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Abstract: In this work, the kinematics of a spherical parallel manipulator composed of three
peripheral limbs equipped with linear actuators and a passive center shaft is approached by means
of the theory of screws. The displacement analysis is carried out solving closure equations, which
are obtained upon simple linear combinations of the components of two unit vectors describing the
orientation of the moving platform. After, the input-output equations of velocity and acceleration of
the spherical parallel manipulator are systematically obtained by resorting to reciprocal-screw theory.
This strategy avoids the computation of the passive joint velocity and acceleration rates of the robot
manipulator. Numerical examples illustrate the efficiency of the proposed method.
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1. Introduction

One of the most important problems in spatial kinematics is the representation of spherical
displacements and motions [1–7]. In robotics, usually this class of motion may be achieved using
serial or parallel manipulators. However, the spherical motion can be performed also with a four
bar spatially-closed kinematic chain with concentric revolute joints (4R) [8–12], which is the simplest
version of a parallel manipulator.

A spherical parallel manipulator (SPM) is a mechanical device composed of a moving platform
and a fixed platform connected to each other by means of two or more kinematic chains, the main
virtue of which is that all points of the moving platform move on concentric spheres according to a
point of the moving platform named the reference pole. Due to their large orientation workspace and
compactness, SPMs have been widely employed as wrist joints [13,14], camera-orienting devices [15,16]
and surgical robots [17–19]. On the other hand, the kinematics of spherical parallel manipulators
has been extensively well studied and, without a doubt, approaching topics like inverse-forward
displacement analysis, dexterity, workspace, detection of singularities, and so on [20–29]. In that
concern, recently, Wu et al. [30] investigated the performance of an SPM generator of unlimited
decoupled motions owing to its asymmetric architecture. Saafi et al. [31] approached the optimal
joint torque distribution for a redundant SPM used as a haptic device for controlling a surgical robot.
Arrouk et al. [32] improved the parametrization and representation of the orientation space of SPMs,
as well as their assembly modes based on graphical approaches. Landuré and Gosselin [33] introduced
a redundantly-actuated SPM equipped with linear actuators and an asymmetric architecture able to
avoid singularities. Li et al. [34] designed a spherical motion generator integrating an electromagnetic
actuator and the classical coaxial 3-dof spherical parallel manipulator.
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Enferadi and Shahi [35] introduced a 3(RPSP)-S spherical parallel manipulator, where R, P and S
stand respectively for revolute, prismatic and spherical joint. In that paper, by a combination of two
coupled trigonometric expressions and Rodrigues’ rotation formula, the forward position analysis
leads to a univariate polynomial equation of degree eight. In this work, the displacement analysis of
this SPM is simplified by formulating closure equations based on two unit vectors representing the
orientation of the moving platform, which leads to a system of six quadratic equations that are solved
using the homotopy continuation method. This strategy avoids the computation of the rotation matrix.
Furthermore, the instantaneous kinematics of the parallel manipulator is also investigated. To this
end, the rest of the contribution is organized as follows. In Section 2, the topology of the SPM is briefly
explained. The displacement analysis of the robot is carried out in Section 3. After, the input-output
equation of the velocity of the SPM is systematically obtained by resorting to reciprocal-screw theory
in Section 4. Following the trend of the velocity analysis, the input-output equation of acceleration is
obtained in Section 5. With the purpose to illustrate the method, in Section 6, it is applied to numerical
examples covering most of the issues treated in the contribution. Finally, some conclusions are given
at the end of the paper.

2. Architecture of the Spherical Parallel Manipulator

In this section, the topology of the parallel manipulator (see Figure 1) is explained, as well as most
of the notation used in the contribution.

The SPM is composed of three identical active peripheral kinematic chains and a passive center
shaft connecting the moving platform to the fixed base through a spherical joint (S). Each external leg
is connected to the fixed platform through a revolute joint (R) followed by an actuated prismatic joint
(P) and ending with a compound spherical + prismatic joint (S + P) connecting the limb to the moving
platform. In order to explain the geometry of the SPM, let us consider that O_XYZ is a reference frame
attached to the center O of the fixed platform where the Z-axis is normal to the plane of the fixed
platform. With this consideration, the nominal positions of the lower revolute joints are characterized
by points Ai, located by vectors aaai. Unless otherwise stated, in the rest of the contribution, i = 1, 2, 3.
The symmetry of the external limbs is such that the points Ai form an equilateral triangle inscribed
in a circle of radius a. Furthermore, the orientation of the revolute joints is defined by unit vectors ûuui
lying in the plane of the moving platform pointing from O to Ai. Meanwhile, the nominal positions of
the compound joints are denoted by points Bi, located by vectors bbbi, where the i-th (S + P) compound
joint slides along the axis of a unit vector v̂vvi pointing from C to Bi because of the prismatic joint. In that
regard, bi represents the variable distance between C and Bi. In order to achieve the spherical motion,
the SPM requires three generalized coordinates, which are associated with the peripheral prismatic
joints, a logical selection. The variable distance between points Ai and Bi is denoted as qi.

Figure 1. The spherical parallel manipulator.
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3. Displacement Analysis

In this section, the inverse-forward displacement analysis of the SPM is approached formulating
closure equations based on the components of two unit vectors lying in the plane of the
moving platform.

The forward displacement analysis consists of finding the orientation of the moving platform as
observed from the fixed platform given the generalized coordinates qi of the parallel manipulator. Said
otherwise, it is required to compute the unit vectors v̂vvi, as well as the coordinates of points Bi. To this
aim, let us consider that v̂vvi is the i-th unit vector directed from point C to the i-th point Bi. It is evident
that due to the symmetry of the sliding guides, we have a simple closure equation as:

v̂vv1 + v̂vv2 + v̂vv3 = 000 (1)

Thereafter, the position vectors of the centers of the spherical joints may be expressed on the unit
vectors v̂vvi as follows:

bbbi = ccc + biv̂vvi (2)

On the other hand, owing to the assemble of the outer limbs to the fixed platform through
concentric revolute joints, it follows that for each outer kinematic chain, its motion is constrained in
such a way that necessarily:

(bbbi − aaai) · ûuui = 0 (3)

Hence, with the substitution of Equation (2) into Equation (3), it follows that:

bi = a/ûuui · v̂vvi (4)

Furthermore, based on the magnitude of vector bbbi and the geometry of the equilateral triangle
OAiBi, one obtains:

(ccc + biv̂vvi) · (ccc + biv̂vvi) = a2 + q2
i (5)

where qi is the signed distance between Ai and Bi. After a few computations, we have:

[(ûuui · v̂vvi)ccc + av̂vvi] · [(ûuui · v̂vvi)ccc + av̂vvi]− (a2 + q2
i )(ûuui · v̂vvi)

2 = 0 (6)

Expressions (6) lead us to a system of three quadratic equations in six unknowns,
e.g., the components of the unit vectors v̂vv1 and v̂vv2. The number of required equations is completed
taking into account that:

v̂vvi · v̂vvi = 1 (7)

In the contribution, this system of equations, named the characteristic equations of the SPM, is
solved by means of the homotopy continuation method [36]. Afterwards, the coordinates of Bi are
calculated according to Equation (2). Furthermore, the coordinates of points Di, a necessary step
for approaching the instantaneous kinematics of the SPM, may be computed based on the following
closure equation:

(dddi − bbbi) · v̂vvi = 0→ di = bbbi · v̂vvi/ûuui · v̂vvi (8)

where dddi = diûuui.
On the other hand, the rotation matrix R may be computed on the unit vectors v̂vv1 and v̂vv2 as follows:

R =
[
v̂vv1 v̂vv1 × v̂vv2/ | v̂vv1 × v̂vv2 | v̂vv1 × (v̂vv1 × v̂vv2)/ | v̂vv1 × (v̂vv1 × v̂vv2) |

]
(9)
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Furthermore, matrix R may be expressed considering conventional roll (γ), pitch (β) and yaw (α)
angles [37] as follows:

R = Rγβα =

c(α)c(β) c(α)s(β)s(γ)− s(α)c(γ) c(α)s(β)c(γ) + s(α)s(γ)
s(α)c(β) s(α)s(β)s(γ) + c(α)c(γ) s(α)s(β)c(γ)− c(α)s(γ)
−s(β) c(β)s(γ) c(β)c(γ)

 (10)

where s(∗) and c(∗) are the abbreviations of sin(∗) and cos(∗), respectively. Meanwhile, the rotation
matrix R is obtained following the order of rotations of roll, pitch and then yaw. Thereafter, the angles
α, β and γ may be obtained from Equations (9) and (10). Alternatively, the orientation of the moving
platform can be also specified considering a unit vector n̂nn normal to the plane of the moving platform,
namely the equivalent angle of finite rotation. Indeed:

n̂nn = v̂vv1 × v̂vv2/ | v̂vv1 × v̂vv2 | (11)

The vector n̂nn gives us a clear idea about the orientation of the moving platform.
Finally, the inverse displacement analysis of the robot manipulator is straightforward. In fact,

given the orientation of the moving platform, e.g., given the vectors v̂vvi, first the position vectors bbbi are
obtained directly from Equation (2). After, the generalized coordinates qi are computed as follows:

q2
i = (ccc + biv̂vvi) · (ccc + biv̂vvi)− a2 (12)

Note that unlike the forward displacement analysis, a closed-form solution is available for solving
the inverse displacement analysis.

It is noteworthy that the orientation of a rigid body in the Euclidean space is represented univocally
by a rotation matrix, which is an element of the special orthogonal group denoted by SO(3).

This section introduces a method that does not require the computation of the rotation matrix for
solving the forward displacement analysis. The computation of the rotation matrix was included in
the contribution only for the sake of completeness.

4. Input-Output Equation of Velocity

The velocity analysis of parallel manipulators consists of formulating equations involving the
individual kinematic characteristics of their components. The solution of the velocity analysis allows
us to measure the angular and linear velocities of any of its elements. A relevant application of velocity
analysis includes computing the angular and linear velocities of the moving platform. Formulating the
velocity analysis of kinematic chains by means of using screw theory and linear algebra dates back to
the 1970s and has been well appreciated by the kinematician community. In this section, the velocity
analysis of the SPM is approached by means of the theory of screws [38,39].

Velocity modeling demands formulating a specific linear map between two vector spaces at a
given configuration, i.e., velocity modeling involves the linear map between the velocity state, or twist
about a screw, and the actuator rates. The velocity state of the moving platform as observed from the
fixed platform, notated as a six-dimensional vector VVVC, is defined as follows:

VVVC ≡
[

ωωω

vvvC

]
(13)

where ωωω is the angular velocity vector of the moving platform as measured from the fixed platform,
while vvvC is the linear velocity vector of point C expressed in the O_XYZ reference frame. Furthermore,
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the velocity state VVVC may be written through each limb as a linear combination of the screws
representing the kinematic pairs of the i-th leg as follows:

0ωi
1

0$1
i + 1ωi

2
1$2

i + 2ωi
3

2$3
i + 3ωi

4
3$4

i + 4ωi
5

4$5
i + 5ωi

6
5$6

i = VVVC (14)

where the assignation of screws is as follows: 0$1
i denotes the screw associated with the lower revolute

joint connecting the limb to the fixed platform, 1$2
i denotes the screw representing the actuated

prismatic joint along the limb, the screws 2$3
i , 3$4

i and 4$5
i are screws with concurrent primal parts

reproducing the effect of the spherical joint and 5$6
i represents the screw associated with the upper

passive prismatic joint. On the other hand, with the purpose of simplifying the analysis, let us consider
that Si is a line in Plücker coordinates directed from Bi to Di. Note that this line is reciprocal to all the
screws in the same limb except the screw representing the actuated prismatic joint. Let $1 = (ŝss1, sssO1)

and $2 = (ŝss2, sssO2) be two elements of the Lie algebra se(3) of the Euclidean group SE(3). The Klein
form, notated as {∗; ∗}, is a bilinear symmetric form defined as follows:

{$1; $2} = ŝss1 · sssO2 + ŝss2 · sssO1

Furthermore, it is said that the screws $1 and $2 are reciprocal if {$1; $2} = 0. Thus, the application
of the Klein form between the line Si and both sides of Equation (14) with the cancellation of terms
leads to:

∗ {Si;VVVC} = q̇i{Si; 1$2
i } (15)

where q̇i = 1ωi
2 is the i-th generalized speed. Expression (15) provides enough information to obtain

the input-output equation of velocity. However, the handling of non-square Jacobian matrices is
imminent. The expansion of the Jacobians of limited-dof parallel manipulators to full rank Jacobian
matrices brings important advantages [40]. Dealing with the contribution, in order to avoid the tedious
handling of non-square matrices, consider that a standard basis for parallel manipulators performing
the spherical motion is given by {$1, $2, $3} where $1 = [îii, 000], $2 = [ĵjj, 000] and $3 = [k̂kk, 000]. Therefore, by
resorting to the concept of the reciprocal screw through the Klein form, three equations may be written
as follows:

{$i;VVVC} = 0 (16)

Casting into a matrix-vector form Expressions (15) and (16), the input-output equation of the
velocity of the SPM results in:

JT
v ∆ VVVC = Jq Qv (17)

where

Jv =
[
S1 S2 S3 $1 $2 $3

]
is the forward Jacobian matrix,

Jq = diag
[
{S1; 1$2

1} {S2; 1$2
2} {S3; 1$2

3} 1 1 1
]

is the inverse Jacobian matrix,

Qv =
[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

]T
where q̇4 = q̇5 = q̇6 = 0 is the first order driver matrix and

∆ =

[
0 I
I 0

]
is an operator of polarity generated with the zero matrix 0 and the identity matrix I.

5. Input-Output Equation of Acceleration

Acceleration analysis consists of formulating equations involving the angular and linear
accelerations of each element of a parallel manipulator. The solution of acceleration analysis allows us
to determine the angular and linear accelerations of any body of the system under study. Pioneering
contributions modeling the acceleration of rigid bodies based on six-dimensional vectors date back
to 1947 when Brand introduced in kinematics the concept of the acceleration motor or, (for brevity,
accelerator). However, while the velocity analysis in screw form of robot manipulators had been



Robotics 2018, 7, 29 6 of 12

welcome almost five decades ago in the kinematician community, still these days, there is certain
incredulity about the validity of the equations in screw form of the acceleration analysis. In this section,
the acceleration analysis by means of screw theory of the spherical parallel manipulator is briefly
presented [39].

Let ααα be the angular acceleration vector of the moving platform as measured from the fixed
platform. Furthermore, let aaac be the acceleration of point C expressed in the O_XYZ fixed reference
frame. The reduced acceleration state, or accelerator, for brevity, of the moving platform as observed
from the fixed platform, a six-dimensional vector notated as AAAC, is defined as follows:

AAAC =

[
ααα

aaaC −ωωω× vvvC

]
(18)

Furthermore, the accelerator may be expressed in screw form through the external limbs
as follows:

0αi
1

0$1
i + 1αi

2
1$2

i + 2αi
3

2$3
i + 3αi

4
3$4

i + 4αi
5

4$5
i + 5αi

6
5$6

i + LLLi = AAAC (19)

where LLLi is the Lie screw of acceleration, which is given by:

LLLi =
[

0ωi
1

0$1
i 1ωi

2
1$2

i + 2ωi
3

2$3
i + 3ωi

4
3$4

i + 4ωi
5

4$5
i + 5ωi

6
5$6

i

]
+[

1ωi
2

1$2
i 2ωi

3
2$3

i + 3ωi
4

3$4
i + 4ωi

5
4$5

i + 5ωi
6

5$6
i

]
+[

2ωi
3

2$3
i 3ωi

4
3$4

i + 4ωi
5

4$5
i + 5ωi

6
5$6

i

]
+

[
3ωi

4
3$4

i 4ωi
5

4$5
i + 5ωi

6
5$6

i

]
+[

4ωi
5

4$5
i 5ωi

6
5$6

i

]
(20)

Following the framework of the velocity analysis, the input-output equation of acceleration
results in:

JT
v ∆ AAAC = Jq Qa + C (21)

Therein:

Qa =
[
q̈1 q̈2 q̈3 q̈4 q̈5 q̈6

]T
where q̈4 = q̈5 = q̈6 = 0 is the second-order driver matrix and

C =
[
{S1; LLL1} {S2; LLL2} {S3; LLL3} 0 0 0

]T
is the complementary matrix of acceleration.

It is interesting to note that owing to the fact that the dual part of the accelerator AAAC vanishes,
then matrix C can be removed from Equation (21). The explanation is easy to follow. It is evident
that the terms of the Coriolis acceleration are contained in the dual part of AAAC and in the Lie screw
of acceleration (see Equation (19)); thus, it follows that if aaaC −ωωω × vvvC = 000, then necessarily, LLLi = 000.
Said otherwise, in an SPM, the reduced acceleration state of the moving platform as measured from
the fixed platform, taking the point of null linear motion of the moving platform as the reference pole,
is generated only based on a linear combination of the joint acceleration rates of the i-th limb.

6. Numerical Applications

In order to show the application of the method, in this section, the numerical kinematic analysis of
the spherical parallel manipulator under study is presented. To this aim, consider that the parameters
of the mechanism are chosen as h = 1 m, a = 1 m, ûuu1 = îii, ûuu2 = −0.5îii− 0.866k̂kk and ûuu3 = −0.5îii + 0.866k̂kk.
Thus, the coordinates of the nominal positions of the lower revolute joints are given by A1 = (1, 0, 0) m,
A2 = (−0.5, 0,−0.866) m and A3 = (−0.5, 0, 0.866) m.

The first part of the numerical example deals with the inverse displacement analysis of the SPM.
To this aim, let us consider that the orientation of the moving platform is defined by the angles
roll (γ = 3◦), pitch (β = 2◦) and yaw (α = 4◦). Then, according to Equation (12), the generalized
coordinates meeting this pose result in q1 = 0.967524 m, q2 = 1.06524 m and q3 = 0.974468 m.
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The next part of the case study deals with the forward displacement analysis of the SPM.
The application consists of finding all the feasible poses of the moving platform given the generalized
coordinates qi obtained for the inverse displacement analysis of the SPM. The method introduced in
Section 3 yields 60 solutions where only four are real. In that regard, the available values for vectors v̂vv1

and v̂vv2 are listed in Table 1.

Table 1. Numerical forward displacement analysis: resulting unit vectors v̂vv1 and v̂vv2.

Sol. v̂1 v̂2

13 ( −0.9969563613,0.0348994966,0.0697139786) ( 0.5572283259,−0.0627464056,0.8279851940)
16 (−0.9970863751,0.0347732475,−0.0678939009) ( 0.4382165437,−0.0627290151,0.8966779419)
45 ( 0.9970863751,−0.0347732475,0.0678939009 ( −0.4382165437,0.0627290151,−0.8966779419)
48 ( 0.9969563613,−0.0348994966,−0.0697139786) (−0.5572283259,0.0627464056,−0.8279851940)

In what follows, the method is proven solving numerically the velocity and acceleration analyses
of the robot manipulator. To this end, consider Solution 45 of Table 1 as the reference configuration of
the parallel manipulator. For clarity, in Table 2, the data of the home position of the SPM are provided.

Table 2. Reference configuration of the spherical parallel manipulator.

h = 1 m, a = 1 m, ûuu1 = îii, ûuu2 = −0.5îii− 0.866k̂kk, ûuu3 = −0.5îii + 0.866k̂kk
A1 = (1, 0, 0) m, A2 = (−0.5, 0,−0.866) m, A3 = (−0.5, 0, 0.866) m

γ = 3◦, β = 2◦, α = 4◦

q1 = 0.967524 m, q2 = 1.06524 m, q3 = 0.974468 m

b1 = 1.002922139 m, b2 = 1.004364820 m, b3 = 1.002825009 m

v̂vv1 = 0.9970863751îii-0.3477324757e− 1ĵjj + 0.6789390091e− 1k̂kk
v̂vv2 = −0.4382165437îii + 0.6272901518e− 1ĵjj− 0.8966779419k̂kk
v̂vv3 = −0.5588698314îii-0.2795576761e− 1ĵjj + 0.8287840410)k̂kk
n̂nn = 0.3035094797îii + 0.9518606843ĵjj + 0.4293289449e− 1)k̂kk

B1 = (1.0, 0.9651251402, 0.6809229633e− 1) m
B2 = (−0.4401292800, 1.063002816,−0.9005917797) m
B3 = (−0.5604486437, 0.9719652571, 0.8311253634) m

With these assumptions, based on the reference configuration of the robot, the moving platform
must reach an orientation defined by the angles γ = 20◦, β = 60◦, α = 30◦. Furthermore, at the
beginning of the analysis, the parallel manipulator is motionless, and it is required to move it in a
smooth manner in such a way that after 10 seconds, the moving platform returns to rest, reaching
the desired orientation. A quintic polynomial expression is appropriated to achieve this task. For
clarity, plots of the functions of the generalized coordinates and their time derivatives meeting such
conditions are provided in Figure 2.



Robotics 2018, 7, 29 8 of 12

Figure 2. Time history of the generalized coordinates. Application 1.

The application of the proposed method yields the temporal behavior of the angular velocity and
acceleration of the moving platform shown in Figure 3.

Figure 3. Instantaneous kinematics of the moving platform. Application 1.

It is interesting to mention that the components of the angular acceleration of the moving
platform may be obtained using another approach, namely Method 2. This alternative consists
of two steps. First, the components of the angular velocity vector generated by applying screw theory
are transformed into analytic functions using spline functions. Second, the components of the angular
acceleration vector are obtained as simple time derivatives of the functions generated in the first step.
Figure 4 shows a comparison of both strategies.

Note that according to Figure 4, the numerical results of the computation of the angular
acceleration of the moving platform by using screw theory are in excellent agreement with those
generated with Method 2.

A second application concerned with the velocity and acceleration analysis of the SPM is included
in the contribution. Based on the reference configuration of the parallel manipulator given in Table 2,
the generalized coordinates are commended to follow periodical functions given by q1 = 0.25s(t)c(t),
q2 = −0.75s(t)c(t) and q3 = 0.5s(t)c(t) where the time t is given in the interval 0 ≤ t ≤ 2πs. The
resulting temporal behavior of the kinematics of the moving platform of this case is provided in
Figure 5.
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Figure 4. Two methods for computing the angular acceleration vector of the moving platform: screw
theory (1), Method 2 (2). Application 1.

Figure 5. Instantaneous kinematics of the moving platform. Application 2.

Meanwhile, the comparison of the computation of the angular acceleration vector using screw
theory and Method 2 is shown in Figure 6.

Figure 6. Two methods for computing the angular acceleration vector of the moving platform: screw
theory (1), Method 2 (2). Application 2.
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7. Conclusions

In this work, the kinematics of the spherical parallel manipulator introduced by Enferadi and
Shahi [35] is approached by means of the theory of screws. This parallel manipulator is composed of
three active peripheral limbs and a passive center shaft.

The displacement analysis of the SPM at hand was carried out formulating closure equations
based on simple linear combinations of two unit vectors describing the orientation of the moving
platform as observed from the fixed platform. The method is easy to follow and does not require the
computation of the rotation matrix for solving the forward displacement analysis, a recursive strategy
employed in most contributions approaching the displacement analysis of parallel manipulators.
The computation of the rotation matrix based on the roll, pitch and yaw angles was included only
for the sake of completeness. Afterwards, the input-output equations of velocity and acceleration
of the SPM were achieved by resorting to reciprocal-screw theory. This method does not require
the computation of the passive joint velocity and acceleration rates of the SPM, without a doubt an
interesting advantage of the proposed method. Finally, numerical examples were included with the
purpose to illustrate the application of the method.
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