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Abstract: Numerous autonomous robots are used not only for factory automation as labor saving
devices, but also for interaction and communication with humans in our daily life. Although superior
compatibility for semantic recognition of generic objects provides wide applications in a practical use,
it is still a challenging task to create an extraction method that includes robustness and stability against
environmental changes. This paper proposes a novel method of scene and position recognition
based on visual landmarks (VLs) used for an autonomous mobile robot in an environment living with
humans. The proposed method provides a mask image of human regions using histograms of oriented
gradients (HOG). The VL features are described with accelerated KAZE (AKAZE) after extracting
conspicuous regions obtained using saliency maps (SMs). The experimentally obtained results using
leave-one-out cross validation (LOOCV) revealed that recognition accuracy of high-saliency feature
points was higher than that of low-saliency feature points. We created our original benchmark
datasets using a mobile robot. The recognition accuracy evaluated using LOOCV reveals 49.9% for
our method, which is 3.2 percentage points higher than the accuracy of the comparison method
without HOG detectors. The analysis of false recognition using a confusion matrix examines false
recognition occurring in neighboring zones. This trend is reduced according to zone separations.

Keywords: visual landmark; semantic position recognition; histograms of oriented gradients; saliency
maps; machine learning

1. Introduction

Numerous autonomous robots have come to be used in the remarkable progress of the robot
industry. They are used not only for factory automation as labor saving devices, but also for interaction
and communication with humans in our daily life. For these robots having roles and collaboration
with humans, it is necessary to obtain capabilities for purposive judgment and autonomous behavior.
To locomotion in an actual environment autonomously, robots must avoid collision with humans or
objects that are recognized in real time. Moreover, robots must recognize their position to ascertain
surroundings, to perform risk prediction, and to formulate return procedures to be used after
collision avoidance. Actually, intelligent behavior and functions are actualized through updating of
the processes of the obtained information, including a robot’s position in real time because robots
autonomously collect diverse information as their environment changes dynamically.

To actualize autonomous robot locomotion, three approaches are posited. The first approach is to
use a static map prepared in advance. As a benefit for this approach, it is simple and easy for position
estimation and recognition. However, a shortcoming is its vulnerability to environmental changes
because it uses fixed map information. The second approach is to use a dynamic map after creation.
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For this approach, numerous methods have been proposed based on simultaneous localization and
mapping (SLAM) [1], which is used for map creation, position estimation, and navigation. A benefit
for this approach is its robustness for environmental changes because it uses a dynamic map that is
updated in real time. A shortcoming is its high calculation cost for sensing signals obtained from
wide-range precision and sensors, such as stereo cameras and laser range finders (LRFs), which are
expensive sensing devices used to obtain metric information. The third approach is to use landmarks.
Without using a static or dynamic map, this approach is simple and practical. According to landmark
types, this approach is divisible into two categories: a preset landmark-based approach and a visual
landmark (VL)-based approach, which uses visual saliency objects in a scene. As a benefit of the preset
landmark approach, steady landmark extraction and position recognition is actualized because of
using landmark features that are already known. A shortcoming is not only the burden of landmark
installation in advance, but also its uselessness for a new environment without landmarks. In contrast,
the VL-based approach requires no landmark installation in advance before locomotion with providing
adaptation in various environments. For this approach, specific and costly sensors are unnecessary
because various and diverse generic objects are used as VLs. Similar to human perception, superior
compatibility for semantic recognition of generic objects provides wide applications in a practical use.
However, it is still a challenging task to create an extraction method that includes robustness and
stability against environmental changes.

Although numerous methods that are widely used in indoor environments have been proposed,
it is still a challenging task for practical applications. Exit studies were merely evaluated with
simulation and a limited environment without environmental changes. Moreover, these are no
consideration for human effects or interference in an actual environment with existing humans.
Therefore, evaluation experiments were conducted under the hidden assumption that exits steady
detected landmarks in an environment. This paper proposes a novel method to achieve automobile
locomotion of a human symbiotic robot based on VL extraction and recognition in an actual
environment. As basic performance measurements, we evaluated our method using benchmark
datasets of two types for semantic scene recognition and human detections. Subsequently, we evaluated
the performance of our method using our original benchmark datasets of two types without humans
and with humans that were obtained using a mobile robot. This paper presents comparison results of
recognition accuracies for scene and positional recognition as localization of autonomous locomotion
based on VLs in an actual environment.

The rest of the paper is structured as follows. In Section 2, related studies are presented, especially
for approaches based on visual landmarks combine with machine learning algorithms. Section 3
presents our proposed method based on visual saliency and a supervised machine learning approach.
Subsequently, Sections 4–6 present experimentally obtained results using two benchmark datasets
and one original dataset obtained using a monocular camera mounted on a mobile robot. Finally,
Section 7 concludes and highlights future work. Herein, we had proposed this basic method in the
proceedings [2,3]. For this paper, we have described detail results and discussion in Section 6.

2. Related Studies

Since the 1990s, studies on VL-based position estimation have attracted attention according
to the performance progress and cost effectiveness of computers and cameras used for visual
sensors [4]. In 2002, Desouza et al. had surveyed numerous studies related to vision for mobile
robot navigation in 20 years. They dealt with indoor navigation and outdoor navigation for 165
references. For their categorization, indoor navigation was divided to three approaches: map-based
navigation, map-building-based navigation, and map-less navigation. Moreover, they categorized
map-less navigation into three approaches: navigation using optical flow-based navigation, navigation
using appearance-based matching, and navigation using object recognition. In those days, there
were merely two cases for the approach of navigation using object recognition because of insufficient
computational capability.
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In the early stage of VL detection, edges and corners obtained from objects and background
patterns were used as landmark features. Since part-based feature description was introduced
into generic object recognition [5], robustness for positions, scales, and rotations of landmarks has
improved dramatically. Li et al. propose a method to learn and recognize natural scene categories
using Bayesian hierarchical models. The primary feature of their method was to learn characteristic
intermediate themes of scenes with no supervision. Although recognition accuracy was inferior to
supervised-learning methods, their method did not require experts to annotate training datasets.
As a pioneer study for saliency-based object recognition, Shokoufandeha et al. [6] proposed a
saliency map graph (SMG) that captured salient regions of an object viewed at multiple scales using a
wavelet transform. They defined saliency as informedness, or more concretely, as significant energy
responses as computed by filters. For attending objects before recognition, Walther el al. [7] proposed a
biologically plausible model to detect proto-objects in natural scenes based on salience maps (SMs) [8].
They described scale-invariant feature transform (SIFT) [9] over attended proto-objects. For complex
scene images, they demonstrated clear reduction to match key-points constellation in objet recognition.
Nevertheless, no guarantee exists that their region-selection algorithm can find objects. Their method
remains purely bottom-up, stimulus driven, with no prior notion of objects in semantics.

As a remarkable study using Graph Based Visual Saliency (BGVS) [10], Kostavelis et al. [11]
proposed a bio-inspired model for pattern classification and object recognition. They exploited
Hierarchical Temporal Memory (HTM) for comprising a hierarchical tree structure. The experimentally
obtained results evaluated using ETH-80 benchmark dataset revealed that their model achieved
greater accuracy of pattern classification and object recognition compared with other HTM-based
methods. Moreover, Kostavelis et al. [12] introduced a coexistence model of accurate SLAM and place
recognition for a descriptive and adaptable navigation used in indoor environments. Their model
comprises a novel content-based representation algorithm for spatial abstraction and a bag-of-features
method using a Neural Gas for coding the spatial information for each scene. They used support
vector machines (SVMs) as a classifier that actualized accurate recognition of multiple dissimilar places.
The experimentally obtained results evaluated using several popular benchmark datasets reveled that
their proposed method achieved remarkable accuracy. Moreover, their proposed method produced
semantic inferences suitable for labeling unexplored environments. Based on their excellent studies,
they [13] surveyed semantic mapping techniques including publicly available validation datasets
and benchmarking with addressing issues and questions. Actually, semantics in robotics is very well
known procedure. However, our study is not included in semantics, merely using VLs.

According to the remarkable computational progress in recent years, numerous methods have
been proposed for VL-based semantic position recognition. Chen et al. [14] developed a simple and
cost-effective position identification system using augmented reality (AR) markers that were installed
on a ceiling in advance. Although they described a practical application used for a navigation task, their
evaluation remained merely computer simulation without evaluation results obtained using an actual
mobile robot. Chang et al. [15] proposed a fusion method of Gist and SMs [8] for robotic tracking based
on template matching among saliency features. They evaluated their method in a 37-m-long indoor
environment and a 138-m-long outdoor environment. However, the Gist representation performance
was insufficient for indoor scenes as a global feature descriptor in natural scenes with large-scale
structures. Moreover, the problem of template matching remained to improve the calculation cost and
noise tolerance. Hayet et al. [16] proposed a landmark recognition method using Harris operators
and partial Hausdorff distance combined with extracting landmark candidates searched for edge
features and rectangular regions. The limitation of their method was in landmark extraction because of
relaying edges for feature description. Sala et al. [17] proposed a graph theory as heuristic algorithm
for selecting suitable landmark combination using SIFT [9]. Although they described SIFT features
from whole images, the evaluation results showed insufficient capability for environmental changes
because of limited evaluation for robustness.
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Hayet et al. [18] proposed a sensor fusion system using an LRF, which is used for environmental
modeling with a generalized Voronoi graph (GVG), and a monocular camera, which is used for
a framework of landmark learning and recognition. The experimentally obtained results remained
merely graph model creation using GVG at a corridor with no numerical evaluation results. Se et al. [19]
proposed a SIFT-based scale-invalid VLs extraction method with tracking them using a Kalman
filter applied in a dynamic environment. For applying a dynamic environment changed objects in
real-time, Se et al. [19] proposed a VL tracking method using a Kalman filter combined with extracting
scale-invalid VLs using SIFT features. They measured the degree of uncertainty for detected landmarks
to approximate an ellipse. However, no matching results were provided for position identification.
Livatino et al. [20] proposed a method to extract salient regions using four features: edges, corners,
luminance, and local symmetry. They set VLs as doorknobs, posters, and power switch buttons.
The experimentally obtained results revealed that they evaluated their method merely for a limited
environment without sufficient generalization. Accuracies of existing methods for position estimation
and navigation were evaluated under the assumption of steady VL extraction. They provided no
consideration of occlusion and corruption of objects as VLs. The primary concern of the existing
studies was highly accurate object detection without consideration of occlusion by human effects.

For human-symbolic robots, it is necessary to evaluate robustness for human interference that is
unavoidable in actual environments. Bestgen et al. [21] examined a conceptual model for automatisms
of navigation using volunteered geographic information (VGI)-based landmarks. Their model includes
a concept that systematic cognitive aspects of humans and their interests. Based on selected landmarks
and patterns of landmarks building geometric shapes, they expected guidance of spatial attention
and support individual way finding strategies. We consider that it is worth considering aspects of
spatial cognition in humans including a systematic impact on robot behavior. Morioka et al. [22]
proposed a local map creation and navigation method used for an indoor mobile robot in a dynamic
and crowded environment with humans. To extract time-series features for matching, they proposed
a novel descriptor named position invariant robust features (PIRFs) based on SIFT. They actualized
real-time navigation combined with 3D-map creation using PIRFs for extracting metric information
from time-series images. Noguchi et al. [23] proposed a mobile path creation method using human
trajectories. For learning trajectories, they actualized human behavior prediction and path planning
for avoiding human interference. Their method calculated a human behavior probability map to
update path planning tables in real time. For human mobility measurement, they used LRFs fixed in
an environment and particle filters to track human positions. However, evaluation experiments were
merely conducted in computer simulations. Although several methods were presented for reducing
human effect, no method has been proposed for autonomous VL-based locomotion.

3. Proposed Method

3.1. Entire Procedure

We specifically examine the effect human interference in scene recognition using visual
information. Figure 1 depicts the whole procedure of our proposed method for detecting, extracting,
and describing VLs. Our method comprises saliency region detection using SMs [8], feature description
using accelerated KAZE (AKAZE) [24], and human detection with masking using a histogram of
oriented gradients (HOG) [25]. Using SMs, regions with high saliency can be extracted as VL candidates.
Human regions, which are excluded with HOG masking in images, are excluded with HOG masking.
Our method extracts AKAZE features from this region. Intersection areas between SMs and HOG
masks are used for candidate areas as VLs after extracting AKAZE features.
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Figure 1. Whole procedure of our proposed method that comprises saliency region detection using
SMs, feature description using AKAZE, and human detection with masking using a HOG.

Let Iorg, Ism, and Ihog be an original image, a SM binary mask image, and a HOG mask image.
The output image Iout is defined as the following.

Iout = Iorg ∧ Ism ∧ Ihog. (1)

For scene recognition, we used adaptive category mapping networks (ACMNs) [26] that learn
adaptively, along with additional sequential signal features with visualization of topological relational
structures as a category map (CM). ACMNs comprise three modules: a codebook module, a labeling
module, and a mapping module. As shown in Figure 2, we used the codebook module for quantizing
input signals using self-organization maps (SOMs) [27] and the mapping module for visualizing spatial
relations among input signals as a CM using counter propagation networks (CPNs) [28]. For this study,
we did not use the labeling module, which comprises adaptive resonance theory (ART) [29] networks,
because we solely used the supervised learning mode.

Figure 2. Codebook module for quantizing input signals using SOMs and mapping module for
visualizing spatial relations among input signals.

3.2. Feature Signal Description

Gist [30] is a descriptor used to extract features from outdoor images, especially for global
scene structures such as rivers, mountains, lakes, forests, and clouds in nature. Because of its rough
description granularity, it is unsuitable for describing features of indoor scenes and objects as our target
objects. As a part-based feature descriptor, SIFT [9] is used popularly and widely in computer vision
studies and numerous applications, especially for generic object description and recognition. Using
nonlinear scale spaces, KAZE descriptors [31] recorded superior performance than SIFT descriptors
did. As an improved model, AKAZE descriptors [24] are especially examined for excellent descriptive
capability and low processing costs as real-time image processing.
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3.3. Saliency Map

Let Ixy be an intensity channel defined as

Ixy =
1
3
(r + g + b), (2)

where r, g, and b respectively represent red, green, and blue channels. The hue channel comprises RGB
and the yellow channel Yxy, which is calculated as

Yxy =
1
2
(r + g)− 1

2
|r− g| − b. (3)

Orientation channels are created on the edge of four directions: θ = 0, 45, 90, and 135 degree.
Gabor filter Gxy is defined as the product of the sine wave and the Gaussian function. Gxy is defined as
shown below.

Gxy = exp{−1
2
(

R2
x

σ2
x
+

R2
y

σ2
y
)} exp(i

2πRx

λ
) (4)

[
Rx

Ry

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
(5)

Therein, λ, θ, σx, and σy respectively represent the wavelength of the cosine component, the
direction component of the Gabor function, the filter size in the vertical axis direction, and the filter
size in the horizontal axis direction. The integral value to the vertical axis is the maximum if G is
applied to lines with gradients in the image. We extract the gradient and frequency components using
the above property. The filter size is defined as M× N pixels. The filter output Zxy at the sample point
Pxy is defined as

Zxy =
N

∑
i=0

M

∑
j=0

Gi,j
xyPi,j

xy, (6)

where Z is a complex term as
√

Rm2 + Im2.
The attention positions are identified by superimposing the differences among different scale pairs,

which are obtained from images using Gaussian pyramid. These are designated as center–surround
operations, which are represented by the operator 	. For the difference operation, small images are
extended to large images. When defining scales as c, s (c < s), a larger scale is represented as c = 2, 3, 4;
a smaller one is represented as s = {c + δ|δ ∈ 3, 4}. For the intensity component, the difference I(c, s)
is calculated as shown below.

I(c, s) = |I(c)	 I(s)| (7)

Let RG(c, s) and BY(c, s) respectively represent the differences between the red and green
component and the blue and yellow component.

RG(c, s) = |(R(c)− G(c))	 (G(s)− R(s))|, (8)

BY(c, s) = |(B(c)−Y(c))	 (Y(s)− B(s))|, (9)

Orientation features are obtained from the difference in each direction.

O(c, s, θ) = |O(c, θ)	O(s, θ)|. (10)
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After normalizing, feature maps (FMs) are superimposed in each channel. Herein, small maps
are zoomed for summation in each pixel. Let N be a normalization function. Linear summations of
intensity channel I, color channel C, and orientation channel O are defined as the following.

I = ⊕4
c=2 ⊕c+3

s=4 N(I(c, s)), (11)

C = ⊕4
c=2 ⊕c+3

s=4 (N(RG(c, s)) + N(BY(c, s))) , (12)

O = ∑
θ

N ⊕4
c=2 ⊕c+3

s=4 N (O (θ, c, s)) . (13)

The obtained maps are referred for conspicuity maps. Normalizing respective channels of FMs
and linear summation, SMs are obtained as

S =
1
3
(N(I) + N(C) + N(O)). (14)

Finally, high saliency regions are extracted using winner-take-all (WTA) competition [32].

3.4. Codebooks

Let xi(t) and wi,j(t) respectively denote input data and weights from an input layer unit i to a
mapping layer unit j at time t. Herein, I and J respectively denote the total numbers of the input
layer and the mapping layer. Before learning, wi,j(t) are initialized randomly. The unit for which
the Euclidean distance between xi(t) and wi,j(t) is the smallest is sought as the winner unit of its
index cj as

cj = argmin
1≤j≤J

√√√√ I

∑
i=1

(xi(t)− wi,j(t))2. (15)

As a local region for updating weights, the neighborhood region N(t) is defined as the center of
the winner unit cj as

N(t) = bµ · J ·
(

1− t
O

)
+ 0.5c. (16)

Therein, µ (0 < µ < 1.0) is the initial size inside N(t); O is the maximum iteration for training;
and coefficient 0.5 is appended as a floor function for rounding.

Subsequently, wi,j(t) in N(t) are updated to close input feature patterns as

wi,j(t + 1) = wi,j(t) + α(t)(xi(t)− wi,j(t)). (17)

Therein, α(t) is a learning coefficient that decreases concomitantly according to the learning progress.

3.5. Recognition

Let ui
n,m(t) be weights from an input layer unit i (i = 1, ..., I) to a Kohonen layer unit (n, m)

(n = 1, ..., N, m = 1, ..., M) at time t. Therein, vj
n,m(t) are weights from a Grossberg layer unit j to a

Kohonen layer unit (n, m) at time t. These weights are initialized randomly. Training data xi(t) show
input layer units i at time t. The unit for which the Euclidean distance between xi(t) and ui

n,m(t) is the
smallest is sought as the winner unit of its index cn,m as

cn,m = argmin
1≤n≤N,1≤m≤M

√√√√ I

∑
i=1

(xi(t)− ui
n,m(t))2. (18)



Robotics 2019, 8, 3 8 of 24

Here, as in Equation (16), N is a neighborhood region around winner unit cn,m. In addition, ui
n,m(t)

and vj
n,m(t) inside N are updated respectively by Kohonen’s algorithms and Grossberg’s algorithms as

shown below.
ui

n,m(t + 1) = ui
n,m(t) + α(t)(xi(t)− ui

n,m(t)) (19)

vj
n,m(t + 1) = vj

n,m(t) + β(t)(tj(t)− vj
n,m(t)) (20)

Therein, tj(t) is a teaching signal that is supplied from the Grossberg layer. Furthermore, α(t) and
β(t) are the learning coefficients that decrease concomitantly with learning progress. The CPN learning
repeats up to the learning iteration that was set in advance.

4. Preliminary Experiment Using Benchmark Datasets without Humans

4.1. Dataset Details

We used the open benchmark dataset KTH-IDOL2 [33] which is a widely used dataset for
vision-based indoor robot navigation and position estimation. Time-series images with 320 × 240 pixel
resolution were obtained separately in various environmental setups by two mobile robots. For this
study, we used the benchmark dataset obtained using the higher robot after downsampling images from
30 fps to 10 fps with linear interpolation. For the datasets, local positional annotations are contained
as ground truth (GT) compared with latest datasets such as MIT Places2 [34] Our recognition target
categories comprises the printer area (PA), one-person office (BO), two-person office (EO), kitchen (KT),
and corridor (CR) according to the GT signals. We used 12 datasets obtained in three illumination and
weather conditions: sunny, cloudy, and night.

4.2. Parameters and Evaluation Criteria

Table 1 presents parameters of SOMs and CPNs that were set based on our earlier study [26].
As our experiment in advance, we verified that the parameter dependence was slight. For evaluation
criteria, recognition accuracy Racc for a test dataset is defined as

Racc =
Stest

Ntest
× 100, (21)

where Ntest and Stest respectively represent the total numbers of test images and GT images. We used
leave-one-out cross-validation (LOOCV) [35] for evaluating results along with machine-learning and
evolutional-learning approaches.

Table 1. Optimized parameters used for this preliminary experiment.

Methods Target Parameters Setting Value

I [units] 61
SOMs J [units] 256

O [iterations] 1,000,000

α 0.80
CPNs β 0.50

N ×M [units] 30× 30

4.3. Feature Extraction Results

Figure 3 depicts feature extraction results of AKAZE descriptors and SMs for three example
images in KT. The third and fourth rows respectively show images of Ihigh and Ilow as feature points
in high-saliency and low-saliency regions surrounded by the red non-linear lines. Although the
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illumination effect is slight in this environment, the distribution of AKAZE features differs in each
image. For perspective analyzing, numerous feature points are distributed in the trash box, the broom,
the picture, the doorway frames, and the backside door. Although these images were taken in KT,
the features from other rooms are included with illumination changes. The high-saliency regions in
night images are different from those in the sunny or cloudy images.

Figure 4 depicts feature extraction results in CR of which sunlight entered from the glass door in
sunny weather conditions. During the time that the datasets were obtained, the lights were turned
off that provided the wide contrast gap between the center and the surrounding of respective images.
In cloudy and night condition images, the lights were turned on that provided visible of objects such
as a partition and posters. Compared with KT images, SM regions are completely different among the
three illumination conditions.

Figure 3. Feature extraction results in KT.

Figure 4. Feature extraction results in CR.
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4.4. Comparison Results

Figures 5–7 respectively depict Racc in each scene categories of different weather and illumination
conditions: sunny, cloudy, and night. In sunny conditions, Racc of Ihigh is 0.5 percentage points higher
than that of Ilow Subsequently, Racc of Ihigh is 1.7 percentage points higher than that of Ilow in cloudy
conditions. However, Racc of Ihigh is 0.4 percentage points lower than that of Ilow in night conditions.
In respective scene categories, CR gave lower accuracy for Ihigh.

Figure 5. Comparison results of Racc in respective sunny conditions.

Figure 6. Comparison results of Racc in respective cloudy conditions.

Figure 7. Comparison results of Racc in respective night conditions.

4.5. Confusion Matrix Analysis

We analyzed false recognition scene images using a confusion matrix. For this matrix, the number
of correct recognition images is depicted in the diagonal cells marked with bold text. The underlined
values represent the maximum numbers of false recognition images in respective scenes. As the basis
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for the horizontal cells, the numbers of false recognition images and their labels are specified to the
referred labels on the vertical cells. In this dataset, doors physically separate all rooms, including CR.
However, as one exception, PA is a continuation of CR which is treated as a separate room because of its
different functionality [33]. Therefore, the recognition between PA and CR produce numerous errors.

Tables 2–4 correspond to the confusion matrixes in sunny, cloudy, and night conditions,
respectively. These matrixes correspond to Figures 5–7. The accuracies obtained for BO are the
lowest among them. Although BO and EO included similar features due to an office room, numerous
images were falsely recognized to KT and CR. The false recognition images in EO showed a similar
trend in BO. The number of false recognition images to CR is higher compared with those of the other
scene categories.

The computational processing time of our method was approximately 3 s per image that depends
on the number of AKAZE feature points. The calculation burden was slight in the test mode of
SOMs and CPNs. As our former study, we implemented back-propagation neural networks on
field-programmable gate arrays (FPGAs) [36]. We consider that we can actualize real-time video
processing used for robot vision applications if we use the FPGA implementation technology of
part-based feature descriptions [37].

Table 2. onfusion matrixes in sunny conditions.

Ihigh BO CR EO KT PA

BO 21 35 16 30 13
CR 20 277 21 39 22
EO 20 41 33 19 11
KT 18 41 18 48 14
PA 10 37 13 20 36

Ilow BO CR EO KT PA

BO 17 41 20 24 15
CR 20 286 18 27 26
EO 17 40 36 15 12
KT 16 52 20 36 16
PA 10 37 13 20 36

Table 3. Confusion matrixes in cloudy conditions.

Ihigh BO CR EO KT PA

BO 32 38 13 23 9
CR 18 306 23 28 18
EO 15 43 30 23 14
KT 27 60 16 43 16
PA 10 37 12 17 40

Ilow BO CR EO KT PA

BO 33 41 11 19 12
CR 17 309 18 29 22
EO 12 39 25 32 11
KT 16 68 17 45 18
PA 12 55 9 15 24
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Table 4. Confusion matrixes in night conditions.

Ihigh BO CR EO KT PA

BO 34 45 19 20 10
CR 19 307 36 28 14
EO 20 57 42 27 8
KT 18 60 22 40 11
PA 10 55 9 18 33

Ilow BO CR EO KT PA

BO 23 66 17 17 8
CR 14 326 29 25 16
EO 12 67 33 22 15
KT 12 79 13 41 7
PA 8 60 12 10 38

5. Human Detection Experiment

5.1. Dataset Details

As a preliminary step prior to basic performance evaluation of HOG-based human detection,
we used EPFL benchmark dataset [38]. This dataset is provided by the Computer Vision Laboratory,
School of Computer and Communication Sciences, Swiss Federal Institute of Technology in Lausanne.
The video sequence images of EPFL dataset were obtained using multiple cameras installed 2 m
above from the ground. For this evaluation experiment, we selected image from four scene categories:
Laboratory, Terraces 1 and 2, and Passageway. After converting video images to static images in 1 fps,
we used 100 randomly selected images for the evaluation of human detection accuracies.

5.2. Evaluation Criteria

As evaluation criteria, we used the true positive rate (TPR), which is defined using true positive
(TP) images and false positive (FP) images as

TPR =
TP

TP + FP
. (22)

TPR is moreover regarded as primary as the aim to identify all real positive cases [39]. Moreover,
we used the false negative rate (FNR), which is defined using TP images and false negative (FN)
images as

FNR =
FN

TP + FN
. (23)

FNR is the proportion of real positives that are predicted negatives [39]. As an exception, TP and
FP are increased, respectively, to 1 and n− 1 if n detection windows are overlapped onto a detected
human. Similarly, TP and FN are increased, respectively, to 1 and n− 1 if a detection window contains
n detected humans.

5.3. Experimental Results

Figure 8 depicts sample images of human detection results. The green colored rectangles
demonstrate HOG regions in four scene categories. Table 5 presents TPR and FNR in each scene
category. The mean TPR and FNR for all images were, respectively, 85.4% and 41.6%. The FNR tended
to be higher, especially in Terrace 2, which recorded the highest TPR and the second highest FNR next
to Passageway. The TPR in Laboratory was 88.8%, which has the lowest FNR and the second lowest
of TPR next to Passageway. The TPR and FNR in Passageway were, respectively, the lowest and the
highest among four scene categories. This gap means detection difficulty because of the long-depth
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space and small shaped pedestrians at the scenes. In contrast, the both evaluation criteria showed
subordinated relations according to statistical features as an overall trend.

Herein, HOG has no invariant property for scale changes because graduated features are
calculated from fixed-size windows. Images tend to be easily recognized if pedestrians are sufficiently
large or close to a camera. In contrast, TN is increased if the pedestrians are relatively small or far from
a camera with low resolution. Moreover, TN occurred numerously in occlusion or corruption of more
than 50% that included for this benchmark dataset.

Figure 8. Human detection results: (a) Laboratory, (b) Terrace 1, (c) Terrace 2, and (d) Passageway.

Table 5. Accuracies of human detection.

Scene TPR [%] FNR [%]

Laboratory 88.8 27.2
Terrace 1 97.5 45.5
Terrace 2 100.0 50.5

Passageway 52.1 57.5
Avg. 85.4 41.6

6. Evaluation Experiment Using Benchmark Datasets Humans

6.1. Experimental Setup

For this evaluation experiment, we created our original time-series image datasets as a benchmark
measure used for indoor mobile robot navigation and position estimation. We used the Double mobile
robot (Double Robotics, Inc., Burlingame, CA, USA), as depicted the exterior in Figure 9a. The robot
equips a two-wheel independent driven unit with a lateral stability control. The robot high is 1190 mm
with 310 mm vertical movement of the neck pole part using a single servo motor. We set the lowest
position of the neck during image data acquisition.

Because the robot had no dedicated camera as the default, we obtained images using a built-in
camera in the tablet computer attached to the head part of the robot. The major camera specifications
are shown in Table 6. The image resolution and frame rate are, respectively, 472 × 628 pixel and 30 fps.
Obtained images are transmitted to a monitoring laptop computer in real time via Wi-Fi. During the
experiment, dropped image frames occurred depending on radio wave conditions. We removed these
images from the benchmark datasets.
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Figure 9b depicts the route for the robot locomotion for capturing time-series images. As an
experimental site, we used a corridor in our university building. The left side of the forward direction
contains a void area with a part of an atrium from the ground floor to the ceiling with lighting
windows. The right side contains laboratories for students and personal office rooms for professors
with a different room size.

The length and wide of the corridor, respectively, 38.4 m and 2.1 m, which was sufficient for
straight locomotion of the robot. For position recognition, we divided the corridor into five zones of
equal length: Zones 1–5. We manually operated the robot using a keyboard on a laptop computer after
training in advance. The operational repetition made it possible to move the robot with a constant
speed without extreme meandering during image acquisition.

Figure 9. Human-symbolic autonomous locomotion robot in an actual environment: (a) Mobile robot
Double and (b) Experimental environment.

Table 6. Major camera specifications of the Double mobile robot.

Resolution 472 × 628 pixel

Frame rate 30 fps
Exposure Auto

Focus Auto

6.2. Dataset Details

Regarding the memory resource capacity and a computational processing cost, we converted
captured video images in 30 fps to static images in 10 frame intervals. Figure 10 depicts sample images
in respective zones. The images from the left to the right correspond to Zones 1–5. The upper and
lower images respectively correspond to those with and without humans. The right-side images
contain several objects, such as posters and doors, as VL candidates. The left side contains few objects:
merely fire hydrants in the colonnade.

We divided datasets into two types: with humans and without humans in the images. The robot
moved in respective zones with constant speed. Regarding robustness for environmental changes
related to illumination patterns, we obtained datasets on different dates. Although the periodic
variation is included, the mean dataset length is approximately 90 s. We deleted images that contain
wireless communication errors from the datasets. The benchmark comprises 12 datasets named
Datasets A–K with humans used for evaluation and two datasets without humans used for parameter
optimization for our method.
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Figure 10. Sample images in each zone. Images from (a) to (e) correspond to Zones 1–5. Upper and
lower images respectively correspond to those with and without humans.

6.3. Feature Extraction

Figure 11 depicts feature extraction results for the respective mask images. For our method,
AKAZE features are extracted from Iout with high saliency and without human regions excluded using
HOG. We described VL features with no human effect. Figure 11e depicts extracted AKAZE features
that are distributed densely on humans and posters installed on the left side of the wall.

Figure 11. Feature extraction results in Zone 4: (a) Iorg, (b) Ism, (c) AKAZE on Ism, (d) Ihog, (e) AKAZE
on Iout.

Figure 12 depicts feature extraction result images in Zones 1–3 and 5. The results of Zone 1 are
similar among images because of the lack of humans. Although AKAZE feature points were extracted
on a human in Zone 2, they were disappeared in our method. Alternative feature points were extracted
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in the upper and vertical frames of the door. In Zones 3 and 4, feature points were dense for the posters
compared with the humans. Using Ihog, no feature points were extracted on the humans. Alternative
feature points were extracted from the posters. Although HOG windows were falsely detected for the
fluorescent lights on the ceiling in Zone 5, the influence was slight because the bench was recognized
as a high-saliency region.

Figure 12. Feature extraction results: (a) Zones 1, (b) Zone 2, (c) Zone 3, and (d) Zone 5. Colored circles
represent AKAZE feature points with scale and orientation.

6.4. Parameter Optimization

Our proposed method based on machine learning algorithms is sensitive for some major
parameters that affect recognition accuracies directly. As a preliminary experiment before the
evaluation experiment, we optimized three major parameters: the number of SOM mapping units as
codebook dimensions, the number of CPN mapping units as the resolution of CMs, and the number of
CPN learning iterations for the measure of learning convergence. Regarding appeared frequencies and
patterns of humans for this optimization, we used two datasets without humans in all images. As the
evaluation criteria, we used LOOCV same at the former experiment. For this validation pattern, one
dataset was used for learning and other datasets for testing, in five zones.

Figure 13 depicts the optimization result of codebook dimensions. The codebook size was changed
from 16 units to 512 units steps by square numbers. Although recognition accuracies were improved
according the increased number of codebooks, the highest recognition accuracy reached to 75.3% in
64 units. From this codebook size, the accuracies were reduced slightly. Although the accuracy reached
1.1% lower than the highest accuracy in 512 units, the accuracy dropped 21.5% lower in 1024 units.

Figure 14 depicts the optimization results of mapping units on CMs. The unit size was changed
from 10× 10 units to 50× 50 units, with steps by 10× 10 units. The respective maximum and minimum
recognition accuracies were 69.6% and 65.3%, which was merely a 4.3 percentage point difference.
The recognition accuracy on 30 × 30 units was 69.6% which was the same as that on 100 × 100 units.
For reference, the accuracy of 100 × 100 units was unsuitable for robot vision applications because
real-time processing must be done in combination with memory capacity and in consideration of
computational processing time. Therefore, we selected the smaller size for calculation load and a
memory size.
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Figure 15 presents the optimization results of CPN learning iterations. We evaluated recognition
accuracies in six patterns: 1× 10n (n =2, 3, 4, and 5) and 5× 10m (m =3 and 4) iterations. According
to increased iterations, the accuracies increased to 1× 104 iterations and reached maximum accuracy
of 69.6%. The accuracies decreased according to increased iterations more than 5× 10n iterations.
We considered excessive over-fitting for the extended locomotion distance. We assumed that the
optimum value of learning iterations changed according to increased images and applied their contents
for learning and testing.

Figure 13. Relation between codebook dimensions and accuracies.

Figure 14. Relation between CM sizes and accuracies.

Figure 15. Relation between learning iterations and accuracies.
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6.5. Experimental Results

Figure 16 depicts CMs generated as learning results for each dataset combination. The thermographic
color bars on the right side of the maps correspond to Zones 1–5. Category colors are assigned according to
thermographic color patterns defined by color temperature. Herein, the low color temperature in blue and
high color temperature in red respectively correspond to Zones 1 and 5. CMs created clusters according
to similarity of respective categories based on neighborhood and WTA learning. For complex features,
similar categories were distributed as partial clusters separated in several regions. The distribution
characteristics in each CM addressed that the complexity of VLs corresponded to position recognition.

Figure 16. CMs for each dataset combination.

Figure 17 depicts test results for all datasets. Color patterns correspond to color temperatures
of respective scenes on the CMs, as shown in Figure 16. Correct recognition is defined as sequential
changes from low color temperature through high color temperature according to robot locomotion.
The experimentally obtained results included false recognition partially that were depicted as mixed
color patterns.

Table 7 presents recognition accuracies in each test dataset as evaluated using LOOCV. The second
and third rows respectively present recognition accuracies of our method and the comparison method
without Ihog that is defined using the mask image Icmp as

Icmp = Iorg ∧ Ism. (24)

The comparison method extracted AKAZE feature points from Icmp.
The mean recognition accuracy of our method was 49.9%. The highest and lowest recognition

accuracies were, respectively, 60.9% for Dataset G and 38.2% for Dataset B. The 22.7% difference of
the accuracies includes scene complexity and environmental diversity of human movements on each
image capturing date.

The mean recognition accuracy of the comparison method was 46.7%. Although the method
used the same dataset, the accuracy was 3.2 percentage points lower than that using our method.
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The highest and lowest recognition accuracies were, respectively, 54.2% for Dataset A and 35.1% for
Dataset F. The difference of the accuracies was 19.1% that corresponded to 3.6 percentage points lower
accuracy than that of our method.

Figure 17. Test results for all datasets. Color patterns correspond to the CMs.

Table 7. Recognition accuracies of our method and comparison method without Ihog.

Dataset Our Method [%] Comparison Method [%]

A 51.6 54.2
B 38.2 40.9
C 56.9 47.1
D 49.3 40.0
E 43.1 52.9
F 40.0 35.1
G 60.9 54.2
H 51.6 46.2
I 54.7 47.1
J 58.2 48.4
K 43.6 47.6
L 50.7 46.7

Average 49.9 46.7

6.6. Confusion Matrix Analysis

We analyzed false recognition details of our method and the comparison method using a confusion
matrix measure. Table 8 denotes confusion matrixes in each recognition result. The confusion matrix
of our method, as shown in the left table, is the sum of all LOOCV results for 12 datasets. For the 540
images in Zone 1, which is the highest recognition accuracy, false recognition occurred for 173 images:
61 images for Zone 2, 42 images for Zone 3, 39 images for Zone 4, and 31 images for Zone 5. For this
experiment, false recognition occurred in neighbor zones because we restricted the robot mobility to
have constant and linear velocity.
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Table 8. Confusion matrixes.

Our Method

Zone 1 2 3 4 5

1 367 61 42 39 31
2 66 219 94 79 82
3 54 92 259 83 52
4 36 93 103 216 92
5 39 83 73 59 267

Comparison Method without Using HOG

Zone 1 2 3 4 5

1 395 53 45 37 10
2 72 202 109 94 63
3 64 77 223 75 101
4 64 82 77 236 81
5 26 83 117 109 205

6.7. Discussion

The camera mounted on this robot was set to the forward direction. For this restriction, Zone 1
contains all features of other four zones. In contrast, those zones contain no feature of Zone 1.
According to robot locomotion, overlapped features among zones are decreased. In Zone 5, no features
of other zones exist because of this restriction. Recognition of Zone 1 was the most difficult of the five
zones. However, as a characteristic of the datasets, people in each scene are not increased. The number
of persons captured within the visible range is greater in Zones 3 and 4 in front of the laboratory.
The recognition accuracy in Zone 1, which has small human influence, was found to be higher than
those of other zones because of the overlapping VL proportion and reduced number of people.

Among the five zones, Zone 4 was found to have the lowest recognition accuracy. For the total
540 images, 216 images were recognized correctly for Zone 4. The false recognition to Zone 3, which is
the previous zone of Zone 4, is the maximum: the 103 images are nearly half of the correct images.
As shown in Figure 9b, monotonous scenes were continued in the corridor, especially in Zones 2–4,
as shown sample images in Figure 10. For these zones, VLs are extracted from posters that consist of
various contents, and doors, and which are used for the same structure and patterns in each room.
We consider that it is a challenging task to recognize these zones compared with Zones 1 and 5. As
shown in Figure 10, visual features in these zones include chairs, vending machines, a rest space on
the right side with a corner, and a walkway along with a void area.

The comparison result depicted in the right table demonstrates similar tendencies to those found
for the result of our method. Recognition images were decreased, especially in Zones 2–5, which
have a larger human influence. In Zone 1, falsely recognized images were fewer than those obtained
using our method. As the preliminary experiment showed, this result is related to the HOG accuracy.
The FPR occurred more frequently in Zone 1 than in other zones. The lighting on the ceiling, which
is inappropriate as a VL candidate, was falsely recognized as people in Zone 1. The FPs were few
because people clearly were present in the environment. We consider that the uniformity of human
appearance frequency of humans in the datasets is undesirable for a benchmark. Actually, places
for which human influence is changed to large or small are actual environments. For this evaluation
experiment, robot locomotion was limited to five zones with total length of 38.4 m. To expand
applicable environments with obtaining benchmark datasets, we expect to develop a method that
learns comprehensively including the appearance frequency of people and recognition of positions.
Regarding false recognition for each zone, we infer that further study is necessary for boundaries and
zones recognized as a category.

Although our evaluation target was all images of the datasets while the robot was moving,
VL features have no sudden change in the boundaries of switched zones. For the continuous variation
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of image features, learning slight differences with teaching signals in supervised learning is not only
a challenging task for semantic scene recognition. It is also difficult because of a lack of practical
use. For our experiment, we divided the route into five zones of fixed length. We will examine a
method that divides boundaries with semantic categories as zones using unsupervised and incremental
learning algorithms. According to expanding applicable environments for position estimation at any
zone including boundaries, we will reuse our existing method [40] for acquisition of world images by
a mobile robot. For this method, the robot recognized a position using time-series image sequences
obtained using a monocular camera with a pan function.

Finally, we have no comparison results with other state-of-the-art methods. Our proposed method
uses CPNs for recognition. We consider that it is possible to replace state-of-the-art methods including
deep learning according to the progress of machine learning algorithms.

7. Conclusions

This paper presented a VL-based scene recognition method for the robustness of human influence.
The proposed method described VL features using AKAZE on SMs after excepting human regions
using HOG. We used SOMs to create codebooks as visual words and CPNs for mapping features
into a low dimension space as a CM based on neighborhood and WTA learning. As a preliminary
experiment, we conducted evaluation experiments using KTH-IDOL2 benchmark datasets with three
illumination conditions. The experimentally obtained results using leave-one-out cross validation
(LOOCV) revealed that recognition accuracy of high-saliency feature points was higher than that of
low-saliency feature points. Moreover, we conducted evaluation experiments using EPFL benchmark
datasets for detecting pedestrians as the basic performance evaluation of HOG detectors. Furthermore,
we created our original benchmark datasets including humans in time-series images obtained using
a mobile robot. As evaluated using LOOCV, the recognition accuracies of our method and the
comparison method were, respectively, 49.9% and 46.7%, which represented a 3.2 percentage point
superiority of our method. The analysis using a confusion matrix revealed that false recognition
occurred in neighboring zones. This trend was reduced according to the zone separations according to
the robot locomotion.

Future work should include expanding benchmark dataset acquisition, application to large-scale
environments including various appearance patterns and frequencies of people, incorporation of
incremental learning approaches, attending deep learning mechanisms with low computational
burden, invariant of VL feature changes near zone boundaries, combined with a map created using
SLAM as visual SLAM, considering VGI-based landmarks, and position recognition while terminating
locomotion as actualizing a human-symbolic robot. Moreover, we would like apply our method
to smart homes whose living conditions could be improved by human-centered robot solutions for
actualizing smart living and smart cities.
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Abbreviations

The following abbreviations are used in this manuscript:

SLAM simultaneous localization and mapping
LRFs laser range finders
VL visual landmark
SMG saliency map graph
SMs salience maps
SIFT scale-invariant feature transform
SVMs support vector machines
AR augmented reality
GVG generalized Voronoi graph
PIRFs position invariant robust features
AKAZE accelerated KAZE
HOG histogram of oriented gradients
ACMNs adaptive category mapping networks
CM category map
SOMs self-organizing maps
CPNs counter propagation networks
ART adaptive resonance theory
FMs feature maps
WTA winner-take-all
GT ground truth
PA printer area
BO one-person office
EO two-person office
KT kitchen
CR corridor
LOOCV leave-one-out cross-validation
FPGAs field-programmable gate arrays
TPR true positive rate
TP true positive
FP false positive
FNR false negative rate
FN false negative
VGI volunteered geographic information
BGVS Graph Based Visual Saliency
HTM Hierarchical Temporal Memory
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