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Abstract: In this paper, the problems of event- and self-triggered control are studied for a nonlinear
bicycle robot model. It has been shown that by applying control techniques based on triggering
conditions, it is possible to reduce both state-based performance index, as well as the number of triggers,
in comparison to a standard linear-quadratic control which consumes less energy of the control system
and decreases the potential mechanical wear of the robot parts. The results presented in this paper open
a new research field for further studies, as discussed in the Summary section, and form the basis for
further research in energy-efficient control techniques for stabilizing a bicycle robot.

Keywords: event-triggered control; self-triggered control; unmanned bicycle robot; linear-quadratic
regulator (LQR) control

1. Introduction

The bicycle invented by Karl von Drais [1–3] operates in an upright unstable equilibrium point,
just as many animals do, leading to its inverted pendulum-like structure. Such structures are usually
underactuated, which in the case of vehicles makes riding them fun. However, when handicapped or
elderly people use them, additional stabilization units are welcome.

Current applications of such units enable one to stop the bicycle from maintaining its balance
without any external forces, for instance, by using reaction wheels (see, e.g., a satellite application [4]).
The reaction momentum phenomena can be found in multiple situations (see [5–7]). Numerous control
laws have been used to control the reaction wheel pendulum, such as sliding mode control [8],
fuzzy logic control [9,10], linear control laws with the use of feedback linearization (FBL) [11],
predictive control [12], and neural network control [13]. In this paper, we aim to extend this list
from a self-triggered control approach.

Dealing with the control task of bicycles using a traditional approach, when the moment of forces
is exerted on a handlebar, especially for low linear speeds, e.g., 1 m

s , is troublesome. Stabilization by a
reaction wheel is, however, independent of the speed of the bicycle (robot). There are widely applied
solutions in single-track vehicles stabilization, such as that of Lit Motors Inc. [14], where stabilization
is based on using moments of forces resulting from a gyroscopic effect exerted by two rotating masses
with variable rotation axes, and of Honda Riding Assist [15], which enables stabilization of a motor
by controlling its handlebar. The problem, still, is the energy efficiency of such control laws. In the
current paper, self-triggered and event-triggered control approaches are considered, being active only
at certain time instants, and are used to present the energy-efficient control laws of such a structure.

The considered bicycle robot model has the same equilibrium point as a usual bicycle and has
been built and used for experimental tests in our previous work. In this paper, the authors present the
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next step in their research on the control of this mechanical structure. In previous papers, the authors
performed 4DoF simulations [16] by introducing robustness into the linear-quadratic regulator (LQR)
control scheme or by comparing different control strategies, e.g., LQR, LQI, and LMI-based LQR
control in [17]. The results helped the authors to focus on problems with a lesser DoF to be concerned,
e.g., by introducing robustness into LQR/LQI control laws with results based on experiments [18]
and then by introducing feedback linearization to a simulation model [19], with an in-depth analysis
of the impact of the initial conditions and the robustness parameter [20], and different linearization
schemes [21]. In [22], the authors extended the results, referring to the best combination of control
approaches at the research stage of [18] when feedback linearization was used, for possible actuator
failure in order to represent the uncertainty introduced by the linearization of the robot model or by
possible constraints imposed on the control signal.

The current challenge in control systems, especially those where sensor readings or actuator
actions should be made only when necessary, is to preserve the control performance of the closed-loop
systems. Since control loops no longer have at their disposal enough communication resources,
these implementation aspects have become important. Two of the most important techniques that
reduce occupation of the bandwidth to the minimum necessary level and, at the same time, allow for
the reduction of control energy, exerting control signals only when needed, are event- and self-triggered
control algorithms. In the first one, the state of the plant is continuously measured, and the triggering
condition indicating when to act monitors the plant continuously. In the self-triggered system, there is
a prediction mechanism available, defining when updates in control should be triggered.

The above is the reason why authors have decided to perform the next step in their studies to find
an efficient way of modifying the formerly presented control laws in the bicycle robot research field.
These control approaches seem most appealing from the viewpoint of the energy of the control signal,
which, whenever changed, relates to the changing rotation velocity of the reaction wheel, requiring
higher energy consumption.

The novelty of this paper is the application of the proposed control strategies to a single-track
vehicle with a stabilization task, taking energy efficiency of the control law into account. The similar
up-to-date approaches involve the stabilization of the motor by a gyroscopic effect by means of three
rotating flywheels [14], the stabilization of motorcycles driving at a low speed by the automatic
change in the rotation angle of the handlebar and the angle between the fork of the handlebar and
the ground [15], or, in a less common approach, the stabilization of a cube on one of its corners [23].
No triggering approaches have been, to the best of the knowledge of the authors, applied to bicycle
robot control tasks.

The paper presents simulation studies related to a nonlinear model developed, tested, and verified
at multiple stages of previous experiments (see the above references). The paper is structured as follows:
Section 2 introduces the mathematical model of the robot. Section 3 presents the considered control
strategies that extend those considered hitherto. In Section 4, the experimental model is explained
in brief, with a comparison of performances of the considered control strategies. Section 5 provides
a summary.

2. Mathematical Model of the Considered 2DoF Bicycle Robot Model

A two-degrees-of-freedom dynamic model [24] of the bicycle, taking the deflection angle from
the vertical pose and the angle of rotation of the reaction wheel into account, is used in the form of an
inverted pendulum. In addition, the authors have assumed that the handlebar is still, and centrifugal
forces do not affect the whole structure. In this way, the actuator impact on the bicycle robot is studied
for the considered control regime only.
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The mathematical description of a 2DoF robot model is given by the following set of non-linear
differential equations [19,20]:

ẋ1(t) = x2(t) (1)

ẋ2(t) =
g hr mr sin(x1(t))

Irg
− br x2(t)

Irg
+ (2)

− bI x4(t)
Irg

+
km u(t)

Irg

ẋ3(t) = x4(t) (3)

ẋ4(t) =
km u(t)
II + Imr

− bI x4(t)
II + Imr

(4)

See Figure 1 for the kinematic scheme of the robot. The notation adopted in this paper is
summarized in Table 1, and such forces as centrifugal, gravitation, and reaction momentum from the
reaction wheel are taken into account with full reference to [25].

Figure 1. Kinematic scheme of the considered bicycle robot model.

Table 1. Notation and nomenclature used in this paper.

Symbol Meaning

x ∈ Rn state vector
x1 [rad] vertical deflection angle of the robot
x2 [

rad
s ] angular velocity of the robot

x3 [rad] angle of rotation of the reaction wheel
x4 [

rad
s ] angular velocity of the reaction wheel

u [A] ∈ R control signal (current of the motor)
mr[kg] weight of the robot
II [

kg
m2 ] moment of inertia of the reaction wheel

Imr [
kg
m2 ] moment of inertia of the rotor of the motor

Irg [
kg
m2 ] moment of inertia of the robot (rel. to the ground)

hr [m] distance between the ground and the center of mass of the robot
g [m

s2 ] gravity force
km [−] constant of the motor
br [−] friction coefficient in rotational movement
bI [−] friction coefficient in the rotation of the reaction wheel
P1, P2 contact points of the wheels with the ground
C1 center of the rear wheel
C2 center of the front wheel
LQR linear-quadratic regulator
ETC event-triggered control
STC self-triggered control
ISTC improved self-triggered control
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A basic friction model that assumes that the moment of the friction force is proportional to the
angular velocity of the robot in a specific joint has been used. At this point of research, the main focus
is on control techniques to use actuators effectively, not to verify the impact of the friction model on
the use of a model.

In order to apply self- and event-triggered control strategies, the model has been linearized using
the Jacobian matrix, such as in [16,18,21], to obtain ẋ(t) = AJ x(t) + b Ju(t), where

AJ =


0 1 0 0

ghr mr
Irg

− br
Irg

0 − bI
Irg

0 0 0 1
0 0 0 − bI

II+Imr

 (5)

b J =


0

km
Irg

0
km

II+Imr

 (6)

with the linearization point (units omitted) taken as xl = 0.
Secondly, the linearized model has been discretized into the following form:

x t+1 = Ax t + but (7)

yt = cTx t (8)

by means of step-invariant discretization with the sampling period TS = 0.01 s. The output of the
discrete-time model is y ∈ R, the constrained control signal u ∈ R, and the state vector x ∈ Rn, and
all are given in discrete time (denoted by subscript t, where t is a sample number referring to time
instant tTS), and c = [1, 0, 0, 0]T .

The real robot, whosemodel has been considered in this paper, is presented in Figure 2 for
illustrative purposes only. The current paper presents the early stage of research in the field, and, as in
the previous work of the authors, simulation results are considered first to identify the most attractive
control approach.

Figure 2. Schematic picture of the modeled robot [18].

Parameters of the model with their descriptions are given in Table 2, with the current denoted as
u(t) (i.e., the control input).

The implemented model has the same parameters as the real robot, which has been proved by
numerous simulation vs. experimental results comparisons performed by the authors. At first, it is
to be stressed that all parts of the robot have been initially weighed using a professional weight with
the precision of ±1 g. The moment of inertia (MOI) of the reaction wheel on the basis of its inner r1,
its outer r2 radii, height l, and mass density ρ has been evaluated on the basis of
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Irw = ρπl
(r1

2 − r2
1)(r

2
2 + r2

1)

2
,

and afterwards verified by the use of Autodesk Inventor software, which has a tool to estimate
moments of inertia of rotating elements. The MOI of the motor has been obtained by modeling the
rotor in Autodesk Inventor, again made of the same material as the real one, which in addition has
been verified by means of calculating the moment of inertia of a rotating cylinder, with the diameter
equal to the diameter of the rotor, measured by a precision caliper and weighed prior to that. The MOI
of the robot relative to the ground has been obtained from Autodesk Inventor and verified by the
Steiner formula to calculate moments of inertia for rotating masses with rotation axis shifted by a
distance d. Distance from the ground to the centre of the mass has been obtained on the basis of

r 0 =
∑k mkr k

∑k mk
,

where r k represents the known locations of the centers of masses of the components of the robot
(Autodesk), and mk represents their weighed masses. The gravity constant has been taken from
physical tables, and the motor constant has been obtained on the basis of the specification of the motor
(the moment of force equals the product of the motor constant and the motor current, and the nominal
current and moment have been given in specification of the motor. The friction coefficient in the robot
rotation has been estimated by a trial-and-error approach during real-world experiments. By means
of improving the construction of the real robot, the friction effects have been minimized, and the
coefficient has subsequently been selected by means of simulation to mimic the experimental results,
related to angle delays in rotating joints of the robot. The same holds for the friction coefficient of the
reaction wheel.

Table 2. Parameters of the unmanned bicycle robot.

Parameter Value Description

mr 3.962 kg weight of the robot
II 0.0094 kg

m2 moment of inertia (MOI) of the reaction wheel
Imr 0.001 kg

m2 MOI of the rotor
Irg 0.0931 kg

m2 MOI of the robot related to the ground
hr 0.13 m distance from the ground to the center of mass
g 9.8066 m

s2 gravity constant
km 0.421 motor constant
br 0.0001 friction coefficient in the robot rotation
bI 0.0001 friction coefficient of the reaction wheel

In addition, it has been assumed that the measurement of the output of the closed-loop system
y(t) = x1(t) (see (8)) is subject to white noise with normal distribution, to reflect the real-world conditions.

3. Considered Control Strategies

3.1. Introduction

Up to this point, as presented in the first section of this paper, the authors have focused on different
linearization schemes applied to both discrete-time and continuous-time control techniques. This has
led to identifying the most attractive control scheme [22], being at the same time energy-effective.
Starting again from LQR approach the authors turn their attention now to triggered control techniques,
which should allow to decrease both energy consumption (related to change in rotation of the reaction
wheel), and at the same time reduce the mechanical wear of a robot. In order to satisfy this condition,
three control techniques are considered, and finally compared, as presented in the following sections.



Robotics 2018, 7, 77 6 of 15

3.2. Preliminaries—Standard LQR Control

In this paper, three approaches are compared. As the reference point to all other considerations,
the standard LQR control law of the form

ut = kTx t (9)

is taken into account, where x t is the complete sampled state vector from the robot, originating from
the nonlinear model of (1)–(4), which can be obtained from a full-state observer. This approach is
presented here whenever a triggering parameter is taken as γ = 0. The remaining control approaches
are presented in the two following subsections.

The optimal vector k from (9) in a traditional approach is the solution for

kT = −
(

bTPb + R
)−1

bTPA (10)

P = Q + ATPA− ATPb
(

bTPb + R
)−1

bTPA (11)

where P > 0 is the solution to the Riccati equation, and appropriate vectors and matrices result from
(7) and (8). and the performance index

J =
∞

∑
t=0

(
xT

t Qx t + Ru2
t

)
, (12)

with Q ≥ 0, and R ≥ 0 as design criteria in the standard LQR approach.

3.3. The Event-Triggered Control Approach

Let us assume that x∗t is the most recently transmitted measurement of the full state of the
nonlinear plant to the controller at sample t (at the same time, it can be obtained from a state observer
on the basis of the separation principle [26]). Transmitting states to the controller, and the control
update action, is based solely on triggering conditions. If a triggering condition is met, the state is
transmitted to the controller, and the control ut sample is updated accordingly to the law of (9), to the
form where x t := x∗t . Otherwise, no state updates are transmitted, and the control action of (9) is not
updated and is kept at a previously generated value. In this case, no calculations are needed, which
reduces the computation burden, reduces the use of bandwidth, saves energy, etc.

According to [27,28], for the event-triggered system, the following triggering condition is used:∣∣∣kTx∗t − kTx t+l

∣∣∣ > γ
∣∣∣kTx t+l

∣∣∣ (13)

where γ > 0 can be related to a threshold value, and k is calculated on the basis of (10), (11), and l = 1, 2, ...
(i.e., l grows until the condition of (13) is violated). This condition is related to a Lyapunov function.

If the condition (13) is met, the control signal is generated according to (9), where x t := x∗t,
updating the state x t, which corresponds now to the most recent measurement, accepted by the
condition. In the other case, we simply move to the next sampling period, verifying (13) at the next
sample hit. The value γ > 0 allows one to define the frequency of triggers and, at the same time,
updates in the control signal, whereas for γ = 0, and by supplying the state on the basis of the
separation principle, a conventional LQR-type control is obtained.

The authors of [27] relate (13) to the quadratic event-triggering condition

zT
t+lΓzt+l > 0 (14)
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where

zt+l = [xT
t+l , x∗Tt ]T (15)

Γ =

[
(1− γ2)kTk −kTk
−kTk kTk

]
. (16)

In addition to (13), one can also assume the maximum number N of permissible sampling periods,
after which a control update must take place. In this paper, it has been assumed that N = 10.

3.4. The Self-Triggered Control Approach

In the case of event-triggered systems, the triggering condition is to be verified at all sampling
instants, which requires additional computational power. In the self-triggered control approach, the
control signal is updated whenever the sampling instant, calculated on the basis of, e.g., internal
prediction and a triggering condition function, is satisfied, which requires the availability of the model
of the plant.

In this approach, an altered method is inspired by [29–31], where the condition (13) is verified with
respect to the prediction of x t+l made at sample t. This prediction, accompanied with the information
about the next sample hit, is obtained from (7) and (8). To perform it, the control signal is assumed
to be constant, and the first predicted sample of x∗t that violates the triggering condition yields the
control update time instant.

Therefore, the triggering condition (13) for self-triggered control (STC) has the following form:∣∣∣kTx∗t − kT x̂ t+l

∣∣∣ > γ
∣∣∣kT x̂ t+l

∣∣∣ (17)

where x̂ t+l are predicted states x t+l with the use of the discrete model (7), i.e., according to

x̂ t+l = Al x t +
[

Al−1b . . . Ab b
]


ut
...

ut

ut

 , (18)

where x t = x∗t and ut = kTx∗t .
The advantage of this approach is that there is no need to perform continuous measurements, and

the actual state is measured whenever the control signal is updated, which improves energy-saving
properties and reduces the occupation of the communication channel. A serious drawback, however,
is that the prediction in this approach, is based on a linearized model.

It opens, though, a new field of research, taking different linearization schemes into account.

3.5. The Improved Self-Triggered Control Approach

In this approach, it has been assumed that the prediction of the state x t is available at time instant
t, and in order to calculate the control that suffices until the next x∗t , it is assumed that the state is used
to compute samples of the control signal until x∗t appears. In this way, the control signal ut is constant
no more but simply satisfies (9).

The triggering condition for ISTC is the same as for STC, (19), but now it is assumed that the input
signal can change between triggers is constant. Therefore, the predictions of x t+l are calculated using
the following model:
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x̂ t+l = Al x t +
[

Al−1b . . . Ab b
]


ut

ut+1
...

ut+l−2
ut+l−1

 . (19)

In addition, a cut-off constraint imposed on ut at the level of ±2 A is taken into account, to mimic
the real behavior of the robot controlled by the proposed scheme. Next, a complete state measurement
is transmitted over the control channel, allowing one to calculate its prediction and improving the
control quality, in comparison to standard STC. A similar approach is adopted in [32], where it is
assumed that control signal samples are known between consecutive update instants.

4. Simulation Study

As in our previous paper [21], extensive simulation studies have been performed, to analyze and
compare the three presented approaches, namely,

• standard LQR control, where the following weighting matrices have been taken: Q = I4×4, R = 1,
and the control signal is updated at every step with sampling period TS = 0.01 s,

• event-triggered control, where it is assumed that the control update should be made no less than
every 10 sampling periods, which forms an additional triggering condition, TS = 0.01 s, and

• self-triggered control/improved-self triggered control based on prediction from the linearized
model, where it is also assumed that control update should be made no less than every 10 sampling
periods, TS = 0.01 s.

All the simulations have been performed for the following initial condition x(0) = [0, 0, 0, 0]T

(units omitted), and a noise sequence acting on x1.
A set of flowcharts, depicting the algorithms of event-triggered control (ETC), STC, and improved

STC (ISTC) methods, respectively, has been included in Figures 3–5, where red denotes LQR control
(saturated) with a linear, continuous-time model, green denotes a nonlinear continuous-time model,
and yellow denotes a linear discrete-time model for prediction purposes.

Figure 3. Flowchart of the event-triggered control (ETC) algorithm.
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Figure 4. Flowchart of the self-triggered control (STC) algorithm.

In Figure 6, a set of responses of closed-loop systems is presented, where for TS = 0.01 s the
maximum number of triggers in the case of LQR control equals 500 (i.e., for γ = 0). As can be seen,
all the considered control approaches yield in comparable control performance, resulting in proper
stabilization of the bicycle robot model in an upright position. The difference is in the behavior of
control signals, where, in the case of LQR control, a continuous update is visible, increasing control
signal variance, leading to both the potential mechanical wear of the robot parts and the severe
occupation of the communication channels. The remaining control approaches allow one to update the
control signal less frequently, preserving the control performance at the same level.

In the case of the considered TC approaches, much less frequent update occurrences are visible,
at the cost of more abrupt changes in control signals, which are smoothed in the case of the ISTC
approach, in which velocity signals (i.e., states x2 and x4) are smoothed as a result of model-based
updates in the control signal, spanned over several samples.

It is to be stressed that the considered methods need considerably fewer updates than the two
other approaches to obtain similar responses, at the cost of more computations (as in a standard
LQR control).
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Figure 5. Flowchart of the improved STC (ISTC) control algorithm.

In Figure 7, the numbers of triggering events are presented for the considered control approaches,
depicting an almost linear reduction trend for increasing γ in the case of ETC control, and a similar
trend in the case of STC and ISTC control. It is visible that STC/ISTC require slightly more triggers in
comparison to ETC, but this comes with the benefit of a less severe occupation of control channels, as the
triggering condition is based on the model, not solely on the measurements, being a good alternative to
the LQR approach requiring not only continuous measurement transmission but also 500 control updates
in the considered control horizon, as shown in the simulations presented in this paper.
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Figure 6. Considered control strategies—time responses.
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Finally, Figure 8 presents performance indices for the considered control strategies, stating that

I =
∫ tmax

0
‖x(t)‖2 dt (20)

where tmax is the simulation time. The presented performance index plot demonstrates the trade-off
that potentially can be made between the closed-loop performance and the number of triggers in the
corresponding control strategies.

Based on the results presented, it can be stated that the main point of application of the presented
approach can be any control problem, where control updates are connected with additional energy
consumption, unwanted transient behavior of the system, increased mechanical wear of the parts,
or abrupt changes in signals, which should be avoided.

γ
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Figure 8. Quality indices for considered control strategies.

5. Summary and Future Work

In this paper, we aimed at providing an overview of possible control strategies that can potentially
be used in the stabilization of a bicycle robot, taking the occurrences of an actuator use into account.
The aim was not to cover all of the most up-to-date results, as this field in the last couple of years has
expanded extensively, but to identify potentially interesting methods to perform a set of experiments
on the bicycle robot. It has been shown that, despite the reduction in the frequency of control updates,
it is still possible to stabilize the structure in the upright, unstable equilibrium point, increasing the
energy efficiency of the control system.

The main point of this paper is to identify the control approach, which could be used most
effectively on the real robot, as the authors did in their previous papers. According to the initial tests,
the control algorithms proved to be effective, and the implementation on the real robot will be the
matter for subsequent publications.

Up to this point, the STC or ETC mechanisms have been used for underactuated robots in the
case of, e.g., an underwater robot [33], with no ISTC approach compared or verified. Tests of the
application to bicycle robots have not yet been reported, to the best of the authors’ knowledge, though
some papers are related to simple inverted pendulums in the form of event-triggered control [34] or to
a linearized model of the pendulum and self-triggered control [35].

In all approaches, a Lyapunov function is applied to build a triggering condition, the function
is widely used in ETC and STC approaches. The ETC approach from this paper is based on [27],
and STC is inspired on [29–31], though the current paper uses a different prediction mechanism,
which originates from using a different model. Here, we use a discrete-time model obtained from the



Robotics 2018, 7, 77 14 of 15

linearization of the continuous-time nonlinear model at a point. In [32], it is remarked that there is no
need to send control commands between consecutive triggers. Like the presented approach, the full
control vector is sent. In their approach, however, the control is calculated for a continuous-time model,
with subsequent control sampling.

In future work, we would also like to identify the impact of constraints imposed on the control
signal, based on obtaining optimal control subject to control limits, to avoid implementing control
using cut-off constraints only. One of the approaches to be considered might be the so-called tube
MPC, and the STC control based on it. This could extend the result presented in [36] for linear systems
to nonlinear plants, such as the bicycle robot itself, using, e.g., feedback linearization techniques, on the
basis of our previous experience with the bicycle robot, especially [18,22]. In these papers, the feedback
linearization approach allowed us to identify the conditions where control energy consumption is
reduced by a visible amount, allowing one to maintain high control performance, despite constraints
imposed on the current in the real robot.
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