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Abstract: A novel methodology is proposed herein to estimate the three-dimensional (3D) surface 
shape of unknown, markerless deforming objects through a modular multi-camera vision system. 
The methodology is a generalized formal approach to shape estimation for a priori unknown 
objects. Accurate shape estimation is accomplished through a robust, adaptive particle filtering 
process. The estimation process yields a set of surface meshes representing the expected 
deformation of the target object. The methodology is based on the use of a multi-camera system, 
with a variable number of cameras, and range of object motions. The numerous simulations and 
experiments presented herein demonstrate the proposed methodology’s ability to accurately 
estimate the surface deformation of unknown objects, as well as its robustness to object loss under 
self-occlusion, and varying motion dynamics. 

Keywords: deformable object; deformation estimation; shape recovery; computer vision; stereo 
vision; tracking; markerless 

 

1. Introduction 

Numerous multi-camera shape recovery methods were previously developed for the three-
dimensional (3D) modeling of physical objects (e.g., References [1–5]). Passive methods, in contrast 
to active methods, do not depend on feedback from visible and infrared radiation [6–12]. They are 
typically, grouped into static shape recovery, motion capture without deformation estimation, and 
motion capture with deformation estimation methods. Most such motion capture methods do not 
perform deformation estimation and solely rely on tracking through detection, due to factors such as 
constrained workspaces and off-line data processing. Some motion-capture methods, however, 
benefitted from deformation estimation for target windowing [6], surveillance [2,3,13–16], and 
interception tasks [17–19], although none offer a generalized approach for a priori unknown objects. 

Static, passive shape-recovery methods focus on generating a single, fixed model of the target 
object. The structure-from-motion (SFM) technique [20] generally estimates static geometry from 
uncalibrated cameras when provided with a large dataset of images [21–23]. Stereo-triangulation 
depends on known camera calibration parameters for accurate triangulation. High-density stereo 
matching methods attempt to maximize the surface sampling density of target objects through patch-
matching and resampling approaches [4,9,24,25]. The visual hull method carves a volumetric object 
through silhouette back-projection, and is capable of yielding accurate models given a large number 
of viewpoints [26–29]. Passive fusion methods further improve the accuracy of shape recovery by 
combining the visual hull approach with multi-view stereo [30–33]. All these static capture methods 
operate off-line and without an object model, as their objective is to generate a single instance of the 
model. In contrast, motion-capture methods recover shape over a set of demand instants where a 
known object model is used to improve capture accuracy. 



Robotics 2018, 7, 69 2 of 30 

 

Typical motion capture methods utilize an articulated object model (i.e., a skeleton model) that 
is fit to the recovered 3D data [34–38]. The deformation of articulated objects is defined as the change 
in pose and orientation of the articulated links in the object. The accuracy of these methods is 
quantified by the angular joint error between the recovered model and ground truth. Markered 
motion capture methods yield higher-resolution shape recovery compared to articulated-object based 
methods, but depend on engineered surface features [3,39]. Several markerless motion-capture 
methods depend on off-line user-assisted processing for model generation [40–42]. High-resolution 
motion-capture methods fit a known mesh model to the capture data to improve accuracy [10,43,44]. 
Similarly, the known object model and material properties can be used to further improve the shape 
recovery [45]. The visual hull technique can create a movie-strip motion capture sequence of  
objects [8,46–48] or estimate the 3D background by removing the dynamic objects in the scene [49]. 
All these methods require some combination of off-line processing, a priori known models, and 
constrained workspaces to produce a collection of models at each demand instant resulting in a 
movie-strip representation. Deformation estimation, however, is absent. 

Multi-camera deformation-estimation methods commonly implement either a Kalman  
filter (KF) [50–53], particle filter [54], or particle swarm optimization (PSO) [55] to track an object in a 
motion-capture sequence. Articulated-motion deformation prediction methods rely on a skeleton 
model of the target object. KFs were successfully implemented to estimate joint deformation for 
consecutive demand instants [2,13]. PSO-base methods were also shown to be successful in 
deformation estimation for articulated objects [56,57]. Mesh models combined with a KF tracking 
process produce greater surface accuracy for deformation estimation [3,14]. Patch-based methods track 
independent surface patches through an extended Kalman filter (EKF) [58], and a particle filter [59], 
producing deformation estimations of each patch. Many active-vision methods depend on 
deformation estimation, yet they develop ad-hoc solutions for a priori known objects, thus limiting 
the application to the selected target object [2,3,13,14]. It is, thus, evident that no formal method 
currently exists for multi-camera deformation estimation of a priori unknown objects. 

Herein, a modular, multi-camera method is proposed for the surface-deformation estimation of 
a priori unknown, markerless objects. The method firstly selects all viable stereo-camera pairs and, 
then, for each demand instant, captures synchronized images, detects two-dimensional (2D) image 
features, matches features in stereo-camera pairs, and removes outliers. The selection of the 2D 
feature detector and outlier filtering is modular. The method triangulates the 2D matched features, 
removes 3D outliers, and processes the triangulated features through an adaptive particle filtering 
framework to produce a deformation estimation. The particle filtering and projection tasks are 
modular, allowing alternative tracking techniques with varying motion models. The novelty of the 
proposed method lies in is the ability to cope with a priori unknown, markerless objects to produce 
accurate deformation estimates, compared to previous methodologies that require the objects’ 
models. A distinction must be made between the proposed methodology, and existing monocular 
deformation estimation techniques in literature. Specifically, state-of-the-art methods were 
developed and are currently under development for the monocular tracking and deformation 
estimation of surfaces. These methods recover, on-line, the current surface deformation up to scale. 
Specifically, many of these methods do not have a goal of scaled deformation recovery, which would 
only be possible in multi-camera (not monocular) systems. In contrast, the proposed methodology 
relies on the use of a multi-camera system to extracted the scaled deformation of the target surface, 
and then integrates an adaptive particle filtering technique to predicted the expected deformation 
necessary for reactive systems. 

The rest of the paper is organized as follows: Section 2 outlines the problem addressed; Section 3 
introduces the proposed methodology; Sections 4 and 5 present some of the simulations and 
experiments, respectively, used to validate the methodology; and Section 6 concludes the paper. 

2. Problem Formulation  

The accurate surface deformation prediction of an a priori unknown object is the problem at 
hand. The object is defined as any combination of solids and or surfaces with uniformly distributed 
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surface texture. The recovery of the object’s shape occurs at discrete points in time, t, designated as 
demand instants. The object is quantified by a collection of surface coordinate measurements for each 
demand instant, without regard for specific structures such as volumes or surfaces. 

The deformation of the object is defined as the motion of its surface coordinates between two 
demand instants. The deformation results in non-rigid motion of the object. Thus, the objective is to 
develop a methodology to accurately predict the deformation of the object’s surface at the next 
demand instant, t + Δt, where Δt is the change in time, given C number of cameras, without an a 
priori model of the object.  

The problem can be further broken down into several independent challenges. 

Set-Up: 

The work herein is constrained to passive range-data recovery. Active projection or laser 
scanners are not considered due to their dependence on a light-controlled environment. Successful 
detection of the object must produce accurate range data through triangulation of matched 2D 
features. The object must be located within the effective sensing range (ESR) of all cameras in the 
workspace.  

Shape Recovery: 

The system must extract object features from C images, correspond them for each camera pair, 
and determine which features pertain to the target object, and which do not. The challenge herein is 
the identification and segmentation of target features through extensive filtering techniques. Since 
the object model is not available for reference, an inherent error exists at every demand instant. 
Therefore, the shape-recovery method must account for such errors. Furthermore, without a distinct 
association between the object’s surface and extracted features, a robust tracking mechanism is 
necessary. 

Shape Representation: 

The shape representation of the target object must accurately represent the target object. The 
implementation of either a point cloud, mesh, or voxel-based object representation will determine the 
size and types of data that must be stored in the system, and how they may affect prediction. The 
shape representation of the object must be concise and robust for variable surface complexity. 

Tracking: 

The tracking process must account for the variable number of detected surface features. Each 
detected feature in 2D and 3D must be properly identified and recorded. Correct identification of 
features in 2D and 3D is essential for accurate triangulation and temporal tracking, and would result 
in the maximally dense shape prediction. The system must handle a large number of features in both 
2D and 3D. 

Prediction: 

Shape-deformation prediction must be made from a functional representation of the 
deformation dynamics. The motion model chosen must be able to robustly track a range of motions 
that may occur in an object’s deformation, such as accelerations and cyclic motion. An error-
compensation mechanism is necessary to ensure each prediction results in an overall reduction of 
prediction error relative to the motion dynamics. Furthermore, compensation may be required for 
handling motion outside the chosen model. The prediction method must handle a large varying 
number of features for which prediction is necessary.  

3. Proposed Method 

A novel, modular methodology is proposed herein for the surface deformation prediction of an 
a priori unknown object through a multi-camera system. The flow diagram of the proposed 
methodology is presented in Figure 1. The first step of the method is the selection of camera pairs for 
stereo triangulation. Once the pairs are selected, the following tasks are carried out for each demand 
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instant: (1) image capture from all cameras, (2) feature detection, (3) 2D matching and filtering, (4) 
triangulation and 3D filtering, and (5) tracking and prediction. The modular tasks, (2) to (5), enable 
robust implementation of the methodology for specific applications. The following sections describe, 
in detail, each task and the proposed architecture, the reasoning of each modular component for 
general application, and alternative architectures for modular components.  

3.1. Camera-Pair Selection 

The proposed methodology allows for a variable number of cameras in the workspace without 
a priori designation of stereo pairs. This task selects all viable stereo-camera configurations for C 
number of cameras based on their baseline separation, di, and angular separation θi.  

Firstly, all possible camera pairs are stored into a camera-pair index list, Kmax [2 × kmax], with the 
total number of pairs, kmax, determined by 

kmax = C!
2!(C − 2)!

. (1) 

Then, each ith pair in Kmax is tested to ensure that (i) both cameras are oriented in a similar 
direction, (ii) the optical axis separation angle θi is within a user-defined limit θmax, and (iii) the 
baseline distance is within a user-defined limit dmax.  

The orientation of the ith camera pair is tested by checking whether the dot product of the optical 
axes is positive (directional orientation), and by calculating the angular separation of the optical axes. 
Thus, the angle of separation of the cameras of a pair can be directly calculated to solve for both 
conditions as  

θ i( ) = cos−1 pO cL( )• pO cR( )( ) , (2) 

where po(cL) is the vector of the optical axis of the left camera, and po(cR) is the optical axis vector of 
the right camera of the ith camera pair tested from Kmax. 

The user-defined limits for camera separation, dmax, and θmax must be set by the selection feature-
detection algorithm. For example, dense photometric shape recovery methods [4,9,24,25,60,61] would 
require narrow baselines and low separation angles to maximize photometric consistency in a stereo 
pair. Unique key-based feature methods, such as scale-invariant feature transform (SIFT) [62,63], 
affine-SIFT (ASIFT) [64], speeded-up robust features (SURF) [65], or others [66], allow for larger 
baseline widths and angular separations. In this paper, the limits were set to 350 mm and 45° based 
on findings by Lowe [63] for unique key-based feature methods. The viable camera pairs were stored 
into an index list K [2 × kv], where kv is the total number of viable pairs. It is noted that, for the purpose 
of this work, SIFT features were chosen for simulations and experiments. Other approaches, such as 
photometric stereo, could also be implemented instead. However, it should be noted that photometric 
stereo methods require highly controlled lighting environments. 
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Figure 1. Proposed methodology. 

3.2. Image Capture and Feature Detection 

The image-capture task ensures synchronized image acquisition from all cameras. 
Synchronization yields consistent photometric conditions for all cameras and ensures the shape 
recovered is non-deformed due to temporal blurring from unsynchronized images. 

The main challenge in shape recovery is choosing a method that would best yield the maximally 
accurate shape of the object, given any limitations or assumptions of the system. Available methods 
include depth maps, structure-from-motion [21–23], stereo-triangulation, and visual hulls. In the 
context of our problem, the chosen method must, thus, yield the most accurate predicted deformation 
of the object.  

Deformation prediction requires an estimate of the motion, i.e., the 3D points must be trackable. 
Therefore, depth maps and the visual hull technique cannot be utilized due to their lack of tracking 
abilities. The SFM technique requires the motion of either the cameras or the object in order to recover 
shape, which results in a delay in motion estimation. Furthermore, SFM is typically applied to 
cameras with unknown calibration parameters, and yields lower quality shape than would stereo-
triangulation.  

Dense stereo methods [4,9] rely on patch matching in narrow baseline-stereo configurations, and 
do not produce stable trackable features. Thus, the only viable method for deformation prediction 
that remains is feature-based stereo-triangulation. Stereo-triangulation with unique-key features 
allows for tracking and higher-accuracy shape recovery with known camera parameters, and does 
not depend on the complete visibility of the target object. 
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The feature detection task locates all 2D image features in each camera’s image at the current 
demand instant. SIFT features were chosen herein due to their robust tracking and implementation 
stability [66,67]. However, one can note that our modular methodology allows for any unique key-
based method to be implemented in place of SIFT features. For example, ASIFT feature detection was 
shown to produce greater matching stability than would SIFT, although its implementation is 
currently limited in image size. Similarly, other methods were shown to operate faster than SIFT at 
the cost of matching stability. It is noted that SIFT features are stable up to 45° camera separation [63]. 
Therefore, fast object motion and deformation between demand instants can result in lost features. 
This can be combated through the addition of newly identified features for every demand instant. 
Similarly, the hardware platform must be built per application such that the demand instant 
processing time is minimized, it is achievable by the camera hardware, and it correlates, to a degree, 
with the maximum motion per demand instant expected from the object. In the case of an unknown 
object, this becomes a hardware optimization problem. It is possible that the hardware may not match 
the deformation speed of the target object, at which point recovery would not be possible. 

The features detected were then stored into a 2D database to offload random-access memory 
(RAM) requirements. Each feature was stored with its designated feature descriptor, pixel location, 
orientation, and the camera with which it was detected.  

3.3. 2D Matching and Filtering 

The 2D matching and filtering task consists of matching the detected features between pairs of 
cameras for each ith pair in K, and removing incorrect matches prior to triangulation. At first, all the 
previously detected features for the given cameras in the ith pair were loaded from the database. The 
matching process is dictated by the chosen feature detector. Typically, matching consists of locating 
pairs of 2D features whose keys are most similar though a dot-product operation [63]. The main 
difference for various feature-descriptors is the size of the key-identifier for the detected features; for 
example, SIFT features use a 128 8-bit integer key for each feature, while SURF uses a 64 8-bit key. 
Once the features for the ith camera pair are matched, the incorrect matches must be removed 
through a filtering operation. 

The filtering process allows for modularity in the 2D match filter implementation, i.e., the filter 
may be modified, replaced, or combined with another filter to remove outliers produced by the 2D 
matching process. The overall filter developed herein comprises two serial filters: the epipolar filter 
and the nearest-neighbor filter. 

The epipolar filter consists of sorting the matched pair listings and checking for the following 
four conditions: (i) unique left to right match, (ii) multiple left features to single right feature matches, 
(iii) single left feature to multiple right feature matches, and (iv) repeated matches of the same left to 
right matches. These conditions arise when the feature detector locates more than one feature in the 
same pixel coordinates (usually at different orientations), or was unable to produce a single best 
match (cases ii and iii). All redundant matches in case iv are removed, as they are the same coordinate 
matches. Then, for each remaining matched pixel–coordinate pairs, the epipolar distance is calculated 
in pixels by measuring the perpendicular distance from the feature coordinate in the left image to the 
projected epipolar line of the corresponding feature from the right image. Herein, the maximum 
epipolar distance, dPmax, was set to 5% of the square root of the image area in pixels—this ensures the 
metric is scalable with larger or smaller images. All matches that do not fit the 5% criterion are 
removed.  

The nearest-neighbor filter checks for the consistency of matched 2D features based on the 
location of the nearest neighbor matches. The filter loops over each remaining matched features in 
the left image, locates the n-nearest neighbors of a feature, and creates a matrix of the vectors from 
the jth 2D feature to the neighbors in the left, and corresponding right images, VL [2 × n], and VR [2 × n], 
respectively. The lengths of all vectors are calculated, and stored into vectors dL, dR, [n × 1], which are 
then normalized by the sum of all vector lengths, and are stored in vectors d*L, and d*R. The vector 
angles are calculated as  
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Above, any feature with a single error over 10% is removed, as it is most likely an incorrect 
match. The filters and their respective rejection criteria ensure the removal of most incorrect 2D 
matches that do not lie along the epipolar lines, and most incorrect matches that lie on the epipolar 
lines but are located in the incorrect image region. 

The implemented serial filters are a robust approach to filtering and removing incorrect 2D 
matches from key-based features. The modularity of the methodology allows for alternative filter 
implementations, and configurations. For example, a random sampling consensus (RANSAC) filter 
may be implemented in place of the epipolar or nearest-neighbor filter, or added as a parallel filter, 
as it is commonly applied for stereo-matching operations in image stitching, and model fitting [68,69]. 
Alternatively, the optimized random sampling algorithm (ORSA) may be applied in place of both 
filters to estimate the fundamental matrix and remove matches through the estimated epipolar 
geometry [64,70,71]. The main difference between the proposed method and methods such as 
RANCAS or the ORSA is that ours filters stereo matches using the known calibration data. RANSAC 
and ORSA, on the other hand, are robust estimators for determining the fundamental matrix for 
stereo-camera pairs. In contrast, the proposed method relies on triangulation of a known calibration, 
thus removing the need for estimation. The modularity of the method allows the user to choose task-
specific implementations of the filtering, which were not considered in previous methods.  

3.4. Triangulation and 3D Filtering 

The 2D matched, filtered features for each ith camera-pair in K are triangulated through ray 
projection and intersection. This yields kv-sets of 3D coordinates corresponding to each stereo-camera 
pair. Triangulation may result in errors of the 3D coordinates, e.g., if the 2D filter was not able to 
remove all outliers, some may remain and appear following triangulation. Therefore, a modular 3D 
filtering process is proposed herein. The proposed methodology requires that all cameras in the 
system must be calibrated for complete triangulation. All cameras used in stereo pairs must be 
calibrated as such.  

The 3D filter developed for the task is an ESR filter. The ESR filter removes all triangulated points 
outside of a stereo sensing range. The filter can operate in two modes—manual or automated. The 
former allows users to input the 3D range limits for each camera. Thus, any triangulated features 
outside this range for the ith camera pair would be removed. The latter mode calculates the depth of 
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field of each camera of the ith pair, and takes the maximum and minimum limits from both cameras 
as the range plus a user-defined padding percentage, κ, which adds κ times the range of the ESR on 
both the near and far limits.  

The ESR filter removes triangulated background artefacts and outliers too close to the cameras. 
The output of the triangulation and 3D filtering yields a matrix of sampled surface coordinates, X, 
and an indexed matching list for each camera pair in K that corresponds to all final, matched, and 
triangulated 2D features. The indexed 3D features are stored in a separate database to reduce the 
RAM load of the data used in the methodology. Off-RAM storage is a suggested improvement for 
functionality. Many features may be lost over time; thus, there is no need to retain them in the RAM. 
The ESR filter was found to be sufficient for 3D filtering following the extensive 2D match filtering. 

Triangulation and 3D filtering produces kT-sets of point clouds, XTR(k), for each kth stereo-camera 
pair. Each point cloud is then used to create a triangular surface patch, T(k), of the target object 
through a Delaunay triangulation. T(k) is herein defined as the triangulation map, wherein 
triangulation is the graphical subdivision of a planar object into triangles. The map is a size [npolys × 3] 
index matrix whose rows index the three points from XTR(k) that make up a given surface patch 
polygon. The surface patch is obtained by firstly projecting the point cloud into each camera’s image 
plane as a set of 2D pixel coordinates. One set of 2D coordinates is then triangulated using Delaunay 
triangulation. The triangulation map is then applied to the second set of 2D coordinates and checked 
for inconsistencies, such as incorrect edges. Incorrect edges are a symptom of incorrectly triangulated 
2D features. The incorrect edges are removed by removing the 3D points in XTR(k) that connect to the 
most incorrect edges. The result is a set of fully filtered point cloud matrices XTR(k) and their 
associated surface patches, T(k), as shown in Figure 2. 

 
Figure 2. Triangulated surface patches from each stereo-camera pair, units in [mm]. 

3.5. Tracking  

The tracking process implements 3D tracking-through-detection with a user-defined motion 
model. An unknown object implies an unknown motion model, which may be simple or complex. In 
order to set a standard complexity for the motion model, a constant-acceleration model was chosen 
for the tracking and prediction process. The benefit of the constant-acceleration model is its 
applicability to a range of target motions with limited data requirement, i.e., only three data samples 
are necessary for prediction. Alternative motion models are discussed at the end of the section. The 
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complete filtering algorithm is presented in Figure 3, and consists of three major streams: feature 
found—the handling of new triangulated points, feature tracked—the handling of points that were 
located across multiple consecutive demand instants, and featurelLost—the handling of points that 
were previously located but were not located at the current demand instant. 

The on-line adaptive particle filter loads the measurement data from the 3D database for the 
current and previous demand instants. Each 3D point from the previous demand instant is checked 
against the current set of 3D points based on the unique key-identifier assigned to them in 
triangulation to determine whether the point was tracked across demand instants. Three outcomes 
are possible: the point could have been tracked across demand instants, the point could have been 
lost, or the point is new.  

Automatic initialization identifies all newly triangulated points, and allocates space for the 
necessary particles for tracking, and a state-space measurement history of the last five demand 
instants. This process works for tracking starting from Demand Instant 0, as all triangulated points 
will be labeled as new in comparison with other methods that require an a priori demand-instant 
measurement [3,14].  

The feature found stream applies to all points detected in three or less consecutive demand 
instants. If the feature is only been detected in less than three consecutive instants, its state-space 
measurement is updated. Features triangulated in three consecutive demand instants have their 
motion estimated through a first- and second-order backward differencing operation.  

, (8) 

, (9) 

where Δt is the change in time between demand instants, X(t) is the 3D positional measurement of 
the given point, Ẋ is the estimated velocity, and Ẍ is the estimated acceleration. The constant-
acceleration model requires nine total states: three positions, three velocities, and three accelerations.  

The total number of particles, q, is user-defined. The number of particles used determines the 
accuracy of the prediction at the cost of computational power [54]. The number of particles may be 
varied on-line based on the calculation of the total effective number of particles [54,72]. Herein, the 
number of particles was kept static throughout all demand instants to avoid dynamic memory 
reallocation tasks. Therefore, each particle filtering instance initialized is composed of a [9 × q] particle 
matrix. The particles are drawn from a normal distribution for each tracked point.  

Q j = N x j
*,σ pj

2( ) , (10) 

where xj* is the nine-dimensional state-vector of the jth tracked point, and 𝜎  is its associated 
variance. The measurement variance, 𝜎 , is set equal to the particle variance, to ensure the partiality 
weighing step also adapts on-line with varying deformation dynamics. 

The particle variances are calculated as 

, (11) 

which are updated with every measurement of a tracked point. The on-line updating of the variances 
ensures the particles remain within close proximity to the measurement. The initial set of particles is 
then generated given the motion model and the particle variance. 
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Figure 3. Proposed shape-prediction algorithm. 

Points that are tracked for more than three consecutive demand instants are labeled as tracked 
and are processed through the feature tracked stream. As a new positional measurement becomes 
available at the current demand instant, the state-space measurement for a given point is calculated 
by Equations (8) and (9), and stored in the state-space measurement history. Thereafter, for each jth 
point, the set of projected particles Qj+ is loaded, and each nine-dimensional particle is weighed 
against the current state-space estimate xj*.  
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2πσ Nj
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, (12) 

where Wj is the weight matrix of all particles for the jth point. The weights are then normalized. 

Wj
* =

Wj

Wj
. (13) 

The normalized weight matrix Wj* is of size [9 × q]. The summed term is checked for a zero-
condition which occurs if the projection is too far off from the measured location. All states with a 
zero-sum condition bypass the resampling step, and new particles are generated from the most recent 
measurement. All remaining states with non-zero sums, i.e., states with accurate projections, are 
resampled through a sequential importance process [54]. The regenerated states and resampled states 
are combined into an updated Qj matrix. 

3.6. Prediction 

The prediction process relies on the user-defined motion model to correctly project the particles. 
The projection produces an estimate for all tracked particles’ poses for the consecutive demand 
instant. The prediction process occurs only in the tracked stream and follows the projection step. The 
projection step requires the updated particle matrix Qj, which is then projected to determine the 
expected state-space of the jth point at the next demand instant.  

Q j
+ = HQ j +U , (14) 

where Qj+ is the matrix of projected particles for the jth point, H is the [9 × 9] constant-acceleration 
state transition matrix, and U is the [9 × q] uncertainty matrix based on the particle projection variance 
(Equation (11)). The particle matrices are then averaged to produce a single state-space estimate of 
the predicted point. 

x j
*+ =

Q j
+

q
. (15) 

The projected state-space points are stored into a predicted pose matrix X+. For each subset of 
tracked points from X+ detected by the ith camera pair, a surface mesh is applied. Thus, the resulting 
output of the methodology is a set of n meshes that represent the predicted deformation of the object. 
Figure 2 illustrates the predicted deformation of a dinosaur from three stereo-camera pairs where 
each colored surface patch correlates to a particular point-cloud prediction of the corresponding 
stereo pair. 

Points that were previously detected and are lost at the current demand instant are labeled as lost, 
and are processed through the feature lost stream. The particle matrices and state-space measurement 
vectors associated with these points are removed from memory, but their unique key-identifiers 
remain, along with the associated 2D feature keys. Lost points that are detected anew in later demand 
instants are processed through the feature found stream. 

The tracking and prediction task allows for modularity in the filtering methodology chosen, 
including particle filters, KFs [50], EKFs [73], unscented KFs [74], and PSO [55,57]. The particle filter 
was chosen due to its robustness to non-Gaussian noise [54,75], and its common-place 
implementation in tracking methodologies [76,77]. A KF may not necessarily work well since camera 
noise is non-Gaussian [78] and, thus, tracking may fail. EKFs and unscented KFs may be better suited 
than regular KFs for tracking as they do not explicitly depend on Gaussian process noise. PSO should 
function similarly to particle filtering methods, but would require an optimization step that filtering 
does not. 
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The motion model may be user-selected as well for specific tasks, if necessary. The  
constant-acceleration motion model may be replaced with another simpler or more complex model. 
A constant-velocity model would decrease the state-space size required and the number of initial 
tracking demand instants with lower accuracy prediction. A Fourier series model may be used for 
objects that would undergo cyclic motion [58,79]. One can note that the motion model selected would 
dictate the total number of demand instants required before an accurate prediction could be made. For 
example, a constant-velocity model only requires two demand instants, while a constant-acceleration 
model requires three. The constant-acceleration model was chosen herein as a generalized approach for 
tracking due to its robustness to capturing human motion and certain non-linear motions. 

4. Simulations 

Extensive simulations were carried out using the Blender™ software [80] for object animation 
and camera representation. The VLFeat™ [81] library was used for image processing. MatLab™ was 
used to code the complete methodology. Six example simulations are presented herein to 
demonstrate the proposed methodology. Each simulation utilized a fixed stereo-camera pair. 

All simulated camera models used a 32 × 18 mm Advanced Photo System type-C (APS-C) style 
sensor, with an image resolution of 1920 × 1080 pixels, and a focal length of 18 mm. Uniformly 
distributed color pixel noise was added to all images to simulate image noise. Furthermore, all 
triangulated data incorporated noise to simulate real-world errors in camera placement. The 
simulations used singular, textured object surfaces that deformed over a set of demand instants.  

Three error metrics were used to analyze the performance of the methodology. The triangulation 
errors, et, were calculated as the Euclidean distance between a triangulated point and the nearest 
ground-truth surface. The prediction errors, ep, were calculated as the Euclidean distance between a 
predicted point and the nearest ground-truth surface. The relative prediction errors, ef, were 
calculated as the Euclidean distance between a predicted point locations and its actual triangulation 
location, for all tracked points. All three errors were normalized by the square root of the object’s 
surface area. The normalization ensures the error metrics are invariant to the size of the target object, 
and relative pose of the cameras.  

Triangulation errors were calculated as follows: 

et = 1
m S

zt ( j)
j=1

m

 , (16) 

where zt(j) is the shortest distance between the jth triangulated point in X to the surface of the true 
object model, m is the total number of triangulated points at the given demand instant, and S is the 
surface area of the true object model.  

Prediction errors were calculated as follows: 

ep = 1
m S

zp ( j)
j=1

m

 , (17) 

where zp is the shortest distance between the jth predicted point in X+ to the surface of the true object 
model, and m is the total number of predicted points. 

The relative prediction errors were calculated as follows: 

ef = 1
m S

zt ( j) − zp ( j)( )
j=1

m

 . (18) 

4.1. Simulation 1 

The first simulation consisted of an object surface undergoing a wave-like stretching 
deformation with a linear translation. A four-frame movie-strip of the object is presented in Figure 4. 
This simulation tested the methodology’s ability to handle a more complex form of surface 
deformation with global motion. The errors remained under 1.3% for all three error metrics, and the 
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total number of tracked and triangulated points remained fairly stable with a slight increase (Figure 
5). The slight increase in error from the third simulation is attributed to the compounded motion 
experienced by every tracked and triangulated point. Specifically, in the previous simulation, the 
tracked points only moved in the wave motion, while, in this example, they also moved 
perpendicularly to the wave motion, thus increasing the relative prediction errors.  

 
Figure 4. Movie-strip of Simulation 1, units in [mm]. 

 
Figure 5. Left: triangulation, prediction, and relative prediction error metrics for each demand instant. 
Right: total number of tracked and triangulated points for each demand instant. 

4.2. Simulation 2 

The second simulation consisted of an object surface undergoing a wave-like stretching with 
linear translations in two directions. A four-frame movie-strip of the object is presented in Figure 6. 
This simulation tested the methodology’s ability to handle a more complex form of surface 
deformation with increased global motion. The errors remained under 1.4% for all three error metrics, 
and the total number of tracked and triangulated points gradually increased as the object moved 
closer to the cameras (Figure 7). The cyclic error pattern for the relative prediction errors, ef, is 
attributed to the acceleration profile of the motion where the lowest error values correspond to zero 
acceleration of the object.  

 
Figure 6. Movie-strip of Simulation 2, units in [mm]. 
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Figure 7. Left: triangulation, prediction, and relative prediction error metrics for each demand instant. 
Right: total number of tracked and triangulated points for each demand instant. 

4.3. Simulation 3 

The third simulation consisted of a surface object undergoing a wave-like stretching with a linear 
translation and a rotation by 180°. A four-frame movie-strip of the object is presented in Figure 8. 
This simulation tested the methodology’s ability to handle complex surface deformation with 
complete loss of visibility. The errors remained under 2% for all three error metrics, with an 
increasing trend as the object rotated to a parallel orientation with respect to the cameras, at which 
point none of the triangulated points could be tracked (due to loss of tracking data) (Figure 9). The 
number of tracked and triangulated points reflected the error behavior. Specifically, as the object 
became parallel to the cameras, the number of triangulated points decreased to almost zero, while all 
of the tracked points were lost.  

 
Figure 8. Movie-strip of Simulation 3, units in [mm]. 

 
Figure 9. Left: triangulation, prediction, and relative prediction error metrics for each demand instant. 
Right: total number of tracked and triangulated points for each demand instant. 
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5. Experiments 

Experiments were conducted using a robotic deformable object, namely the PleoRB robot, as the 
target object. The experimental platform was composed of six calibrated Canon digital single-lens 
reflex (DSLR) Rebel T3i cameras, and one Intel i7 personal computer (PC) with 24 GB of RAM. The 
general layout of the experimental set-up is presented in Figure 10 with the mobile cameras and the 
robot (deformable object) highlighted. As shown in the figure, all six cameras were placed on moving 
stages to attain any desired reconfiguration. Two cameras were placed on one-degree-of-freedom 
rotational stages, whereas the other four cameras were placed on two-degree-of-freedom stages—
rotational and translational. During the experiments presented in this paper, only three two-degree-
of-freedom cameras were utilized. 

As noted above, the initial experimental configuration presented in Figure 10 could not provide 
the desired static stereo-camera placement. Therefore, in order to achieve the desired configuration, 
as in Figure 2, the experiments had to be conducted quasi-dynamically. Specifically, for a given 
demand instant, once the robot was moved and deformed into its desired surface, three two-degree 
of freedom cameras were moved into their first stereo-pair position (circular pattern, 120° separation) 
and captured their respective images (Figure 11a). Next, the cameras were moved on an arc of 100 
mm to their second stereo-camera positions and captured their respective second images (Figure 
11b). The robot was then deformed into its next pose of the sequence and the quasi-dynamic capture 
process was repeated. Thus, each object’s deformation required the reconfiguration of three of the 
four cameras to simulate stereo pairs. 

The cameras were calibrated at fixed optical parameters, namely focal length, aperture, shutter 
speed, and image gain. The camera settings were chosen to maximize image sharpness and ensure 
correct depth of field. The average distance between the robot and each camera was 775 mm. The 
cameras were all electronically controlled through Universal Serial Bus (USB) using Canon’s camera 
control software development kit (SDK): EDSDK.  

The target object, PleoRB robot, was chosen due to its surface texture and high degree-of-freedom 
(DOF) configuration (Figure 12). The robot was composed of 15 servo motors actuating the 
mechanical armatures with a patterned texture rubber skin. The PleoRB robot was controlled through 
serial USB. A custom program was developed to individually set each servo motor’s position, 
ensuring repeatability. The volume and surface area of the robot were calculated manually by 
measuring each limb individually and approximating limbs with geometric objects such as cylinders, 
cones, and rectangles. 

5.1. Background Segmentation 

Background segmentation was outside of the scope of this work; however, it is a necessary aspect 
of the system for correct deformation estimation. The development of generic target segmentation 
algorithms is a field of computer vision in and of itself, with several notable examples available in 
References [82–85]. 

In order to overcome the problem of target segmentation, a run-time implementation of Grabcut 
was integrated into the process to segment the target object from the noisy background [86]. The 
Grabcut method implements a graph-cut energy-minimization problem solved via maximum flow 
through a graph. The Grabcut process consists of the user providing a set of guide points on the input 
image that are near the target’s boundary. The algorithm then solves for the image boundary that 
optimizes the max-flow min-cut problem. The output of the algorithm is a binary image mask that 
labels the pixels as background or target (Figure 13). 
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Figure 10. Experimental set-up. 

 

Figure 11. Stereo-camera simulation process for one demand instant, (a) first camera position,  
(b) second camera position. Units in [mm]. 

(a) (b) 
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Figure 12. PLEOrb robot properties. 

 
Figure 13. Background segmentation through GrabCut: (a) input image with guides; (b) resulting 
binary segmented image. 

5.2. Results 

Experiments were conducted in two sets: occluded and unoccluded. The cameras were placed 
into three stereo pairs separated by 120° about the center of the robot. The robot deformed over a set 
of 20 demand instants. The unoccluded set of experiments consisted of five robot deformations 
without dynamic obstacles. The occluded set of experiments consisted of the same five deformations, 
but with a dynamic obstacle moving through the workspace partially occluding one pair of cameras. 

The results, presented below in Figures 14–23, indicate the performance of the deformation 
estimation methodology when applied to a real-world scenario. In the case of both the occluded and 
unoccluded experiments, the methodology was capable of predicting the expected deformation of 
surface patches with less than 4% error. The major difference between the occluded and unoccluded 

(a) (b)
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results is the ratio of tracked to triangulated point at each demand instant. Specifically, in the 
unoccluded case, all three camera pairs triangulate and track a large portion of the target object 
resulting in an even ratio of tracked to triangulated points. Conversely, in the occluded case, the 
obstacle results in a large loss of triangulated and tracked points visible by one of the camera pairs; 
thus, the ratio of tracked to triangulated points is reduced. Movie-strip representations of the 
predicted surface deformations for one experiment from each occluded and unoccluded set are 
provided in Appendix A for reference. Similarly, a movie-strip view of the predicted surface patch 
deformations alongside the camera views are provided for all unoccluded experiments in Appendix B. 

The average processing times per demand instant for each experiment are presented in Table 1. 
It is noted that the image processing of each stereo pair was parallelized in software. All code was 
written in MatLab without specific optimization.  
Unoccluded Experiments 

 
Figure 14. Unoccluded Experiment 1. 

 
Figure 15. Unoccluded Experiment 2. 
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Figure 16. Unoccluded Experiment 3. 

 
Figure 17. Unoccluded Experiment 4. 

 
Figure 18. Unoccluded Experiment 5. 

Occluded Experiments 
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Figure 19. Occluded Experiment 1. 

 
Figure 20. Occluded Experiment 2. 

 
Figure 21. Occluded Experiment 3. 
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Figure 22. Occluded Experiment 4. 

 
Figure 23. Occluded Experiment 5. 

Table 1. Average processing time for experiments. 

Experiment Unoccluded Occluded 
1 25.58 s 26.61 s 
2 24.78 s 25.57 s 
3 31.10 s 32.92 s 
4 19.48 s 24.73 s 
5 20.51 s 23.24 s 

6. Conclusions 

This paper presents a novel, modular, multi-camera method for deformation estimation of 
unknown, markerless 3D objects. We showed that the modular methodology is capable of accurate 
surface-deformation estimation of the target object under varying motions. The proposed method 
presents an approach for deformed shape estimation up to scale. Camera calibration could upgrade 
certain existing state-of-the-art methods with scale information; however, generally, there is no single 
method that could become comparable with a camera-calibration upgrade. Specifically, model-based 
methods would have an advantage of the model for optimized fitting, while monocular methods 
would require an update with a secondary camera, and the introduction of scaled triangulation, 
which would become the proposed method. Therefore, it is not possible to explicitly compare the 
proposed method with the existing state of the art without upgrading the latter to achieve the same 
objective as the proposed method. 
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The methodology uses an initial stereo-camera selection process. It is noted that, for the purposes 
of the simulations and experiments presented in this paper, the cameras were manually positioned, 
resulting in a trivial stereo-pair selection. Then, for each demand instant, images were captured for 
all cameras and a set of SIFT features were located in each image. The SIFT features were matched 
between each camera pair, and filtered to remove outliers. Stereo triangulation yielded a set of 3D 
points which were further filtered to remove outliers. The 3D points were tracked and projected 
through an adaptive particle filtering framework. Adaptive filtering allows for a varying number of 
tracked 3D points, and modifies tracking parameters on-line to ensure maximal accuracy in 
prediction. A constant-acceleration motion model ensures accurate tracking for large variations in 
tracked objects. The numerous simulations and experiments presented herein were used to validate 
the methodology. The results demonstrate the methodology’s robustness to varying types of motion, 
and its ability to estimate deformation even under large tracking losses in both completely controlled 
environments and real-world environments. 
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Appendix A 

The following figures provide a bird’s-eye view of the experimental platform and predicted 
target object deformation as captured by all three camera pairs. The first set in Figure A1 corresponds 
to the first and last demand instants of an unoccluded experiment, while the second set in Figure A2 
corresponds to the first and last demand instants of an occluded experiment. 

 
Figure A1. Unoccluded experiment demand instants 1 and 19, units in [mm]. 
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Figure A2. Occluded experiment demand instants 1 and 19, units in [mm]. 

Appendix B 

The following figure illustrates a movie-strip representation of the captured data from the 
experiments. The left-most column represents the predicted deformation of surface patches, the 
second column represents the recovered point cloud at the demand instant, and the third column 
represents the tracking to prediction offsets, while the last three columns represent the viewpoint 
from one camera from each stereo pair. 
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Figure A3. Unoccluded Experiment 1 movie-strip. 

Nomenclature 

C  Total number of cameras. 

H  State transition matrix, [9 × 9]. 

K  Matrix of stereo camera pairs, [2 × kv]. 
Kmax  Matrix of camera combination pairs, [2 × kmax]. 

Q  Set of particles, [9 × q]. 
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Q+  Set of projected particles, [9 × q]. 

S  True surface area for the object model. 

T  Triangulation of all individual surface patches. 

U  Uncertainty matrix for tracking and prediction, [9 × n]. 

VL  Vectors between given SIFT feature and its nearest neighbors in the left image, [2 × n]. 
VR  Vectors between given SIFT feature and its nearest neighbors in the right image, [2 × n]. 

Wj  Weight matrix for all particles of the jth tracked point, [9 × q]. 

Wj
*  Normalized weight matrix for all particles of the jth tracked point, [9 × q]. 

X  Matrix of all triangulated points’ poses, [3 × n].  

XTR  Matrix of triangulated points’ poses for a single stereo-camera pair, [3 × n].  

 Matrix of all tracked, triangulated points’ estimated velocities, [3 × n]. 

 Matrix of all tracked, triangulated points’ estimated accelerations, [3 × n]. 

X+  Predicted pose of all tracked, triangulated points, [3 × n]. 
di  Baseline separation between ith camera pair. 

dmax  Maximum baseline separation for a camera pair. 
dPmax  Maximum epipolar distance. 

dL  Euclidean lengths of each vector in VL, [n × 1]. 

dR  Euclidean lengths of each vector in VR, [n × 1]. 

d
L

*  Normalized dL vector, [n × 1]. 

dR
*  Normalized dR vector, [n × 1]. 

et  
Normalized Euclidean distance error between triangulated points’ poses and the true object’s 

surface. 

ep  Normalized Euclidean distance error between predicted points’ poses and the true object’s surface. 

ef  
Normalized Euclidean distance error between predicted points’ poses and the triangulated points’ 

poses. 

kv  Total number of stereo-camera pairs. 
kmax  Total number of camera pairs possible. 

po(c) Optical axis vector for the cth camera, [3 × 1]. 
q  Total number of particles. 

t  Demand instant. 

x j
*  Space-state vector of the jth tracked, triangulated point, [9 × 1]. 

x j
*+  Projected space-state estimate of the jth tracked, triangulated point, [9 × 1]. 

zt ( j) 
Euclidean distance between the jth tracked, triangulated point to the nearest true object surface 

coordinate. 

zp ( j)  
Euclidean distance between the jth predicted, tracked, triangulated point to the nearest true object 

surface coordinate. 

Δt  Change in time between demand instants. 

θ j  Angular separation between the jth camera pair. 

θmax  Maximum angular separation for a camera pair. 
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C  Total number of cameras. 

H  State transition matrix, [9 × 9]. 

K  Matrix of stereo camera pairs, [2 × kv]. 

Kmax  Matrix of camera combination pairs, [2 × kmax]. 

Q  Set of particles, [9 × q]. 

Q+  Set of projected particles, [9 × q]. 

S  True surface area for the object model. 

T  Triangulation of all individual surface patches. 

U  Uncertainty matrix for tracking and prediction, [9 × n]. 

VL  Vectors between given SIFT feature and its nearest neighbors in the left image, [2 × n]. 

VR  Vectors between given SIFT feature and its nearest neighbors in the right image, [2 × n]. 

Wj  Weight matrix for all particles of the jth tracked point, [9 × q]. 
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