extraction of the flow
velocity in changing flows with high accuracy [25,26]. As in [15], the approach is limited to oncoming
flow. However, it allows for different angles of attack as in [24].
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1.4. Motivation and Objective

It is of interest to detect the disturbances directly through measurements in order to increase the
accuracy and reliability of the navigation systems of an AUV. This is essential in order to allow the
use of simultaneous localisation and mapping (SLAM) algorithms. These measurements should be
independent of the availability of depth information, as in [20].

As the disturbances yield an instantaneous change of the pressure that is exerted on the surface
of the AUV’s body, it is proposed to place sensors at specific points on the AUV’s body to measure
the pressure at these positions. The proposed configuration is based on artificial lateral-lines with
additional pressure sensors at the top and bottom of the AUV. Details are given in Section 3.3.
In contrast to Williams et al. [21], this would provide information on the actual disturbances
experienced by the AUV. Furthermore, an ADCP is a lot more expensive than several pressure sensors,
possibly reducing the sensor costs significantly.

In this study, how machine learning can be used to obtain flow parameters of the surrounding
fluid from pressure data and which machine learning algorithms are appropriate for this task were
investigated. Determining flow parameters from pressure is the reverse of the standard method (as
mentioned above with regard to Suzuki et al. [18]) where the flow parameters are known and the
pressure distribution is calculated.

It was already shown that this reversal is possible for the velocity and aspect angle of an oncoming
flow. However, for a flow from any direction, this has not been done to our knowledge. It is believed
that machine learning methods are particularly suitable for this task as the relation between pressure
and flow velocity is quite complex for a general flow situation.

This approach could for instance be used to supplement the sensor data in [23], making it
more robust. To this end, an extensive number of different flow situations are simulated applying
CFD, the pressure distribution and the flow parameters are obtained, and analysed using different
learning algorithms.

2. Machine Learning

In this section, the machine learning procedures used in this study are briefly introduced. For more
details, it is recommended to follow the references provided.

2.1. Artificial Neural Network (ANN)

Artificial neural networks are information processing algorithms that are modelled after the way
brains work [27]. The first formulations of this method were already made in 1943 by McCulloch and
Pitts [28].

Artificial neural networks are widely used in marine contexts. They can, for instance, be applied to
minimise the electric field in current cathodic protection systems [29]. In the underwater environment,
artificial neural networks are often tasked with the improvement and analysis of underwater imagery.
Examples include the reconstruction of low light images [30] and the classification of sonar images [31].
For underwater robots important uses of artificial neural networks are navigation and control. Current
examples are the localisation of an underwater robot considering unmodelled noise [32] and the target
tracking of underactuated AUVs [33].

Neural networks consist of strongly interconnected nodes called neurons. These neurons are
organised as layers: one input layer, one output layer, and one or more hidden layers in-between.
The number of nodes in the input and output layer is given due to the nature of the data being
processed. Within this work, there are three nodes in the output layer to represent the translational
velocities along the three axes of a Cartesian coordinate system. The number of nodes in the input layer
depends on the number of points on the AUV at which the surface pressure is obtained. The number
of nodes in the hidden layers as well as the number of hidden layers is variable [34].
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Data xi that are passed from one node i to the next node j are weighted (weight wij, can be positive
or negative). In addition, every node has a bias bj, which can also be positive or negative. The input vj
to node j is therefore [35]

vj =
n

∑
i=1

wijxi + bj (1)

The output yj of node j is then some function ϕ of the input vj. ϕ is called the activation function
of the artificial neuron. There are essentially two fundamental types of activation functions [35]. On the
one hand, threshold functions may be used where the neuron is either activated or not. On the other
hand, it may be desirable to have a smooth transition between the two states “node not active” and
“node active”. In this case, sigmoid functions are used.

With this method, it is possible to obtain patterns and information from complex data. Further
advantages of artificial neural networks are adaptive learning, self-organisation, real time operation,
and fault tolerance [27].

Teaching neural networks is done by forming or removing connections, changing the weights,
changing the threshold of neurons, and adding or removing neurons in order to minimise errors
for a given validation set. However, in many cases, the overall shape of the neural network is fixed
and only the weights and thresholds are used for learning [34]. A common method for training is
the back-propagation algorithm which is also used in this study. Hereby, the error derivative of the
weights, i.e., the change of error depending on the change of weight, is determined backwards by
starting with the total error at the output layer and the moving through the network towards the input
layer [36]. This is done repeatedly until either the rate of change of the errors or the error derivatives
become sufficiently small.

In this study, up to 250 learning cycles are used with a learning rate of 0.1 and a momentum of 0.2
for a given neuron configuration. The number of neurons was varied between p/2 and p (where p is
the number of inputs) per layer with the number of layers between 1 and 4.

2.2. k-Nearest Neighbour (KNN)

k-nearest neighbour is a non-parametric method for classification and regression. k-nearest
neighbour is applied in medical contexts, e.g., for the classifications of electroencephalogram
signals [37]. They also have a range of applications in computer vision for the classification of
images and objects therein [38,39].

The output (classification or property value) for a given input is obtained from known input–output
relations where the inputs are similar and close to, i.e., “in the neighbourhood of”, the sample point in
question. Classification is then done by majority voting and in case of a property value the average of
the outputs of the neighbouring inputs is taken [40]. In the case of this work, data points are situated
in an n-dimensional space, where n is the number of points on the AUV at which the surface pressure
is obtained.

Usually, the contributions of the neighbouring data points are weighted depending on the distance
so that data points closer to the sample point have a stronger influence on the output. Typically, a type
of exponential expression is used. Thus, if the neighbourhood k contains data points yi with weights
wij with respect to the sample point yj, the value of the sample point can be obtained from [41]

yj =
k

∑
i=1

wijyi (2)

with

wij =
e−dij

k
∑

i=1
e−dij

(3)
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where dij is the distance of data point yi frTurbulence Modeling Validation, Testing, and Development.
he sample point yj.

The result depends on the choice of the neighbourhood, i.e., up to what distance or how many
neighbours are taken into account. In addition, the type of distance measure (Euclidean, Manhattan,
etc.) has some influence [41]. Teaching a k-nearest neighbour system is usually done by finding the
size of the neighbourhood k with the lowest error by cross-validation [41].

2.3. Support Vector Machine (SVM)

Support vector machines are non-probabilistic linear classifiers. However, they can also be used
for regression [42]. The fundamental idea is that datasets that belong to different classes are linearly
separable by hyperplanes. If the data cannot be separated by linear hyperplanes, it has to be mapped
into a higher dimensional (embedding) space such that it becomes linearly separable [43].

Support vector machines are widely applied in medical research for classification of clinical
pictures. Examples would be electroencephalogram signal classifications [44]—as for KNN—or
subtyping of cancer [45]. However, they are also used in robotics for path planning [46] and for the
analysis of underwater images [47].

Of all the hyperplanes in a support vector machine that separate the datasets, one hyperplane
has to be chosen such that the margin separating different classes is a maximum. Those data points
closest to the boundary and which are required to describe the hyperplane exactly are called support
vectors. Hence, teaching a support vector machine is essentially an optimisation problem. To be more
precise, it is a minimisation with constraints, since the inverse of the size of the margin is used for
optimisation [43,48]. Thus, in the most basic case, one minimises

1
2
‖w‖2 (4)

where w is the normal vector to the hyperplane with the constraints

yi (w · xi + b) ≥ 1 ∀i (5)

where xi are multi-dimensional vectors (data points), b is the (signed) distance from the separating
hyperplane and yi ∈ {−1, 1} depending on which side of the separating hyperplane xi is situated.
Essentially, Equation (5) states that no data point should be inside the margin separating the classes.

However, the embedding space is usually of a much higher dimension than the original input
space. In fact, the embedding space often has a dimensionality in the range of a million or more [2,49].
Solving this quadratic programming problem with a regular computer is not feasible. However, instead
of looking at the primal problem, one can look at the equivalent dual problem which is much easier to
handle. With some further simplification (so-called “kernel trick”) [43], the problem becomes feasible.

As for k-nearest neighbour, the support vector machine in this study will start in an n-dimensional
space. However, due to the likely non-linear separability, the resulting machine will have a much
higher dimensionality.

SVMs with a Gaussian Kernel are considered to be the best choice for this study. Kernel parameter
(σ) is varied between 0.1 and 5.0 to obtain the spread with the lowest error. For the optimisation,
the cost of misclassification is set to a moderate value of 1.0, the convergence tolerance is 0.0010, and
the width of the ε-sensitive zone is set to ε = 0.0010.

2.4. Bayesian Networks (BN)

Bayesian networks are probabilistic graphical models based on Bayesian probability theory
(T. Bayes 1763) [50]. A Bayesian net describes how different states xi of a system, represented as
nodes of a graph are linked through probability, i.e., the net shows conditional inter-dependencies of
variables via a directed acyclic graph [51].
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Bayesian networks are often used when dealing with large quantities of data, e.g., data mining [52,53].
They are also applied in medical contexts [54] and robotics [55]. For the latter, one should mention that
in the underwater environment risk assessment with Bayesian networks is a current topic [56,57].

In a Bayesian network, there is a conditional probability distribution PB (xi|πi) for each node
where πi are the parent nodes of xi. A unique joint probability distribution over the graph is then [50]

PB (x1, x2, . . . , xn) =
n

∏
i=1

PB (xi|πi) (6)

Bayesian networks can be learned from available data. Various procedures are available for
teaching, which are separated into two categories [58,59]:

1. Structure learning (structure is unknown)
2. Parameter learning (structure is known)

Often, parameter learning and structure learning are combined so that parameter learning
is a sub-process of structure learning (score-and-search-based approach) [60]. In this study, hill
climbing [61] with an alpha parameter of 0.5 is used.

2.5. Multiple Linear Regression (MLR)

Multiple linear regression is very similar to linear regression. However, instead of having one
independent variable as for linear regression the output y depends on two or more (in general p)
independent variables xi [41], i.e., one has

y = α + β1x1 + β2x2 + · · · + βpxp (7)

where α and βi are constants.
Multiple linear regressions have a wide range of applications from chemistry, e.g., calibration

methods [62], to material science (an example would be fatigue life evaluation as in [63]). In the marine
environment, MLR are also applied successfully. For instance, Ghorbani et al. used MLR for the
prediction of wave parameters of the coast of Tasmania [64]. The location of the impressed current
cathodic protection anode for ships can also be optimised with MLR, as shown in [29]. Research into
underwater acoustic source localisation is also done using multiple linear regressions [65]. In this
study, there are three separate MLRs (one for each flow direction in the Cartesian coordinate system)
with p independent variables (the pressure at each of the p measurement points).

Learning a multiple linear regression machine is done via the method of least squares. The best
linear unbiased estimator is found according to the Gauss–Markov theorem:

b =
(

XTX
)−1

XTy (8)

where for a given dataset of size n, y is the (n× 1) vector of the dependent variable and X is the
(n× p) data matrix of the independent variables. This way one obtains an equation for the estimated
value ŷ of the dependent variable y:

ŷ = b1x1 + b2x2 + · · · + bpxp (9)

3. Methods

3.1. Numerical Simulations

To test the proposition, a large number of CFD simulations were carried out with ANSYS CFX
15.0. This is an established method to generate an extensive evaluation and a high quality dataset.
Because of the very complex and multi-dimensional data structure of the flow itself, CFD provides
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the only plausible method for generating and validating the data for the learning algorithms. Other
theoretical physics-based models could, in this case, never reach the quality of the CFD data.

For the CFD simulations, a torpedo-shaped AUV body with a length overall of LOA = 7250 mm
was used. A technical drawing of the AUV’s body can be found in Figure 1. The fluid domain has a
size of 16,000 mm × 6000 mm × 6000 mm (see Figure 2). A pre-trail with high fluid velocities showed
that this size is sufficient for the turbulence to dissipate before reaching the fluid boundaries.

Figure 1. Technical drawing of AUV’s body (all dimensions in mm).

The mesh has 92,819 nodes and 525,857 linear tetrahedral elements. A sensitivity analysis was
performed and a finer mesh did not change the results of the simulations significantly.

Figure 2. AUV and fluid domain for CFD simulation (boundary conditions for forward flow).

For the fluid model, seawater at a salinity of S = 35 g/kg and a temperature of T = 15 ◦C
was chosen, which is typical for ocean water [66,67]. An isothermal k-ε-model with scalable wall
functions was used and the reference pressure was set to pre f = 2 atm. This corresponds to the
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AUV being situated roughly 10 m below the surface of the water. Furthermore, the control volume
was large enough that gravity would result in a significant difference in static pressure between its
upper and lower side. Hence, buoyancy was also taken into account. In addition, no large adverse
pressure gradients were expected and the k-ε-model works especially well for pressure gradients that
are relatively small [68]. The k-ε-model also provides a reasonable compromise between accuracy
and computational effort [69], in order to run the complete set of simulations within an adequate
time frame.

The boundaries of the fluid domain were either inlets or openings depending on whether water
was flowing in through the respective boundaries or not. The surface of the AUV was a no slip wall.

In total, 2873 simulations were performed with a large range of different flow situations. For the
sideward, upward, and downward flow the velocities were between 0 kn and 5 kn; for the forward
flow, the velocities were between 0 kn and 20 kn; and, for the backward flow, the velocities were again
between 0 kn and 5 kn (see also Table 1).

Table 1. Components of the inlet velocity (note that for the correct flow direction the velocity components
have to be entered with the opposite sign in ANSYS CFX).

u [kn] v [kn] w [kn]

20 - -
15 - -
10 - -
7.5 - -
5.0 5.0 5.0
2.5 2.5 2.5
2.0 2.0 2.0
1.5 1.5 1.5
1.0 1.0 1.0
0.5 0.5 0.5
0.0 0.0 0.0
−0.5 −0.5 −0.5
−1.0 −1.0 −1.0
−1.5 −1.5 −1.5
−2.0 −2.0 −2.0
−2.5 −2.5 −2.5
−5.0 −5.0 −5.0

3.2. Governing Equations

For a mathematical model of fluid flow, the underlying principles are the conservation of mass
and momentum [40,70]. Heat and mass transfer were not considered here as the temperature was
uniform and no chemical reactions were taking place. These principles are expressed through the
following equations. Continuity equation (conservation of mass):

∂ρ

∂t
+ ∇ · (ρu) = 0 (10)

Navier–Stokes equations (conservation of momentum):

∂

∂t
(ρu) + ∇ · (ρu⊗ u) = −∇p + µ∇2u − 2

3
µ∇ (∇ · u) δ + ρg (11)

In the equations above, ρ is the fluid density, u is the flow velocity vector (with components u, v,
and w), p is the pressure, µ is the viscosity, g is the vector of body forces per unit mass (buoyancy),
and δ is the Kronecker tensor.

The k-ε model is a widely used two-equation turbulence model for fluid dynamical problems.
It was introduced by B.E. Launder and D.B. Spalding [69].
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One defines the turbulent kinetic energy k as the variance of the fluctuations in velocity.

k =
1
2

(
u′2 + v′2 + w′2

)
(12)

where u′, v′, and w′ are the components of the velocity fluctuations u′. Then, ε is defined as the rate at
which k dissipates:

ε =
dk
dt

(13)

These variables are introduced in the continuity equation (Equation (10)) and the Navier–Stokes
equations (Equation (11)). After some analytical manipulation, one obtains the following equations
(as used in this study).

∂ (ρk)
∂t

+ ∇ · (ρku) = ∇ ·
((

µ +
µt

σk

)
∇k

)
+ Pk + Pkb − ρε (14)

∂ (ρε)

∂t
+ ∇ · (ρεu) = ∇ ·

((
µ +

µt

σε

)
∇ε

)
+

ε

k
(Cε1Pk − Cε2ρε + Cε1Pεb) (15)

In these equations, Pk is the turbulence production due to viscous forces and S is the modulus of
the mean rate-of-strain tensor. Pkb and Pεb represent the influence of the buoyancy forces. Cε1, Cε2, σk,
and σε are constants.

3.3. Data Processing

In a first step, the pressure was extracted at points 500 mm apart and situated on lines on the
top, the bottom, and the two sides of the AUV (see black lines on the surface of the AUV in Figure 2).
This resulted in 14 points on each line and 56 points in total.

This setup was inspired by artificial lateral-lines. Since in a general flow situation there may
also be a vertical flow velocity components, it is prudent to also have pressure sensors at the top
and bottom of the AUV’s body. The separation—and hence the number—of pressure points is a
compromise between obtaining the pressure at as many points as possible for reconstruction of the
pressure distribution and the complexity of the learning machines (fewer inputs speed up the learning
process). The configuration was optimised in a further step (see Section 5.1).

The resulting 2873 datasets, each consisting of the pressures and the components of the flow
velocity, were split into two groups of about equal size. The data from one of the groups were fed
through statistical learning algorithms with or without pre-filters. The methods discussed above
(artificial neural network, k-nearest neighbour, support vector machine, Bayesian network, and
multiple linear regression) were chosen for testing.

The input data for the learning methods were also varied to test the influence of different
pre-processing methods on the performance of the machines. Besides feeding the raw image data
(Raw) directly into the statistical learning algorithms, the following methods were used for smoothing
of the data:

• Fast Fourier transform (FFT)
• Convolution (Conv)
• Moving average (MA)
• Singular value decomposition (SVD)

The FFT smoother eliminates frequency noise by setting all frequencies to zero that are less than
a threshold times the maximum distance of the data. The convolution smoother uses the Gaussian
kernel. Moving averages is done with five consecutive entries. The SVD smoother removes singular
values that are below a chosen threshold.
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4. Results and Discussion

Table 2 shows the root mean square errors (RMSE) for all combinations of the five machine
learning methods and the five different input data for the velocity components along the three axes
of a Cartesian coordinate system. As it is only an RMSE, the actual difference between the velocity
obtained from the algorithm and the expected velocity can deviate significantly. The root mean square
errors for forward/backward motion were slightly higher while the root mean square errors for
upward/downward motion were slightly lower than the values given in the table.

Table 2. Root mean square errors for different learning methods and pre-processors.

RMSE [kn] ANN KNN SVM BN MLR

Raw 4.28 16.84 0.68 2.84 1.34
FFT 4.27 16.83 0.69 3.40 1.34

Conv 4.34 - 1.61 - 1.59
MA 4.22 - 3.22 3.40 1.48
SVD 3.32 - 3.04 6.10 3.34

As one can see, k-nearest neighbour showed a large RMSE for raw data input (Raw) and fast
Fourier transformed input (FFT) of above 16 kn. Furthermore, no meaningful results could be obtained
for the other three input methods. For artificial neural networks, the RMSE was just above 4 kn for all
input methods except for singular value decomposition (SVD) where the RSME was just above 3 kn.
In contrast, singular value decomposition resulted in the highest RMSE for Bayesian networks (BN)
of more than 6 kn. With convolution (Conv), no meaningful results were obtained in this case and
for the other input methods the RMSE for Bayesian networks was below 3.5 kn. For multiple linear
regression (MLR), the root mean square error was below 1.5 kn except with convolution where it was
just above this value and with singular value decomposition where it was more than twice as high.
Support vector machines yielded the lowest RSME when using Raw data or Fourier transformed data
(less than 0.7 kn). With the other input methods, the root mean square error was significantly higher.

Surprisingly, Bayesian networks performed much better than some of the other methods, although
it is expected that the pressure/velocity relation is not probabilistic. The good performance of multiple
linear regression suggests that the relation is to some extent linear, which is a sensible assumption.
In general, pre-processing the pressure data reduced the performance of the learning algorithms
significantly except for fast Fourier transformation. FFT did not improve the performance much and
in some cases resulted in a higher RSME compared to raw data input.

Figures 3–5 show how the approach in this study worked for the three velocity components
separately when using a combination of learning machine and pre-processing with a low RMSE. For all
2873 flow situations, the speed predicted by the algorithm was compared to the actual speed set in the
simulation. The intensity of diamonds indicates the number of results. Hence, a black diamond shows
that there are many results falling in this area.

As one can see, quite a large number of results are very close to the perfect prediction (red line).
However, some results deviate significantly. Thus, there are problems with some unique flow situations
that need to be addressed. It can also be observed that the linear fit of the data (green line) is very close
to the perfect prediction as well, which indicates that the overall performance is very good. Figures 3–5
also show that the absolute error first increased and then decreased with increasing flow velocity.
For the forward/backward component of the velocity, the peak was at 5 kn, for the sidewards motion
it was at 2 kn, and for the upward/downward component the peak was at 1.5 kn. This results in the
relative error decreasing with increasing velocity. Hence, low velocities are more difficult to work with
than higher velocities. However, higher velocities also produce more outliers.
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Figure 3. Predicted forward speed compared to actual forward speed (negative means backward).

Figure 4. Predicted starboard speed compared to actual starboard speed (negative means port).

Figure 5. Predicted downward speed compared to actual downward speed (negative means upward).
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5. Optimising the Position of Pressure Measurement Points

5.1. Optimisation

During the numerical simulations, it could be observed that the changes in pressure near
the pressure measurement points are not the most significant ones over the whole surface of the
AUV’s body. Other regions are more strongly influenced by the changes in velocity. It is sensible to
assume that, by moving the pressure measurement points to regions with higher pressure variations,
the performance of the learning machines can be increased. Furthermore, a more optimal positioning
may allow a smaller number of measurement points, which in turn reduces the complexity of the
learning machines.

The following observations can be made about the pressure distribution:

1. Sideward, upward, and downward flow velocity components resulted in significant pressure
changes on the fins. There were distinct high pressure regions on the upstream side and low
pressures on the downstream side.

2. Forward and backward flow velocity components resulted in an increase in pressure near the
bow and the stern, respectively.

3. The isobars on the AUV’s body were parallel and almost horizontal in all flow situations.
4. For skew angles of attack, the pressure changes were not well-captured, as the most significant

changes and the velocity head were in between the lines on which the pressure measurement
points are distributed.

These observations led to the following changes in the positioning of the pressure measurement points:

1. Place measurement points on both sides of each fin to capture the significant pressure changes
and especially the differences between the upstream and the downstream sides.

2. Keep the most forward and most backward pressure measurement points as these are the only
points that can capture the changes due to a forward and backward flow velocity component.

3. It is sufficient to have one set of measurement points on the cylindrical part of the AUV’s body as
the points along one line measure almost the same pressure and are therefore redundant.

4. Introduce additional pressure measurement points in between the lines where the measurement
points are currently placed such that the points are not only at the top, the bottom, and the
two sides.

Figure 6 shows the resulting positions of the measurement points when the above steps were
applied. As one can see, there were now four sets of eight points each, which gives a total of 32 pressure
measurement points. The positions of the measurement points were as follows:

Figure 6. Position of pressure measurement points in the new setup.

For the front, middle, and rear set, the points were equally-spaced at 45◦ with respect to each
other when viewed along the x-axis. The front set was at 500 mm from the bow. The middle set was
exactly in the middle of the AUV’s body. The rear set was at 500 mm from the stern. The positions of
the points on the fins can be found by the intersection of the two diagonals on each side of every fin.
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One may also observe that there were now much fewer than the original 56 points. Hence,
a reduction of the number of measurement points was also achieved. This would also give less
complex learning machines.

5.2. Results and Discussion

Table 3 shows the root mean square errors (RMSE) for all combinations of the five machine
learning methods and the five different input data for the velocity components along the three axes
of a Cartesian coordinate system. As it is only an RMSE as before, the actual difference between the
velocity obtained from the algorithm and the expected velocity can deviate significantly. The root
mean square errors for forward/backward motion were slightly higher while the root mean square
errors for upward/downward motion were slightly lower than the values given in the table.

Table 3. Root mean square errors for different learning methods and pre-processors.

RMSE [kn] ANN KNN SVM BN MLR

Raw 4.17 19.07 0.65 3.77 1.43
FFT 4.15 18.97 0.62 3.83 1.43

Conv 4.17 - 1.47 - 1.68
MA 4.35 - 2.47 4.02 1.50
SVD 4.47 - 1.61 3.07 2.36

As one can see, k-nearest neighbour showed a large RMSE for raw data input (Raw) and fast
Fourier transformed input (FFT) of above 18 kn. Furthermore, no meaningful results could be obtained
for the other three input methods. For artificial neural networks, the RMSE was just above 4 kn for all
input methods. The RMSE’s for Bayesian networks (BN) were between 3 kn and 4 kn, except with
moving averages, where it was a little bit higher. For multiple linear regression (MLR), the root mean
square error was around 1.5 kn except with singular value decomposition, where it was above 2 kn.
Support vector machines yielded the lowest RSME when using raw data or Fourier transformed data
(less than 0.7 kn). With the other input methods, the root mean square error was significantly higher.

When compared to the original results (Table 2), some notable changes in the errors could be
observed. Some of the input data/learning machine combinations showed a significant decrease in
performance, while others performed very well. Artificial neural networks did not show very much
change. There were some slight increases and decreases in the RMSE depending on the input data.
Support vector machines and Bayesian networks all showed a small increase in performance with the
exception of BN with SVD where the error was doubled. Multiple linear regression all showed a small
decrease in performance with the exception of MLR with SVD where the error was reduced by almost
1 kn. Finally, k-nearest neighbour, which already showed bad results in the original setting, performed
even worse with the new setup.

Multiple linear regression showed good results, although the RMSE was slightly higher than
before. This suggests that the pressure/velocity relation in the new setup was again quite linear.
As before, pre-processing the pressure data reduced the performance of the learning algorithms.
The exception was fast Fourier transformation, which increased the performance slightly in the cases
of ANN, KNN, and SVM.

Figures 7–9 show how the approach in this study worked for the three velocity components
separately when using a combination of learning machine and pre-processing with a low RMSE. For all
2873 flow situations, the speed predicted by the algorithm was compared to the actual speed set in the
simulation. The intensity of diamonds indicates the number of results. Hence, a black diamond shows
that there are a large number of results falling into this area.
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Figure 7. Predicted forward speed compared to actual forward speed (negative means backward).

Figure 8. Predicted starboard speed compared to actual starboard speed (negative means port).

Figure 9. Predicted downward speed compared to actual downward speed (negative means upward).

As one can see, quite a large number of results are very close to the perfect prediction (red line).
However, some results deviate significantly. Thus, there are problems with some unique flow situations
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that need to be addressed. It can also be observed that the linear fit of the data (green line) is very close
to the perfect prediction as well, which indicates that the overall performance is very good.

When compared to Figures 3–5, one may observe that there are fewer outliers and the other
points are much closer to the perfect prediction. The improvement is visualised quite well. However,
the remaining outliers are much further out than for the original setup. In addition, the linear fit of the
data is much closer to the perfect fit compared to the original setup.

6. Conclusions and Outlook

Within this study, the applicability of different learning methods for determining flow parameters
of a surrounding fluid from pressure on an AUV body were tested based on numerous computational
fluid dynamical simulations and using pressure data from 56 specified points on the surface of the
AUV. These points were situated on four lines along the starboard side, the port side, the top, and the
bottom of the AUV body. It was shown that support vector machines are excellent choices to perform
this task, provided that the pressure data are pre-processed appropriately. It was also shown that the
deviation between the velocity determined by the algorithms and the actual velocity first increases
and then decreases with increasing velocity.

With the findings from the simulations, the position of pressure measurement points were then
optimised so that the most significant pressure changes due to changing flow velocities could be
captured. The measurement points were then situated on three rings, one near the nose, one in the
middle section, one near the stern, and on the top and bottom of each fin of the AUV. Each set contained
eight points. This reduced the number of measurement points to 32. It was then shown that, for the
optimised setup support, vector machines were also the best choices for the given task. However,
the machines were less complex in this case due to fewer inputs.

The approach presented currently uses the original pressure data without any additional filtering
except for the removal of frequency noise via fast Fourier transform. In the next step, pre-filters should
be included into the algorithm to remove unwanted influences due to outliers, measurement errors,
and noise, and hence make the algorithm more robust. The influence of the propellers should also be
taken into account. It was neglected in this study.

Furthermore, the accuracy of the approach should be improved for small velocities. This is of
particular interest since AUVs executing SLAM are usually quite slow (only a few knots). At these flow
velocities, fluctuations need to be considered. The reason is that, although the fluctuations are smaller
for lower velocities, they become large relative to the flow velocity and therefore have a significant
influence on the results. In this approach, Reynolds-averaged Navier–Stokes equations (RANS) were
used, which are not good at capturing these fluctuations. Hence, in the next step, the near-wall regions
need to be resolved and analysed in detail with respect to the fluctuation of the surface pressure due to
the water flow and the surface roughness.

In addition, the approach presented currently does not work for a stationary solution where the
fluid is moving but the relative velocity between the AUV and the fluid is zero. To be able to capture
this situation, a new type of “active pressure and shear stress sensor”, which is small and lightweight
is currently under development.

Finally, it is planned to carry out several experiments with a real AUV body. This will enable
the evaluation of the method and its applicability in real situations. In addition, the experiments will
result in a significantly higher number of datasets than obtained in this study with CFD, which in turn
will allow for further improvement of the approach.
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The following abbreviations are used in this manuscript:

ADCP Acoustic Doppler Current Profiler
ANN Artificial Neural Network
AUV Autonomous Underwater Vehicle
BN Bayesian Network
CFD Computational Fluid Dynamics
Conv Convolution
DPS Differential Pressure Sensors
EKF Extended Kalman Filter
FFT Fast Fourier Transform
IMU Inertial Measurement Unit
KNN k-Nearest Neighbour
MA Moving Average
MLR Multiple Linear Regression
RANS Reynolds-Averaged Navier-Stokes equations
RSME Root Mean Square Error
SLAM Simultaneous Localisation and Mapping
SVD Singular Value Decomposition
SVM Support Vector Machine
UKF Unscented Kalman Filter
UUV Unmanned Undersea Vehicle
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