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Abstract: Visual-inertial simultaneous localization and mapping (VI-SLAM) is popular research 

topic in robotics. Because of its advantages in terms of robustness, VI-SLAM enjoys wide 

applications in the field of localization and mapping, including in mobile robotics, self-driving cars, 

unmanned aerial vehicles, and autonomous underwater vehicles. This study provides a 

comprehensive survey on VI-SLAM. Following a short introduction, this study is the first to review 

VI-SLAM techniques from filtering-based and optimization-based perspectives. It summarizes 

state-of-the-art studies over the last 10 years based on the back-end approach, camera type, and 

sensor fusion type. Key VI-SLAM technologies are also introduced such as feature extraction and 

tracking, core theory, and loop closure. The performance of representative VI-SLAM methods and 

famous VI-SLAM datasets are also surveyed. Finally, this study contributes to the comparison of 

filtering-based and optimization-based methods through experiments. A comparative study of  

VI-SLAM methods helps understand the differences in their operating principles.  

Optimization-based methods achieve excellent localization accuracy and lower memory utilization, 

while filtering-based methods have advantages in terms of computing resources. Furthermore, this 

study proposes future development trends and research directions for VI-SLAM. It provides a 

detailed survey of VI-SLAM techniques and can serve as a brief guide to newcomers in the field of 

SLAM and experienced researchers looking for possible directions for future work. 

Keywords: sensor fusion; robotics; SLAM; navigation; computer vision; localization 

 

1. Introduction 

Simultaneous localization and mapping (SLAM) technology was first proposed by Smith [1,2], 

which was applied in robotics with the goal of building a real-time map of surroundings based on 

sensor data in an unknown environment as the sensor positioned itself. Over the years, new methods 

have appeared using different sensors such as sonar [3], lidar [4], and cameras [5]. These methods 

created new data representations and consequently new maps. Durrant-Whyte and Bailey [6,7] 

systematically reviewed SLAM technologies. Due to recent advances in CPU and GPU technologies, 

visual SLAM methods have seen increased interest because of the rich visual information available 

from low-cost cameras compared to other sensors. There are many excellent visual SLAM methods 

that have improved the development of SLAM technologies, such as MonoSLAM [5], PTAM [8], 

RatSLAM [9],DTAM [10], KinectFusion [11], and ORB-SLAM [12]. SLAM technology has undergone 

three major iterations over the last 30 years [13]. Today, SLAM technology is thriving and robust; 

real-time, high-precision SLAM technology is urgently needed in robotics. 
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Visual-inertial simultaneous localization and mapping (VI-SLAM) that fuses camera and IMU 

data for localization and environmental perception has become increasingly popular for several 

reasons. First, the technology is used in robotics, especially in extensive research and applications 

involving the autonomous navigation of micro aerial vehicles (MAV). Second, augmented reality 

(AR) and virtual reality (VR) are growing rapidly. Third, unmanned technology and artificial 

intelligence has expanded tremendously.  

VI-SLAM is generally divided into two approaches: filtering-based and optimization-based. 

Maplab [14,15] and VINS-mono [16–18] are typical of these two methods, and both are open source. 

Maplab is a filtering-based VI-SLAM system that also provides the research community with a 

collection of multi-session mapping tools including map merging, loop closure, and visual-inertial 

optimization. VINS-mono is a real-time optimization-based VI-SLAM system that uses a sliding 

window to provide high-precision odometry. Furthermore, it features efficient IMU pre-integration 

with bias correction, automatic estimator initialization, online extrinsic calibration, failure detection, 

and loop detection.  

Much research has been conducted on SLAM over the last few decades, including reviews and 

tutorials. A classic review was [6,7]; however, they do not reflect the more recent and emerging SLAM 

technology. Most reviews [19–23] have also focused solely on visual SLAM or visual odometry 

without addressing VI-SLAM technology. This study, therefore, provides an overview of VI-SLAM 

technology from filtering-based and optimization-based perspectives. Feature extraction and 

tracking, core theory, and loop closure are proposed, which are key technologies in VI-SLAM 

methods. This work also summarizes research over the previous 10 years and famous VI-SLAM 

datasets and compares filtering-based and optimization-based methods through experiments. 

Finally, potential development trends and forthcoming research directions are introduced. 

2. Filtering-Based Methods 

VI-SLAM approaches can also be further categorized into either loosely or tightly coupled 

according to sensor fusion type. State-of-the-art VI-SLAM studies over the last 10 years are listed in 

Table 1. This study divides VI-SLAM methods into filtering-based and optimization-based 

approaches, mainly according to their back-end optimization type. The loosely coupled  

method [24,25] usually only fuses the IMU to estimate the orientation and possible the change in 

position, but not the full pose. In contrast, the tightly coupled method [26,27] fuses the state of the 

camera and IMU together into a motion and observation equation, and then performs state estimation. 

Tightly coupled methods presently constitute the main research focus, thanks to advances in 

computer technology. 

Table 1. State-of-the-art visual-inertial simultaneous localization and mapping (VI-SLAM) methods. 

Year Paper Back-End Approach Camera Type Fusion Type Application 

2007 MSCKF [28] filtering-based monocular tightly coupled  

2007 [29] filtering-based monocular tightly coupled  

2010 [30] filtering-based stereo loosely coupled  

2011 [31] filtering-based monocular tightly coupled vehicle 

2011 [32] filtering-based monocular tightly coupled  

2011 [24,25] filtering-based monocular loosely coupled  

2011 [33] filtering-based monocular loosely coupled MAV 

2012 [27] filtering-based monocular tightly coupled vehicle 

2012 [34] filtering-based monocular loosely coupled  

2012 [35] filtering-based stereo tightly coupled  

2013 [36] filtering-based monocular tightly coupled vehicle 

2013 [37] filtering-based monocular loosely coupled  

2013 [38] filtering-based monocular loosely coupled MAV 

2013 [39] filtering-based monocular loosely coupled  

2013 [40] filtering-based rgb-d tightly coupled  

2014 [41] filtering-based monocular tightly coupled mobile phone 
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2014 [42] filtering-based stereo tightly coupled  

2015 OKVIS [43–45] optimization-based monocular tightly coupled  

2015 SR-ISWF [46] filtering-based monocular tightly coupled mobile phone 

2015 [47] optimization-based monocular tightly coupled  

2015 [48] optimization-based Stereo tightly coupled MAV 

2015 [49] optimization-based rgb-d loosely coupled Mobile devices 

2015 [50] filtering-based monocular tightly coupled  

2015 ROVIO [51] filtering-based monocular tightly coupled UAV 

2015 [52] optimization-based monocular tightly coupled autonomous vehicle 

2015 [53] filtering-based stereo tightly coupled  

2015 [54] optimization-based stereo tightly coupled  

2016 [55] optimization-based monocular tightly coupled  

2016 [56] optimization-based stereo tightly coupled  

2016 [57] filtering-based monocular loosely coupled robot 

2016 [58] optimization-based rgb-d loosely coupled  

2016 [59] filtering-based stereo loosely coupled  

2016 VIORB [60] optimization-based monocular tightly coupled MAV 

2017 [61] optimization-based rgb-d tightly coupled  

2017 [62] filtering-based monocular loosely coupled AR/VR 

2017 [63] filtering-based Multi-camera tightly coupled MAV 

2017 [64] filtering-based monocular tightly coupled UAV 

2017 VINS-mono [16–18] optimization-based monocular tightly coupled MAV,AR 

2017 [65] optimization-based monocular tightly coupled AR 

2017 [66] optimization-based monocular tightly coupled  

2017 [67] filtering-based monocular tightly coupled MAV 

2017 VINet [68] end-to-end monocular / deep-learning 

2017 [69] optimization-based event camera tightly coupled  

2017 S-MSCKF [26] filtering-based stereo tightly coupled MAV 

2017 [70] optimization-based monocular tightly coupled MAV 

2017 [71] optimization-based stereo\monocular tightly coupled  

2017 PIRVS [72] filtering-based stereo tightly coupled robot 

2017 Maplab [14,15] filtering-based monocular tightly coupled mobile platform 

2018 [73] optimization-based stereo tightly coupled mobile robot 

2018 [74] optimization-based stereo tightly coupled  

2.1. Feature Extraction and Tracking 

2.1.1. Feature Extraction 

Tracking is an important component in VI-SLAM systems, which depends on the tracking 

camera pixel. VI-SLAM tracking strategies are presented on Table 2. 

Table 2. VI-SLAM tracking strategies. 

Methods Strategies Papers 

1 feature extraction descriptor matching [28,60] 

2 feature extraction filter-based tracking [75] 

3 feature extraction optical flow tracking [26,76] 

4 direct pixel processing [56,77] 

Feature detection aims to identify features and determine their position in an image. Features 

used in VI-SLAM are mainly Harris [78], FAST [79], ORB [80], SIFT [81], and SURF [82]. Feature 

detection uses descriptors to describe the keypoint neighborhoods. The ways to obtain features in the 

image are summarized at several points: (1) the pixel point corresponding to the local maximum of 

the first derivative, (2) the intersection point of two or more edges, (3) the point where the rate change 

of the gradient value and gradient direction is high, and (4) the point at which the first derivative at 

the corner point is the largest and the second derivative is zero.  
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Brito [83] evaluated the application of different state-of-the-art methods for interest point 

matching, including SURF, SIFT, ORB, BRISK, and FREAK, aiming for the projective reconstruction 

of three-dimensional scenes. New features have also been incorporated into the SLAM system, such 

as the planar feature [84,85], line, or edge feature [86–88]. Importantly, Yang [85] translated 

monocular sequences to the 3D plane map and proposed semantic monocular plane SLAM for  

low-texture environments. 

2.1.2. Feature Tracking 

There are four commonly used methods to track pixel in SLAM systems: descriptor  

matching [28], filter-based tracking [75], optical flow tracking [26], and direct pixel processing [77]. 

The principle of the descriptor and feature is the same. Filter-based tracking includes the Kalman 

filter, particle filter, and mean-shift method. These methods model the target area in the current frame, 

and predict position by finding the most similar area to the model in the next frame. Optical flow is 

an effective means of estimating the movement state, such as velocity, pose, and displacement during 

navigation. Optical flow relates to the apparent movement in the image brightness mode and 

expresses an image change. 

Optical flow can also be divided into three methods depending on the type of calculation, 

namely the difference [89], correlation [90], and phase-based methods [91]. Among these, the  

block-matching algorithm is most commonly used in SLAM. However, it has shortcomings, such as 

a lack of sub-pixel accuracy and reduction of the matching degree after image deformation. To solve 

these problems, an image pyramid is applied simultaneously to increase computing speed [92]. 

2.2. Dynamic and Observational Models 

The filtering-based SLAM method uses linear or nonlinear models in dynamic and observation 

models. However, the nonlinear model is mainly used in the filtering-based VI-SLAM method, whose 

dynamic model is expressed as 

1( , )t t t tx f x u w−= +
 (1) 

where ut is the control vector, wt is the process noise, and wt~Ν(0,Qt), Qt is the variance. The IMU 

status is expressed as a 16-dimension vector. 

I T W T W T T T T

I W I I[     ]g ax q p v b b=
 

(2) 

where I T

W q  is the quaternion rotated from the world frame to the IMU frame, and W T

Ip  and W T

Iv  

correspond to the rotation and speed of the world coordinate system, respectively. bgT and baT 

correspond to the gyroscope bias and accelerometer bias, respectively. 

The classic filtering-based method framework is shown in Table 3. Propagation and update steps 

are important to filtering-based methods. The non-linear observation and prediction equation model 

are expressed as 

( )t t tz h x n= +  | 1 1( , )t t t tx f x u− −=
 (3) 

The work of filtering-based VIO focuses mainly on the covariance matrix, feature processing, 

and EKF updates. The propagated covariance matrix is expressed as 

| 1 1

T

t t t t t tP F P F Q− −= +
 

,|
t tt x u

f
F

x


=
  

(4) 

The update equations are expressed as

| 1( )t t t ty z h x −= −
 | 1

T

t t t t t tS H P H R−= +
 

|
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H

x


=
  

(5) 
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Table 3. Classic filtering-based method framework.

Propagation: For each IMU measurement received, propagate the filter state and covariance 

Image registration: Every time a new image is recorded. 

augment the state and covariance matrix with a copy of the current camera pose estimate 

image processing modules begins operation 

Update: When the feature measurements of a given image become available, perform an EKF update 

2.3. Filtering-Based VIO and VI-SLAM 

MSCKF [28] is a classic VI-SLAM system. It is also a visual inertial navigation system based on 

the multi-state constraint EKF. It employs a measurement model to express the geometric constraints 

that arise when a static feature is observed from multiple camera poses. The algorithm extracts and 

matches the SIFT feature, and maintains 30 camera poses in the filter state. 

In addition, Li [27,36] proved that the standard method of computing Jacobian matrixes in filters 

inevitably resulted in inconsistencies and a loss of accuracy through simulation tests, which showed 

that the yaw errors of the MSCKF and FLS [93] lay outside the ±3σ bounds indicating inconsistencies. 

Thus they proposed modifications to the MSCKF algorithm, which ensure the correct observability 

properties without incurring additional computational costs. Clement [53] compared MSCKF and the 

sliding window filter (SWF). Its results showed the SWF to be more accurate and less sensitive to 

tuning parameters than the MSCKF. However, the MSCKF is computationally cheaper, has good 

consistency properties, and improves in accuracy as more features are tracked. In contrast to feature-

based methods, Tanskanen [50] combined the advantages of EKF filters and minimized photometric 

errors to propose a direct VIO using only CUP. Increasing studies also began to apply VI-SLAM 

technologies to small devices such as mobile phones and cleaning robots [41,46]. 

Bloesch [51] proposed a monocular VIO-ROVIO (https://github.com/ethz-asl/rovio), used to 

directly detect luminosity error to obtain accurate, robust tracking from image matching. The model 

also uses the FAST corner to recognize candidate feature regions. A multi-layer image pyramid is 

used to extract multi-layer features with edge features added. The work process of the filter feature 

is shown in Figure 1. 

 

Figure 1. Work process of the filter feature, reproduced from [51]. 

For image pyramid Il and multi-layer image block feature with coordinates p and block Pl, the 

photometric error of block pixel pj at pyramid l is shown as 

 Prediction

Is visiual?

Wrap patch

Yes

Has large uncertainty?

Do pre-alignment

Detect new feature

Delete feature

Extract patch if possible

Has good statistics?

Update

No

No

No

Yes

Yes

https://github.com/ethz-asl/rovio
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, ( ) ( )l j l j l l je P p I ps Wp m= − + −
 

(6) 

where W is the radiation enhancement transformation matrix, and m is the mean intensity error. The 

average image processing time with 50 features at initialization is 29.72 ms, while the system can run 

smoothly at 20 Hz. Furthermore, a VIO based on an iterative extended Kalman filter was  

proposed [63]. 

S-MSCKF (https://github.com/KumarRobotics/msckf_vio) [26] can be considered a stereo 

version of MSCKF. The software takes synchronized stereo images and IMU messages and generates 

a real-time 6DOF camera pose estimation. It uses the FAST corner [79] to increase the speed and 

tracked features with KLT optical flow [94]. In addition, circular matching can be used to remove 

outliers generated during feature tracking and stereo matching. It is hard to compare these VI-SLAM 

methods using only accuracy, due to their different application platforms and sceneries. Therefore, 

this study surveys representative filtering-based and optimization-based VI-SLAM methods in 

Appendix A. 

Robust and accurate state estimation in robotics remains challenging. If the system can obtain 

accurate pose estimation based on a prior map, then system adaptability will improve. Therefore, 

Schneider [15] proposed a VI-SLAM system called Maplab that includes integrated functions of 

creating, processing and blending multiple maps. The system extensibility is suitable for research, 

and provided the evaluation method for the selection of system mining components. In addition, 

Maplab has been found to extract BRISK [95] and FREAK [96] from the image and fuses IMU data for 

localization and mapping. Separate sections can be combined into a single global map to correct drift 

for odometry and localization. ROVIOLI [63] is the front-end of Maplab for localization and mapping; 

the system module and data flow are present in Figure 2. The matching window has been shown to 

improve efficiency and robustness based on integrated gyroscope measurements. This system easily 

extends new algorithms in the current framework, such as multithreaded map building, semantic 

SLAM, and positioning. 

Methods combining the advantages of filtering-based and optimization-based approaches have 

also drawn wide attention. Quan [97] proposed a monocular VI-SLAM using a Kalman filter as an 

assistant. To enable place recognition and reduce trajectory estimation drift, the authors constructed 

a factor-graph-based nonlinear optimization in the back-end. A feedback mechanism was used to 

guarantee estimation accuracy of the front-end and back-end.  

The continuous updating and maintenance of maps in a large scale environment is still a 

challenge. It is particularly essential for platforms that work in repetitive scenarios or use previous 

maps, such as inspection robots and driverless cars. To update the map according to the dynamic 

changes and new explored areas, Labbé [98] employed a memory management mechanism into the 

SLAM system, which identified locations that should remain in fast access memory for online 

processing from locations. 

 

Figure 2. ROVIOLI modules and data flows, reproduced from [15]. 
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3. Optimization-Based Methods 

With the development of computer technology, optimization-based VI-SLAM has proliferated 

rapidly. Optimization-based methods divide the entire SLAM frame into a front-end and back-end 

according to image processing; the front-end is responsible for map construction, whereas the  

back-end is responsible for pose optimization. Back-end optimization techniques are usually 

implemented on g2o [99], ceres-solver [100], and gtsam [101]. Many excellent datasets can be used to 

study visual-inertial methods, such as EuRoC [102], Canoe [103], Zurich urban MAV [104], TUM VI 

Benchmark [105], and PennCOSYVIO [106]. Details of the study surveys are provided in  

Appendix B. 

3.1. Loop Closure 

Loop closure can detect whether the robot re-enters at the same location; and can determine 

whether the robot returns to a previously visited location, thus creating a loop in its trajectory. Loop 

closure also optimizes the entire circuit map and increases system positioning accuracy. 

Loop closure methods are mainly classified into odometry-based geometric relationship and 

appearance-based approaches. The odometry-based geometric relationship approach does not work 

when the cumulative error is large [107]. The appearance-based approach determines the loop closure 

relationship to eliminate the cumulative error according to the similarity of two images, and it has 

been used successfully in VI-SLAM systems [18,31,60]. 

As shown in Figure 3, the camera data in the VI-SLAM is image-processed to match the spot 

stored in the map, and a position recognition decision is made after successful matching. The storage 

map is then updated. 

 

Figure 3. Loop closure schematic, reproduced from [108]. 

Loop closure is essentially a matter of scene recognition, which is a difficult because of different 

appearances in various places in the real world. To solve this problem, Galvez-López [109] proposed 

DBoW2 to obtain a binary bag model with BRIEF and FAST features. Although this algorithm was 

more efficient and robust in terms of feature extraction compared to those using SIFT or SURF, the 

BRIEF descriptor lacks rotation and scale invariance, and it can only be used in 2D environments. To 

address this issue, Mur-Artal [12] used a bag-of-words model of location recognition based on 

DBoW2 and ORB that included covisibility information. 

Loop closure methods based on deep learning continue to emerge [110–112]. Compared with 

the appearance-based method, they were more robust to environmental changes. However, 

designing a neural network architecture to run in real-time in a VI-SLAM system remains 

challenging. In the robotic area coverage problem, the goal is to explore and map a given target area 

within a reasonable amount of time, which necessitates the use of minimally redundant overlap 

trajectories for coverage efficiency. However, system estimates will inevitably drift over time in the 

absence of loop closures. Efficient area coverage and good SLAM navigation performance represent 

competing objectives. In this case, active SLAM algorithm is needed that accounts for the area 
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coverage and navigation uncertainty performance to efficiently explore a target area of interest [113]. 

Thrun [114] found a balance between visiting new places (exploration) and reducing the uncertainty 

by re-visiting known areas (exploitation), providing a more efficient alternative with respect to 

random exploration or pure exploitation. 

3.2. Optimization-Based VI-SLAM Algorithms 

OKVIS (https://github.com/ethz-asl/okvis) [43–45] was an excellent keyframe-based VI-SLAM 

system; that combined the IMU and reprojection error terms into a cost function to optimize the 

system. The old keyframes were marginalized to maintain a bounded-sized optimization window, 

ensuring real-time operation. As a first step to initialization and matching, they propagated the last 

pose using acquired IMU measurements to obtain a preliminary uncertain estimate of the states. 

Optimization strategies of optimization-based VI-SLAM algorithms are surveyed in Table 4. 

Table 4. Optimization strategies of optimization-based VI-SLAM algorithms. 

Methods Optimization Function Initialization Optimization Strategies 

OKVIS 
reprojection error and 

IMU temporal error term 

using IMU measurements to obtain a preliminary 

uncertain estimate of the states 

Gauss-Newton algorithm 

Schur complement 

sliding window 

Paper 

[56] 

photometric error and 

IMU non-linear error 

terms 

initialize the depth map with the propagated 

depth from the previous keyframe 

Levenberg-Marquardt algorithm 

Schur complement 

partial marginalization 

Paper 

[55] 

photometric error and 

IMU inertial residual 
/ 

Gauss-Newton algorithm 

Schur complement 

VIORB 

reprojection error of all 

matched points and IMU 

error term 

using vision first, than initializing scale, gravity 

direction, velocity, and accelerometer and 

gyroscope biases 

Gauss-Newton algorithm 

local bundle adjustment in local 

mapping 

VINS-

mono 

reprojection error and 

IMU residual 

using loosely-coupled sensor fusion method get 

initial values, than aligning metric IMU pre-

integration with the visual-only SfM results to 

recover scale, gravity, velocity, and even bias 

Gauss-Newton algorithm 

Schur complement 

sliding window 

two-way marginalization scheme 

To avoid repeated constraints caused by the parameterization of relative motion integration, 

pre-integration was proposed to reduce computation. This method was first described by Lupton 

[35], where IMU data were changed between two frames by pre-integrating the constraints. The pre-

integration principle is illustrated in Figure 4. The pre-integration theory was further developed after 

Forster [47] applied it to the VI-SLAM framework to reduce bias. 

Systems that fused IMU data into the classic visual SLAM also garnered widespread attention. 

Usenko [56] proposed a stereo direct VIO that combined IMU and stereo LSD-SLAM [115]. They 

formulated a joint optimization problem to recover the full state containing camera pose, translational 

velocity, and IMU biases of all frames. Concha [55] devised the first direct tightly coupled VIO 

algorithm that could run in real-time under a standard CPU, but initialization was not introduced. 

 

Figure 4. Pre-integration principle, reproduced from [47]. 



Robotics 2018, 7, 45 9 of 20 

 

VIORB [60] is a monocular tightly coupled VI-SLAM based on ORB-SLAM and contains an ORB 

sparse front-end, graph optimization back-end, loop closure, and relocation. This method was first 

initialized using only monocular vision, and performed a specific initialization of the scale, gravity 

direction, velocity, and accelerometer and gyroscope biases after a few seconds. VIORB proposed a 

novel IMU initialization method, which is divided into next four steps: (1) gyroscopes biases 

estimation, (2) scale and gravity approximation (considering no accelerometer bias), (3) accelerometer 

biases estimation (scale and gravity direction refinement), and (4) velocity estimation. The local map 

module uses local BA to optimize the latest N keyframes and all points observed on these N 

keyframes after a new keyframe is inserted. Local maps are then retrieved based on the time series of 

the keyframe. The fixed window connects the N + 1th keyframe and co-visibility graph. The keyframe 

in the local map is shown in Figure 5. In addition to monocular and IMU fusion methods, SLAM with 

stereo and RGBD fusion with IMU have also been investigated [54,58]. 

 

Figure 5. Keyframe in the local map, reproduced from [60]. 

VINS-mono (https://github.com/HKUST-Aerial-Robotics/VINS-Mono) was a standout VI-

SLAM method whose frond-end uses the KLT optical flow [94] to track the Harris corner, while the 

back-end uses a sliding window for nonlinear optimization. The entire system includes measurement 

processing, estimation initialization, local bundle adjustment without relocalization, loop closure, 

and global pose optimization. See Figure 6 for the system framework. The Fisheye camera model is 

used in the front-end, and an outlier of the fundamental matrix is rejected by the RANSAC method. 

The calibration error between the camera and IMU is less than 0.02 m, and the rotation error is less 

than 1° [76]. In addition, this method has been successfully applied to AR [18]. 

https://github.com/HKUST-Aerial-Robotics/VINS-Mono
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Figure 6. VINS-mono system framework, reproduced from [18]. 

Additionally, methods integrated with deep learning and new sensors have accompanied the 

rise of artificial intelligence and computer vision. Clark [68] proposed an end-to-end VIO with good 

results that combined sensor fusion and depth learning. However, loop closure and mapping were 

not used in this system. Vidal [69] used event cameras instead of luma frames in VIO to achieve good 

results in low-light and high-dynamic scenes. CNN-SLAM [116] replaced depth estimation and 

image matching in LSD-SLAM with CNN-based methods to incorporate semantic information. 

4. Comparisons between Filtering-Based and Optimization-Based Methods 

4.1. Details 

Different VI-SLAM methods are designed for different applications and it is hard to 

comprehensively evaluate them. To deeply compare filtering-based and optimization-based 

methods, this section provides the experiments of representative methods on EuRoC datasets using 

conditions that emulate state estimation for a flying robot. Because VIORB does not have open source 

code, this study uses an implementation from Jing Wang (https://github.com/jingpang/LearnVIORB). 

Experiments are performed on an Intel Core i7-6700×8@3.40GHz computer with 16 Gb RAM. 

The EuRoC datasets consist of 11 visual inertial sequences recorded onboard a micro-aerial vehicle 

while it is manually piloted around three different indoor environments. Within each environment, 

the sequences increase qualitatively in difficulty with increasing sequence number. For example, 

MH_01 is “easy”, while MM_05 is a more challenging sequence in the same environment, introducing 

things such as faster motions and, poor illumination. 

To account for the nondeterministic nature of the multithreading, we run each sequence five 

times and show the median result for accuracy. In order to compare these methods equally, the 

mapping thread of VIORB is closed and the camera frequency of all methods is set to 20 Hz. 

4.2. Experiments 

Experiment results are shown in Tables 5–7. In Table 5, when all eight logical cores are in use, 

the CPU utilization load is 100%. This study uses the elevation tool evo 

(https://github.com/MichaelGrupp/evo) to calculate the root mean square error of experiment results 

according to the ground truth. Notably, VIORB cannot obtain the full trajectory result on the 

V2_03_difficult dataset. In Table 7, memory utilization is represented as a percentage of the available 

RAM on the given platform. 

https://github.com/jingpang/LearnVIORB
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Table 5. CPU utilization statistics on VI-SLAM methods (%). 

Sequence ROVIO S-MSCKF OKVIS VINS-Mono VIORB 

MH_01_easy 25.32 33.19 47.32 39.12 30.82 

MH_02_easy 26.06 29.01 45.14 39.80 32.34 

MH_03_medium 26.53 27.51 49.01 40.48 36.52 

MH_04_difficult 25.73 27.91 48.44 40.03 33.07 

MH_05_difficult 26.61 29.61 45.74 39.05 36.06 

V1_01_easy 27.41 29.59 40.66 41.23 27.82 

V1_02_media 27.00 30.61 44.58 35.59 32.44 

V1_03_difficult 29.69 30.86 63.30 33.95 31.61 

V2_01_easy 27.04 30.83 49.67 37.55 27.55 

V2_02_media 26.89 28.29 52.94 36.30 32.07 

V2_03_difficult 27.29 27.18 56.74 34.56 32.23 

Average 26.87 29.51 49.41 37.97 32.05 

Table 6. Root mean square error (RMSE) of VI-SLAM methods (m). 

Sequence ROVIO S-MSCKF OKVIS VINS-Mono VIORB 

MH_01_easy 0.236 0.227 0.164 0.062 0.034 

MH_02_easy 0.247 0.231 0.187 0.078 0.049 

MH_03_medium 0.427 0.2011 0.274 0.045 0.040 

MH_04_difficult 1.170 0.351 0.375 0.134 0.111 

MH_05_difficult 0.863 0.213 0.432 0.088 0.269 

V1_01_easy 0.216 0.062 0.224 0.045 0.064 

V1_02_media 0.210 0.161 0.176 0.045 0.079 

V1_03_difficult 0.381 0.281 0.193 0.088 0.212 

V2_01_easy 0.298 0.074 0.176 0.057 0.150 

V2_02_media 0.232 0.152 0.181 0.114 0.183 

V2_03_difficult 0.263 0.366 0.316 0.109 / 

Average 0.413 0.211 0.245 0.079 0.119 

Table 7. Memory utilization statistics on VI-SLAM methods (%). 

Sequence ROVIO S-MSCKF OKVIS VINS-Mono VIORB 

MH_01_easy 14.86 14.14 11.03 17.09 12.52 

MH_02_easy 15.03 14.22 11.22 16.95 12.53 

MH_03_medium 15.04 14.22 11.03 17.74 12.48 

MH_04_difficult 15.04 14.24 11.10 17.05 12.77 

MH_05_difficult 15.29 14.33 11.22 18.61 13.72 

V1_01_easy 12.86 14.04 11.28 17.92 12.72 

V1_02_media 14.87 13.79 11.63 17.03 12.59 

V1_03_difficult 14.30 13.82 11.67 17.80 12.65 

V2_01_easy 13.53 14.06 11.69 16.96 12.46 

V2_02_media 14.37 14.08 11.81 17.54 12.32 

V2_03_difficult 14.82 14.09 12.11 17.26 12.48 

Average 14.55 14.04 11.43 17.45 12.65 

This section experiments representative optimization-based and filtering-based methods, which 

are all proposed in recent years. As shown in Table 5, the CPU utilization of ROVIO is the lowest 

among five methods, and filtering-based methods are better than optimization-based methods. The 

camera type of ROVIO, VINS-mono, and VIORB is monocular, while the camera type of S-MSCKF 

and OKVIS is stereo. The stereo VI-SLAM methods use more computing resources than monocular 

VI-SLAM methods, whether filtering-based or optimization-based. Importantly, filtering-based 
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methods have advantages over optimization-based methods on CPU utilization. As shown in Table 

6, VINS-mono obtains the best accuracy with a 0.079 m average root mean square error. OKVIS and 

VIORB have advantages in terms of memory utilization (according to Table 7), which implies that 

they are robust for system management. Optimization-based methods have more potential than 

filtering-based methods in terms of localization accuracy and memory utilization. In summary, 

optimization-based methods achieve excellent localization accuracy and lower memory utilization, 

while filtering-based methods have advantages in terms of computing resource. How to find the right 

balance between competing requirements and accuracy can be challenging. 

5. Development Trends 

5.1. SLAM with Deep Learning 

At present, the semantic level of the image features used in the SLAM scheme is too low, 

rendering feature distinguishability weak; the point cloud map constructed by the current method 

does not distinguish between different objects. Deep learning will develop SLAM technology, which 

can be used to build semantic maps to advance human computer interaction. Rambach [117] 

proposed a deep learning approach to visual-inertial camera pose estimation through a trained  

short-term memory model. Shamwell [118] presented an unsupervised deep neural network 

approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory 

estimation. 

Although the study of semantic issues in SLAM is still in a nascent stage, combining semantics 

with SLAM will enable robots to obtain poses more effectively by building consistent maps using 

semantic concepts of categories, relationships, and environmental attributes. In addition, a new map 

of the SLAM system can effectively store and display information, such as SkiMap [119] and  

Road-SLAM [120]. The continuous updating and maintenance of maps still presents an obstacle in 

the field. 

5.2. Hardware Integration and Multi-Sensor Fusion 

The lightweight and miniaturization characteristics of the SLAM system allow it to run well on 

small devices, such as embedded systems or cell phones. Excellent results were achieved in Microsoft 

Hololens, Intel RealSense, and Google Tango [121]. Customized hardware for the VI-SLAM can 

realize the function of robots, and AR/VR devices are applied to sports, navigation, teaching, and 

entertainment. Therefore, a strong demand exists for SLAM miniaturization and weight reduction, 

prefacing the future of embedded SLAM [122]. 

A single sensor cannot adequately sense environmental information, and state estimation is 

highly uncertain. Multi-sensor fusion can solve these problems and improve the accuracy of system 

positioning and environment mapping.VI-SLAM technology is an example of multi-sensor fusion. 

Research and applications involving multi-sensor fusion in SLAM are expected to grow, as evidenced 

by [123,124]. 

5.3. Active SLAM on Robots 

A pertinent SLAM issue represents a passive estimation problem in robotics. However, the main 

purpose of controlling the robot motion problem is to control the robot to minimize uncertainty of 

robotic map representation and positioning. In a conventional approach, SLAM is passive and 

typically performed on preplanned or human-controlled trajectories. A fully autonomous robot must 

plan a motion given a high-level command, such as, a task-level command from a human supervisor 

to explore a given area. In this example, the robot should plan accordingly to accomplish the given 

task and should not require detailed input by a human supervisor [113]. Active SLAM [125] has 

therefore attracted gradual attention. The active SLAM algorithm has demonstrated good effects in 

terms of enabling the robot to identify possible locations, calculate each vantage point visited, and 

select the most efficient action plan. SLAM technology should thus incorporate technologies such as 

path planning [126], mission planning [127], and object recognition [128]. References [129,130] 
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contributed to active SLAM and combine it to make robots more intelligent and practical. In addition, 

integrating the advantages of different branches of SLAM technology (such as, filtering and 

optimization-based approaches and loosely and tightly coupled methods) would greatly improve 

system robustness and accuracy. 

5.4. Applications on Complex Dynamic Environments 

The SLAM algorithm generally assumes a static environment. However, the actual working 

environment of the mobile robot often involves changes in the spatial positions of pedestrians and 

vehicles over time. These dynamic features can provide useful information about environmental 

changes. Identification of static and dynamic features in the environment and locating and mapping 

the robot effectively are important. Saarinen [131] made contributions to enabling long-term 

operation of autonomous vehicles in industrial dynamic environments and proposed a novel 3D 

normal distribution transform occupancy maps. Additionally (to ensure more effective practical 

application), seasonal weather changes in unstructured terrain require a more robust SLAM system 

to handle complex dynamic environments. Multi-robot collaboration SLAM [132] possesses 

advantages of high accuracy and efficiency, and it is emerging as a common research area. 

6. Conclusions 

VI-SLAM technology is a popular and complicated research issue in the field of robotics and 

computer vision. This study provided an overview of VI-SLAM technology and summarized 

methods over the last 10 years. State-of-the-art VI-SLAM methods are introduced from filtering and 

optimization-based perspectives. The respective frameworks, key technologies, and advantages of 

these methods are presented. In addition, central technologies in VI-SLAM are systematically 

proposed, including feature extraction and tracking, pre-integration, and loop closure. This study 

surveys the performance of representative VI-SLAM methods and famous VI-SLAM datasets. 

Comparisons are made between filtering-based and optimization-based methods through 

experiments, which indicate filtering-based methods have advantages in terms of computing 

resources, while optimization-based methods achieve excellent localization accuracy and lower 

memory utilization. This study also predicted upcoming development trends and research directions 

for SLAM that have the potential to make the technology substantial.  
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Appendix A 

This study presents performance of VI-SLAM methods including MSCKF, ROVIO, S-MSCKF, 

OKVIS, VINS-mono, and VIORB. The performance of these methods is shown in Table A1. The 

camera type of MSCKF, ROVIO, VINS-mono, and VIORB is monocular. The camera type of S-MSCKF 

and OKVIS is stereo. Reference [15] proposed an analysis of tightly-coupled monocular, binocular, 

and stereo visual-inertial odometry. Notably, the drift rate of ROVIO is calculated according to Figure 

3 in [51]. VIORB obtained a 0.075 m root mean square error, with a scale error typically below 1%. 

This method was able to close loops and reuse its map to achieve zero-drift localization in already 

mapped areas. 
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Table A1. Performance of representative VI-SLAM methods. 

Methods MSCFK ROVIO S-MSCKF OKVIS VINS-Mono VIORB 

Platform Vehicle UAV MAV Car/Helmet MAV MAV 

Image 
640×480 

@14Hz 

752×480 

@20Hz 

752×480 

@20Hz 

752×480 

@20Hz 

752×480 

@20Hz 

752×480 

@20Hz 

Environment outdoor indoor indoor/outdoor outdoor indoor/outdoor indoor 

IMU @100Hz @200Hz @200Hz @200Hz @100Hz @200Hz 

Drift rate 0.31% ≈1.8% <0.5% <0.1% 0.88% ≈0 

Appendix B 

This study provides more details about SLAM datasets. The comparison of datasets with vision 

and IMU data is shown in Table A2. 

Table A2. Comparison of datasets with vision and IMU data. 

Datasets EuRoC Datasets PennCOSYVIO 
Zurich Urban 

MAV Dataset 
TUM VI Benchmark Canoe Dataset 

Carrier MAV Handheld MAV Handheld Canoe 

Cameras 

1 stereo gray 

2×752×480 

(global shutter) 

@20Hz 

4 RGB 1920×1080 

@30Hz (rolling 

shutter), 1 stereo 

gray 2×752×480 

@20Hz, 1 fisheye 

gray 640×480 

@30Hz 

1 RGB 1920×1080 

@30Hz (rolling 

shutter) 

1 stereo gray 

2×1024×1024 (global 

shutter) 

@20Hz 

1 stereo RGB 

2×1600×1200 

(rectified 

2×600×800) 

@20Hz 

IMUs 

ADIS16488 

3-axis acc/gyro 

@200Hz 

ADIS16488 3- 

axis acc/gyro 

@200Hz, Tango 

3-axis acc 

@128Hz/3-axis 

gyro @100Hz 

3-axis acc/gyro 

@10Hz 

BMI160 3- 

axis acc/gyro 

@200Hz 

ADIS-16488 

3-axis acc/gyro 

@200Hz, 

Environment indoors indoor/outdoors outdoors indoors/outdoors Sangamon River 

Ground 

truth 

Leica Multistation/Vicon 

system 
fiducial markers Pix4D 

motion capture 

pose 
GPS 

Stats/props 11 sequences, 0.9 km 4 sequences, 0.6 km 1 sequence, 2 km 28 sequences, 20 km 
28 sequences, 2.7 

km 
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