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Abstract: A hexapod is a parallel manipulator where the platform is linked with the base by six
legs, which are anchored via spherical joints. In general, such a mechanical device is rigid for
fixed leg lengths, but, under particular conditions, it can perform a so-called self-motion. In this
paper, we determine all hexapods possessing self-motions of a special type. The motions under
consideration are so-called plane-symmetric ones, which are the straight forward spatial counterpart
of planar/spherical symmetric rollings. The full classification of hexapods with plane-symmetric
self-motions is achieved by formulating the problem in terms of algebraic geometry by means of
Study parameters. It turns out that besides the planar/spherical symmetric rollings with circular
paths and two trivial cases (butterfly self-motion and two-dimensional spherical self-motion), only
one further solution exists, which is the so-called Duporcq hexapod. This manipulator, which is
studied in detail in the last part of the paper, may be of interest for the design of deployable structures
due to its kinematotropic behavior and total flat branching singularities.
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1. Introduction

In planar kinematics, the instantaneous pole P traces the so-called fixed/moving polode in the
fixed/moving system during the constrained motion of a given mechanism. It is well known that this
motion can also be generated by the rolling of the moving polode φ along the fixed polode φ0 without
sliding. If the polodes are symmetric with respect to the pole tangent t, then the motion is called planar
symmetric rolling (cf. Figure 1, left). In 1826, this motion was first (with the exception of the already
known symmetric circle rolling yielding the limacons of Pascal) studied by Quetelet [1], who pointed
out the following property (cf. [2]): The path x of a point X under this special planar motion can be generated
by the reflexion of a point X0 of the fixed system on each tangent of φ0. This can also be reformulated as
follows: x can be obtained by a central dilation with center X0 and scale factor 2 (i.e., central doubling) of X0’s
pedal-curve f with respect to φ0. A detailed study of the planar symmetric rolling was done by Bereis [3],
Bottema [4] and Tölke (cf. [2] and the references given therein).

The spherical counterpart of this motion is called spherical symmetric rolling and was extensively
studied by Tölke in a series of papers, which are summarized and referenced in [2]. The spherical
version of the above given characterization also holds true for the spherical symmetric rolling
(cf. Figure 1, right).
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Figure 1. Sketch of the planar symmetric rolling (left) and the spherical symmetric rolling (right).
The pedal-point of the fixed point X0 with respect to the pol-tangent t is denoted by F.

From another perspective, a planar/spherical symmetric rolling can also be generated by reflecting
the fixed system in a 1-parametric continuous set of lines/great circles. This point of view is of
importance for the spatial generalization of symmetric rollings, which can be done in multiple ways:

1. Darboux noted in [5] (No. 61) a 2-parametric spatial motion, which is generated by the rolling of a
moving surface Φ on an indirect congruent fixed surface Φ0. It also holds that the path-surface of
a point X can be generated by the reflexion of a point X0 of the fixed system on each tangent-plane
of Φ0; for example, the path-surface can be obtained by a central doubling of X0’s pedal-surface
with respect to Φ0’s tangent-planes.

2. Krames [6] considered the so-called line-symmetric motion as the 1-parametric spatial analogue of
the planar/spherical symmetric rolling. These motions are obtained by reflecting the moving system
in a 1-parametric continuous set of lines, which form the so-called basic surface Γ (cf. Figure 2, left).
Krames reasoned this by the fact that the path x of a point X under a line-symmetric motion can be
generated by the reflexion of a point X0 on each generator g of Γ; for example, x can be obtained by a
central doubling of X0’s pedal-curve f with respect to Γ’s rulings. However, it should be pointed out
that Γ differs from the fixed axode Φ0 (generated by the central tangents of Γ). However, Φ0 and the
moving axode Φ are at each time instant symmetric with respect to the axis p of the instantaneous
screw, which is in general not an instantaneous rotation. For further details and references on this
motion type, please see [7,8] (§7 of Ch. 4) and [9].

3. It is astonishing that neither Tölke [2] (Section 3.1) nor Krames [6] (p. 394) mentioned the more
apparent generalization by reflecting the fixed system in a 1-parametric continuous set of planes.
Less attention was paid to these so-called plane-symmetric motions in the literature until now.
We summarize the known results in the next section.

Remark 1. Note that the term plane-symmetric motion was also used in [10] (§3.3) for a superset of the above
described motions, which is characterized by the sole property that "the same equation describes the motion and
its inverse, but with respect to reference systems that are a reflection of each other". In order to avoid confusions,
we point out that we do not mean this superset by using this wording.
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Figure 2. Sketch of the line-symmetric motion (left) and the spatial symmetric rolling (right). For the
illustrations, the basic surface Γ of the line-symmetric motion and the fixed axode Φ0 of the spatial
symmetric rolling have been chosen as tangent-surfaces of a straight cubic circle c. F denotes the
pedal-point of the fixed point X0 with respect to (left) the generator g of Γ and (right) the tangent-plane
τ along the instantaneous axis p of rotation, respectively.

1.1. Review on Plane-Symmetric Motions

The basic properties of this motion type are reported in [8] (§8 of Ch. 4). Given is a 1-parametric
continuous set of planes τ(t), where the parameter t can be seen as time. By reflecting the fixed frame

0 on the plane τ(t), we obtain the pose t
0 of the plane-symmetric motion.

Let us consider to infinitesimal neighboring poses t
0 and t+∆t

0 of the plane-symmetric motion.
Now, one can transform t

0 into t+∆t
0 by a reflexion on τ(t) followed by a further reflexion on

τ(t + ∆t). It is well known that this is a pure rotation about the line of intersection of τ(t) and
τ(t + ∆t). Moreover, this is exactly a torsal ruling of the developable surface enveloped by the given
1-parametric set of planes. As a consequence, the fixed axode Φ0 is a developable surface (It is well
known (e.g., [11] (Thms. 5.1.7 and 6.1.3)) that every developable surface is composed of cylindrical,
conical or tangent-surfaces) and the corresponding moving axode Φ is obtained by reflecting Φ0 in
Φ0’s tangent-plane τ along the instantaneous axis p of rotation (cf. Figure 2, right). Now, the path x

of a point X under a plane-symmetric motion can be generated by the reflexion of a point X0 on each
tangent-plane τ of Φ0; i.e., x can be obtained by a central doubling of X0’s pedal-curve f with respect to
Φ’s tangent-planes.

Due to all these properties, the plane-symmetric motion seems to be the straightforward spatial
counterpart of the planar/spherical symmetric rolling. Therefore, we call a plane-symmetric motion
also a spatial symmetric rolling.

As far as the author knows, these spatial symmetric rollings are only explicitly mentioned in a
practical example by Kunze and Stachel [12], who pointed out that the relative motion of opposite
systems of a threefold-symmetric Bricard linkage (e.g., the invertible cube of Schatz) is a plane-symmetric
one. Clearly, this also holds for the more general class of plane-symmetric Bricard linkages [13],
where the two opposite systems not containing a rotation-axis spanning the plane of symmetry also
possess a plane-symmetric relative motion during the overconstrained motion of the closed 6R-chain.

1.2. Motivation and Outline

One of the author’s main research interests are hexapods with self-motions, i.e., overconstrained
parallel manipulators where the platform is linked with the base by six legs, which are anchored via
spherical red joints (Due to the spherical joints at the platform and the base, each leg can rotate about
its carrier line without changing the pose of the platform. These uncontrolled leg-movements are not
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meant by the term self-motion). All these mechanical devices are solutions to the still unsolved problem
posed by the French Academy of Science for the Prix Vaillant of the year 1904, which is also known as
Borel–Bricard problem and reads as follows [14]: "Determine and study all displacements of a rigid body in
which distinct points of the body move on spherical paths." In order to avoid trivial solutions of the problem,
the following assumption should hold for the remainder of the article.

Assumption 1. The platform anchor points m1, . . . ,m6 of the hexapod as well as the corresponding base anchor
points M1, . . . ,M6 should span in each case at least a plane.

It is well known that so-called architecturally singular hexapods (A hexapod is called
architecturally singular if the six legs belong in each relative pose of the platform with respect
to the base to a linear line complex) possess self-motions in each pose (over C). These special
solutions to the Borel–Bricard problem are already well studied (A review on this topic is given
in [15] (Section 3.1)). The approaches for the determination of non-architecturally singular hexapods
recorded in the literature (Note that we do not claim that the following list of given references is
complete), can roughly be divided into the following two groups:

1. Assumptions on the geometry of the platform and base; e.g.,

(a) linear mapping between platform and base [16–22],
(b) symmetry properties of platform and base [20–24],
(c) special topology (e.g., octahedral structure [25]),

or a combination of these assumptions (e.g., [20–22])

2. Assumptions on the self-motion; e.g.,

(a) line-symmetric self-motion [9],
(b) type II Darboux–Mannheim self-motion [26],
(c) Schoenflies self-motion [27],
(d) translational self-motion [28],
(e) self-motion of maximal degree [29],

or more generally characterizations like linear relations between direction cosines [30–33].

Note that these assumptions are done in order to reduce the complexity of the problem, as one
has to deal with 30 design parameters (24 for the geometry and six leg lengths, whereby the number of
30 can be reduced by one due to the freedom of scaling) and six degrees of freedom.

We want to follow the second approach by assuming that the self-motions are symmetric
rollings. Therefore, this paper closes a gap as line-symmetric self-motions and point-symmetric
(Point-symmetric motions are obtained by reflecting the fixed system in a 1-parametric continuous set
of points and according to [7] (Section 8), these motions are pure translations) self-motions are already
well-studied [9,28]. In addition, this motion-type seems to be a good candidate for self-motions, due to
the following property implied by the symmetry of the motion:

Theorem 1. If a point A of the moving system traces a spherical curve with center B0 during a plane-symmetric
motion, then also the point B of the moving system has a spherical trajectory about the point A0, where A and A0

as well as B and B0, are plane-symmetric points of the moving and fixed frame with respect to the tangent-plane
τ along the instantaneous axis p of rotation. As a consequence, the set of points with spherical trajectories is
indirectly congruent to the set of corresponding sphere centers.

In the remainder of the paper, we call the replacement of the point pair (A,B0) by (B,A0) the
“symmetric leg-replacement”.
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Remark 2. Clearly, the lower dimensional version of Theorem 1 is also true for the planar/spherical symmetric
rolling. Moreover, Theorem 1 also holds for point-symmetric motions, if "plane-reflection" is substituted by
"point-reflection". A similar result holds for line-symmetric motions; one only has to replace "plane-reflection"
by "line-reflection" and "indirectly congruent" by "directly congruent" (see e.g., [9]).

The paper is structured as follows: We start with the discussion of planar/spherical symmetric
rolling motions with circular paths in Section 2.1. In Section 2.2, we formulate the problem of
determining hexapods with plane-symmetric self-motions in terms of algebraic geometry by means of
Study parameters. Based on this description, the problem is solved in Section 3. One of the obtained
solutions is the so-called Duporcq hexapod, which is discussed in more detail in Section 4. The paper is
closed by a conclusion (cf. Section 5).

2. Preliminary Considerations and Preparatory Work

As far as the author knows, no hexapods with plane-symmetric self-motions are reported in the
literature so far. From known results in planar/spherical kinematics, which are reviewed in the next
subsection, we can immediately construct such hexapods.

2.1. Planar/Spherical Symmetric Rollings with Circular Paths

Clearly, a pure rotation is a planar/spherical symmetric rolling where every point of the moving
system traces a circle. Besides this trivial case, which we meet again under the notation of a so-called
butterfly self-motions (cf. later given Theorem 4), the following planar/spherical symmetric rollings
with circular trajectories exist:

• The planar symmetric rolling motions with points running on circular paths are well known due
to the study of Bereis [3]. In this case, the polodes are either ellipses or hyperbolas and the focals
(two real, two complex) of the moving ellipse/hyperbola are running on circles. They are the
Burmester points of this motion. These motion can be realized by the mechanisms illustrated in
Figure 3.
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Figure 3. Twin-crank mechanisms with non-counter-rotating cranks (left): In this case, the polodes
are ellipses. Twin-crank mechanism with counter-rotating cranks (right): In this case, the polodes
are hyperbolas.

• Unfortunately, the considerations of Bereis cannot be generalized straightforward to the sphere
(cf. [2] (p. 195)), as in spherical kinematics six Burmester points exist (e.g., [8] (p. 216)). However,
we can do the reasoning in a different way. Due to [28] (Theorem 6), one can assume without loss
of generality that only two points of a moving body can have spherical trajectories. According to
the spherical version of Theorem 1, a second point is also running on a circle due to the symmetric
leg-replacement (With the exceptional case that the first leg is orthogonal to the pole tangent, but
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this will not yield a closed loop; i.e., a spherical parallel manipulator). Thus, we can only end up
with a spherical isogram illustrated in Figure 4, which is studied in more detail in [34].
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Figure 4. As on the sphere points can be replaced by their antipodes, it can easily be seen that every
spherical conic can be interpreted as a spherical ellipse (e.g., [35] (Section 10.1)). The left and the right
figure show the same symmetric rolling motion. If we replace A and A0 by their antipodal points A and
A0, respectively, and look on the sphere from the right side, then we get the figure illustrated on the
right-hand side.

From the discussed planar and spherical case, one can easily construct hexapods with
plane-symmetric self-motions (see Figure 5).

Remark 3. Note that the hexapods of Figure 5 do not only possess the illustrated plane-symmetric self-motions,
but also the already mentioned butterfly self-motions (cf. later given Theorem 4).

Figure 5. Hexapods with plane-symmetric self-motions, where the platform (green) and the base (blue)
are both planar. The axodes of the self-motions are cylinders (left) and cones (right), respectively,
but we only illustrated the planar/spherical directrices of these singular quadrics to see better their
connection to the planar/spherical symmetric rolling displayed in Figures 3 and 4, respectively.
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2.2. Mathematical Framework

For the algebraic formulation of our problem, we want to use Study parameters (e0 : e1 : e2 : e3 :
f0 : f1 : f2 : f3), which are nothing else than homogenized dual unit-quaternions + ε with

= e0 + e1i + e2j + e3k and = f0 + f1i + f2j + f3k, (1)

where i, j, k are the well-known quaternionic units and ε the dual unit with the property ε2 = 0.
Now, all real points of the seven-dimensional Study parameter space P7, which are located on the

so-called Study quadric Ψ : ∑3
i=0 ei fi = 0, correspond to a Euclidean displacement with exception of

the three-dimensional subspace E of Ψ given by e0 = e1 = e2 = e3 = 0, as its points cannot fulfill the
condition N 6= 0 with N = e2

0 + e2
1 + e2

2 + e2
3. The translation vector t := (t1, t2, t3)

T and the rotation
matrix R := (rij) of the corresponding Euclidean displacement x 7→ Rx + t are given by:

t1 = 2(e0 f1− e1 f0 + e2 f3− e3 f2), t2 = 2(e0 f2− e2 f0 + e3 f1− e1 f3), t3 = 2(e0 f3− e3 f0 + e1 f2− e2 f1),

and

R =

e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3

 ,

if the normalizing condition N = 1 is fulfilled.
Clearly, the reflection on a plane is an orientation-reversing congruence transformation,

which cannot be described directly by the Study parameters. Therefore, we follow the approach
of Selig and Husty [7] (Section 8), which is as follows: We start with a reflexion on a fixed plane; say the
xy-plane of the fixed frame 0. By this plane-reflection of 0, we obtain 0. In addition, we apply the

reflexion on the plane τ(t), which finally yields the pose
t
0. As the composition of two plane-reflexions

is again a direct congruence transformation, we can describe the plane-symmetric motions in this way.
If τ(t) and the xy-plane of 0 are

• not parallel, then the composition is a rotation about the line of intersection,
• parallel, then the composition is a translation orthogonal to these planes.

This yields that the plane-symmetric motions are given by e3 = f0 = f1 = f2 = 0. Moreover,
it should be noted that the Study condition is fulfilled identically, thus the set of plane-symmetric
motions corresponds to a three-dimensional generator space P of Ψ which intersects E in a line. Based
on this description, we analyze the relation between plane-symmetric motions and line-symmetric
ones in the next theorem:

Theorem 2. A plane-symmetric motion is also a line-symmetric one if and only if there exists a linear relation
αe0 + βe1 + γe2 + δ f3 = 0 with (α, β, γ, δ) 6= (0, 0, 0, 0) between the remaining Study parameters.

Proof. For the proof, we need an algebraic characterization of line-symmetric motions in terms of
Study parameters. It is well-known that there always exist, a Cartesian frame in the moving system
in a way that e0 = f0 = 0 holds for a line-symmetric motion. Then, (e1 : e2 : e3 : f1 : f2 : f3) are the
Plücker coordinates of the generators of the basic surface with respect to the fixed frame.

A change of the moving system can be achieved by a so-called right multiplication;
i.e., ( + ε )◦ ( + ε ) where ◦ stands for the quaternionic multiplication. If we denote this
product by + ε , the corresponding entries g0 and h0 read as follows (under consideration of
e3 = f0 = f1 = f2 = 0):

g0 := r0e0 − r1e1 − r2e2, h0 := s0e0 − s1e1 − s2e2 − r3 f3. (2)
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If δ = 0 holds, then we set r0 = α, r1 = −β, r2 = −γ and s0 = s1 = s2 = r3 = 0. For δ 6= 0,
we set s0 = α, s1 = −β, s2 = −γ, r3 = −δ and r0 = r1 = r2 = 0. For both cases, we get g0 = h0 = 0,
which finishes the sufficiency of the linear relation between e0, e1, e2, f3.

Its necessity can also be seen from Equation (2), as without such a linear relation, the condition
g0 = h0 = 0 can only be fulfilled for r0 = r1 = r2 = r3 = 0, which yields a contradiction as has to
differ from the zero-quaternion.

A further important theorem in this context is the following:

Theorem 3. A plane-symmetric motion is also a line-symmetric one if and only if it is a planar motion or a
spherical motion.

Proof. If the linear relation equals f3 = αe0 + βe1 + γe2, then it can easily be checked by direct
computations that the point (γ,−β,−α) is mapped to the point (γ,−β, α) for all e0, e1, e2 fulfilling
N = 1. Therefore, (γ,−β, α) is the center of the spherical motion.

If the linear relation equals αe0 + βe1 + γe2 = 0, then it can easily be checked by direct
computations that the direction (γ,−β,−α) is mapped to the direction (γ,−β, α) for all e0, e1, e2

fulfilling N = 1. Therefore, the direction (γ,−β, α) remains fixed under the motion. Moreover,
the translation vector (t1, t2, t3) is orthogonal to this direction, which already proves that the motion is
planar.

These two theorems imply the following statement:

Corollary 1. If we embed the planar and spherical symmetric rollings into SE(3), then they can also be seen as
line-symmetric motions.

Therefore, the self-motions of the hexapods illustrated in Figure 5 are plane-symmetric and
line-symmetric at the same time. This raises also the question of whether self-motions exist, which are
plane-symmetric but not line-symmetric. The answer is given within the next section.

3. Plane-Symmetric Self-Motions

The coordinate vector of the base point Mi with respect to the fixed system is given by
Mi = (Ai, Bi, Ci)

T. The position of the corresponding platform anchor point mi(t) is obtained by
reflecting a point mi,0 with fixed coordinates mi = (ai, bi, ci)

T in a 1-parametric continuous set of planes
τ(t). Instead of these reflexions, we use direct isometries based on the Study representation described
in Section 2.2 (i.e., e3 = f0 = f1 = f2 = 0). Therefore, the locus of the corresponding platform anchor
point mi with respect to the fixed frame can be parametrized as Rmi + t with mi = (ai, bi,−ci)

T.
The condition that the point mi is located on a sphere centered in Mi with radius di is a quadratic

homogeneous equation in the Study parameters according to Husty [36]. For our setup, this so-called
sphere condition Λi has the following form:

Λi : (a2
i + b2

i + c2
i + A2

i + B2
i + C2

i − d2
i )N− 4(ci + Ci)e0 f3 + 4(bi + Bi)e1 f3 − 4(ai + Ai)e2 f3

− 2(ai Ai + biBi − ciCi)e2
0 − 2(ai Ai − biBi + ciCi)e2

1 + 2(ai Ai − biBi − ciCi)e2
2

− 4(ciBi + biCi)e0e1 + 4(ci Ai + aiCi)e0e2 − 4(bi Ai + aiBi)e1e2 + 4 f 2
3 = 0.

(3)

It corresponds to a quadric in the three-dimensional projective space P3 with homogenous
coordinates (e0 : e1 : e2 : f3). The symmetric leg-replacement (cf. Theorem 1) can also easily be seen
within this formula, as it is invariant under the following permutations: Ai ↔ ai, Bi ↔ bi, Ci ↔ ci. Due
to this symmetry, we only have to find spatial rolling motions where three points have a spherical
trajectory. This means that the corresponding three quardrics Λ1, Λ2 and Λ3 of P3 have to have a curve
in common, which can be a
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1. straight line,
2. conic section,
3. cubic curve,
4. quartic curve.

In the following subsections these cases are discussed separately.

3.1. Intersection Curve Is a Straight Line

It is well-known that straight lines in the Study quadric correspond with either rotations about a
line or straight translations. As the second option is not possible due to the sphere condition, we are
only left with the rotation case. In the first step, we ask under which conditions two quadrics Λ1 and
Λ2 have a straight line in common.

• General Case: Let us assume that M1 6= M2 and m1(t) 6= m2(t) hold. Clearly, the straight line in P3

has to correspond with a rotation about the line G spanned by M1 and M2. Therefore, the line g(t)
spanned by m1(t) and m2(t) generates either a hyperboloid, cone or cylinder of revolution with
axis G. Moreover, all these poses of the platform points have to be obtained by plane-reflexions of
the points m1,0 and m2,0, respectively. This already implies that the 1-parametric set of planes τ(t)
has to be a pencil of planes with axis G. Therefore, the leg lengths d1 and d2 are given by

di = dist(Mi,mi,0) =
√
(Ai − ai)2 + (Bi − bi)2 + (Ci − ci)2, (4)

which is already the necessary and sufficient condition for the two quadrics Λ1 and Λ2 to have a
straight line in common.

• Special Case: As the case M1 = M2 and m1(t) = m2(t) cannot arise (legs are identical), we only
have to discuss one further case due to the symmetric leg-replacement. Without loss of generality,
we can assume M1 6= M2 and m1(t) = m2(t). Now, m1(t) = m2(t) has to trace a circle about the
line G, which in fact implies the same condition given in Equation (4) for i = 1, 2.

Under consideration of the notation that (Mi,mi) and (Mi+3,mi+3) are coupled by the symmetric
leg-replacement (for i = 1, 2, 3), we can immediately formulate the following theorem.

Theorem 4. Up to symmetric leg-replacements, the three quadrics Λ1, Λ2 and Λ3 have a line in common if
and only if Equation (4) holds for i = 1, 2, 3 and M1,M2,M3 are collinear. The corresponding self-motion of the
hexapod is a butterfly self-motion about the line spanned by M1,M2,M3, where Mi = mi+3 holds for i = 1, 2, 3.

As these butterfly self-motions (cf. Figure 6, left) are trivial, they are not of further interest.

3.2. Intersection Curve Is a Conic

As the conic is a planar curve, there has to exist a linear relation between the homogenous
coordinates (e0 : e1 : e2 : f3) of P3. Therefore, we can apply the Theorems 2 and 3, which imply that we
can only end up with planar/spherical symmetric rollings already discussed in Section 2.1.

3.3. Intersection Curve Is Cubic

A necessary condition that Λ1, Λ2 and Λ3 have a cubic curve in common is that the intersection
of two quadrics split up into a line and this cubic. Therefore, condition Equation (4) has to hold. It can
easily be checked that Λi splits up into two planes:

Λi : 4(Cie0 − Bie1 + Aie2 − f0)(cie0 − bie1 + aie2 − f0) = 0 (5)
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Figure 6. In all three illustrations, the plane of symmetry is always a vertical projecting plane;
left: butterfly self-motion of a hexapod. Note that not necessarily the three legs obtained by the
symmetric leg-replacements have to be added, but any legs where neither Mi or mi(t) is collinear with
M1,M2,M3 for i = 4, 5, 6; center: situation after performing the ∆-transform; right: two-dimensional
spherical self-motion.

under consideration of Equation (4). Therefore, the cubic has to split up into three lines, which all
correspond to plane-symmetric butterfly self-motions already described in Theorem 4. As a consequence,
no further discussion of this case is necessary.

3.4. Intersection Curve Is Quartic

We start with the following lemma, which helps to exclude the discussion of special cases arising.

Lemma 1. If M1,M2,M3 are collinear and m1 = m2 = m3 holds (under consideration of symmetric
leg-replacements), then the hexapod can only have the following plane-symmetric self-motions:

1. butterfly self-motion,
2. two-dimensional spherical self-motion,
3. planar/spherical symmetric rollings of Section 2.1.

Proof. If the carrier line G of M1,M2,M3 is always identical with the reflected carrier line g of m4,m5,m6,
then it is clear that the motion can only be a butterfly motion (cf. Figure 6, left).

Moreover, it is trivial, that the motion can only be a planar one if G is always parallel to g (⇒ planar
symmetric rolling of Section 2.1).

Now, we discuss the remaining case that, during the plane-symmetric self-motion, one
configuration exists, where G and g intersect in one point C. As the first three legs are always in
a pencil of lines, one can make a so-called ∆-transform [37] (without changing the self-motion) such
that M1 = C holds. This results in the following relations (cf. Figure 6, center):

M1M4 = m4M4 and m1m4 = M1m4. (6)

Under consideration of the plane-symmetric setup, these conditions can only be fulfilled if

• M1 = m4 holds, which yields the spherical symmetric rolling (with center M1 = m4) of Section 2.1,
• M4 = m1 holds, which implies a two-dimensional spherical self-motion (with center M4 = m1;

cf. Figure 6, right).

This finishes the proof.
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Remark 4. Note that, for the two-dimensional spherical self-motion, the collinearity condition of M1,M2,M3 is
not necessary. For the leg lengths of Equation (4) and m1 = m2 = m3, the three quadrics Λ1, Λ2 and Λ3 have
already a plane in common due to Equation (5).

If Λ1, Λ2 and Λ3 have a quadric curve in common, they are contained within a pencil of quadrics,
which is already spanned by two of them. Therefore, we make the following ansatz:

Σ : λ1Λ1 + λ2Λ2 + Λ3 = 0 with λ1λ2 6= 0. (7)

In order to simplify the resulting direct computations, we can select the fixed frame in a clever
way based on the following lemma:

Lemma 2. By applying symmetric leg-replacements, we can assume that M1,M2,M3 span a plane (under
consideration of Assumption 1).

Proof. If M1,M2,M3 are collinear (span the line G), we apply the symmetric leg-replacement to the ith
leg for i ∈ {1, 2, 3}. Due to Assumption 1, at least one of the Mi+3 are not located on G, thus, after a
renumeration of anchor points, the lemma holds.

Due to Lemma 2, we can assume without loss of generality that the origin of the fixed frame
equals Mi, that Mj is located on the positive x-axis of the fixed frame and that Mk is located in the
xy-plane of the fixed frame for pairwise distinct i, j, k ∈ {1, 2, 3}. As M1,M2,M3 is a triangle there
always exist at least four (This number results from the fact that each triangle has at least two acute
angles, whose two vertices can be used as Mi) choices for i, j, k in a way that Mk is located in the 1st
quadrant of the xy-plane. After a may necessary renumeration, we can assume:

M1 = (0, 0, 0)T , M2 = (A2, 0, 0)T , M3 = (A3, B3, 0)T , (8)

with A2 > 0, A3 > 0 and B3 > 0. Moreover, by selecting the unit-length in a suitable way, we can
achieve A2 = 1.

Based on this choice of the fixed frame, we inspect the coefficients of the linear combination
Σ given in Equation (7) with respect to the Study parameters. We denote the coefficient of ei

0ej
1ek

2 f l
3

by Σijkl . From Σ1100 = −4c3B3, we get c3 = 0. Moreover, we can compute d2
3 from Σ2000. Then, Σ0200

equals 4b3B3, which implies b3 = 0. From Σ1100 = 4λ2c2, we get c2 = 0. Now, Σ1001 = 4λ1c1 yields
c1 = 0. Then, we express A3 and B3 from Σ0101 and Σ0011, which results in

A3 = −a3 − λ1a1 − λ2a2 − λ2, B3 = −λ1b1 − λ2b2. (9)

Moreover, we can set λ1 = −1− λ2 due to Σ0002. Then, we are only left with the following two
conditions arising from Σ0110 and Σ0020, respectively:

− a3b1 − a3b1λ2 + a3λ2b2 − λ2b2 = 0, −a2
3 + a3a1 + a3a1λ2 − a3λ2a2 − a3λ2 + λ2a2 = 0. (10)

Eliminating λ2 out of these equations by resultant method yields:

a3(a3 − 1)(a3b1 − a3b2 − b1a2 + a1b2). (11)

Therefore, we distinguish the following cases:

1. For a3 = 0, Equation (10) imply λ2a2 = 0 and λ2b2 = 0, respectively. a2 = b2 = 0 imply the
conditions of Lemma 1.

2. For a3 = 1, Equation (10) imply λ2 = −1. Then, the second and third leg are identical under
consideration of symmetric leg-replacement.
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3. For a3b1 − a3b2 − b1a2 + a1b2 = 0, we have to distinguish two cases:

(a) b1 = b2: now, the condition simplifies to b1(a1 − a2) = 0. As b1 = 0 implies B3 = 0 a
contradiction, we set a1 = a2. Then, Equation (10) imply λ2 = −a3, which results in the
conditions of Lemma 1.

(b) b1 6= b2: Under this assumption, we can solve this equation for a3. A further two cases have
to be distinguished:

i. b2a1 − b1a2 − b2 = 0: If one solves this equation for ai, then Equation (10) implies
bj = 0 for distinct i, j ∈ {1, 2}. In both cases, we end up with the conditions of Lemma
1.

ii. b2a1 − b1a2 − b2 6= 0: Under this assumption, we can solve the condition implied by
Equation (10) for λ2, which yields:

λ2 =
(b1a2 − b2a1)b1

(b1 − b2)(b2a1 − b1a2 − b2)
. (12)

It can easily be checked that the obtained solution corresponds to the hexapod’s
platform and base illustrated in Figure 7, which are also known as Duporcq’s complete
quadrilaterals [38]. In the remainder of the paper, this interesting solution, which is
discussed/studied in more detail in the next section, is called Duporcq hexapod. Based
on this notation, we can formulate the following theorem.

Theorem 5. Besides the trivial cases mentioned in Lemma 1, the quadrics Λ1, Λ2 and Λ3 belong to a pencil
if and only if they correspond to sphere conditions of three legs of a Duporcq hexapod (which are not identical
under symmetric leg-replacements).

M1 M2 M6

M5 M4

M3

m4 m5 m3

m2 m1

m6

Figure 7. Illustration of Duporcq’s complete quadrilaterals: The base (left) is congruent with the
platform (right).

4. Duporcq Hexapod

Due to the results obtained in Section 3 and Theorems 2 and 3, we can conclude that only the
Duporcq hexapod of Theorem 5 possesses plane-symmetric self-motions, which are neither planar nor
spherical motions. Therefore, we discuss this hexapod in more detail in this section.

In [38], Duporcq describes the following remarkable motion: Let M1, . . . ,M6 and m1, . . . ,m6 be the
vertices of two complete quadrilaterals, which are congruent. Moreover, the vertices are labeled in a way that mi
is the opposite vertex of Mi for i ∈ {1, . . . , 6} (cf. Figure 7). Then, there exists a 2-parametric line-symmetric
motion where each mi is running on spheres centered in Mi.

It is well known [39] (Section 1) that this is an architecturally singular hexapod and that
one can remove any leg without changing the direct kinematics of the mechanism. The resulting
pentapod is called Duporcq pentapod and its line-symmetric self-motions were also studied in [39].
For the coordinatisation of the platform points and base points used in Section 3.4, the 2-parametric
line-symmetric self-motion fulfills e0 = f0 = 0 (cf. [39] (Section 4)).
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Remark 5. Note that the theoretic results of Section 4 are visualized on the basis of the following example:

a1 =
3
2

, a2 = b1 = 3, b2 =
9
4

, d2
1 =

17
2

, d2
2 =

33
2

. (13)

This input data implies

a3 =
15
2

, A3 =
8
7

, B3 =
6
7

, d2
3 =

13231
196

, (14)

with respect to the coordinatisation of the platform points and base points used in Section 3.4.

4.1. Plane-Symmetric Self-Motions of the Duporcq Hexapod

First of all, it should be pointed out that the plane-symmetric self-motions of the Duporcq
manipulator were not known until now. They can be computed as follows: We express f3 from
the condition Λ2 − Λ1 (which is linear in f3). Plugging the resulting expression into Λ1 implies a
homogenous quartic equation Υ in e0, e1, e2, which already represents the plane-symmetric self-motion
(cf. Figure 8, left).

In the following, we are interested in the transition poses between this one-dimensional
plane-symmetric self-motion and the above-mentioned two-dimensional line-symmetric one.
Therefore, we only have to intersect the quartic curve Υ with e0 = 0, which yields four of these
so-called branching singularities [40]. These four transition poses are totally flat configurations of the
Duporcq hexapod (cf. Table 1, Figure 8, red left and Figure 9).

Remark 6. Note that a further prominent example of a hexapod, which possesses flat poses during its self-motion,
is Bricard’s flexible octahedron of type 3 (cf. [41]).

Moreover, it should be mentioned that the Duporcq hexapod is a kinematotropic mechanism (according to
the notation of Wohlhart [42]). To the best of the author’s knowledge, only one further hexapod with this property
is known so far, which is the so-called Wren platform (see [42] (Section 3) and [21] (Section 2.2)).

e2-axis

e1-axis

e0-axis

Ξ1

Ξ2

Ξ3

Figure 8. (left:) the quartic Υ is displayed under consideration of the normalization condition
N = 1. For the example at hand, it consists of two components (as antipodal points yield the same
displacement). Intersection points of the displayed spherical curve with the equator plane yield the
branching singularities between plane-symmetric and line-symmetric self-motions. They are numbered
from left to right by 1 to 4. (right): visualization of the surfaces Ξi under the assumption that u0 = 0
corresponds to the ideal plane. The surface Ξi is a cylinder in direction of the ui-axis (for i = 1, 2, 3).
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Table 1. The Study parameters of the four flat transition poses illustrated in Figure 9. As they result
as roots of a polynomial of degree 4, they can be computed explicitly, but, in order to avoid too long
expressions, they are displayed numerically.

Flat Pose e1 e2 f3

1 −0.63171148011492395006 0.77520358996267041460 0.24434973773984142590
2 −0.26236530678800600560 0.96496862425367773706 0.36840718493416854565
3 0.89932040897259076870 0.43729029489044469464 −1.6168042368274940498
4 0.98317707611585865513 0.18265496708349071532 −2.3876030965525136289

Figure 9. The four flat transition poses numbered from left to right by 1 to 4.

For the example at hand, the fixed axode can be described in the dual representation
(If ax + by + cz + d = 0 is the equation of the plane of symmetry, then its dual representation is
given by the homogenous quadruplet (u0 : u1 : u2 : u3) = (d : a : b : c) according to [11] (Section 6.2))
as the intersection of the following three surfaces displayed in Figure 8, right:

Ξ1 : 178596u2
3u2

2 + 45924u4
0 + 69696u4

3 + 464508u3
2u0 + 293436u2u2

3u0

+ 573049u2
2u2

0 + 124921u2
3u2

0 + 108900u4
2 + 276336u2u3

0 = 0,

Ξ2 : 108900u4
1 + 592944u3

1u0 + 39204u2
3u2

1 + 688345u2
1u2

0 + 361152u2
3u1u0

− 300932u1u3
0 + 18724u4

0 + 831744u2
3u2

0 = 0,

Ξ3 : 264u2
1 + 709u1u0 + 198u2u1 + 912u2u0 + 326u2

0 = 0.

(15)

Based on these surfaces, it can be checked (e.g., by computing the Hilbert-polynomial) that the
fixed axoide corresponds to an algebraic curve of degree 4 in the dual representation. This curve can
easily be parametrized as follows (two branches):

u0 = 1, u2 = −
264u2

1 + 709u1 + 326
6(33u1 + 152)

, u3 = ±
√

w
6(33u1 + 152)

, (16)

with w = 300932u1 − 18724− 688345u2
1 − 592944u3

1 − 108900u4
1. Moreover it can be seen (cf. Figure 8,

right) that the curve has two components. The left one is obtained for u1 ∈ [0.07650139; 0.27046582]
and the right one for u1 ∈ [−3.17251656;−2.61929914]. Note that the borders of the two intervals
are the roots of w, which can be computed explicitly, but, in order to avoid too long expressions, we
displayed them numerically.

Based on the parametrization given in Equation (16), one can easily calculate (cf. [11] (Equation (6.8)))
the curve of regression of the fixed axode, which is also displayed in Figure 10.
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Φ0

c

Φ0

c

Figure 10. Trajectories of the platform points during the plane-symmetric self-motion between the flat
poses 1 and 2 (left) and the flat poses 3 and 4 (right). Moreover, the fixed axodes Φ0 are displayed,
which look like cones upon the first viewing. However, a blow up (in the lower left corner and upper
right corner, respectively) of the region of the supposed vertex shows the line of regression c of Φ0.
For the illustrated self-motion, the tangents of c in the two end points span the carrier plane (xy-plane)
of the flat poses. If one considers the complete self-motion, then c has four cusps (obtained by reflecting
the illustrated curve at the xy-plane).

4.2. Point-Symmetric Self-Motions of the Duporcq Hexapod

Finally, we want to correct a statement given in [39] (Remark 4), where it is stated that

1. the Duporcq manipulator also has pure translational one-dimensional self-motions,
2. each two-dimensional line-symmetric self-motion of a Duporcq manipulator contains a pure

translational one-dimensional sub-self-motion.

The first statement is true in contrast to the second one. In fact, the pure translational self-motion
(which can be considered as point-symmetric self-motion) has two branching singularities, where they
can switch into a 2-parametric line-symmetric self-motion. This can easily be seen as follows:

For the coordinatisation of the platform points and base points used in Section 3.4, the 1-parametric
point-symmetric motion fulfills e0 = e1 = e2 = f3 = 0. It can be computed by expressing f1 from
Λ2 − Λ1 (which is linear in f1). Plugging the resulting expression into Λ1 implies a homogenous
quadratic equation in e3, f0, f2, which already represents the point-symmetric self-motion. By the
additional condition f0 = 0, we obtain the two mentioned branching singularities, which are again
totally flat configurations of the Duporcq hexapod ( cf. Table 2 and Figure 11).

Table 2. The Study parameters of the two flat transition poses illustrated in Figure 11. As they result
as roots of a polynomial of degree 2, they can be computed explicitly, but in order to avoid too long
expressions they are again displayed numerically.

Flat Pose e3 f1 f2

1 1 0.1406805116103807682 −0.2234541534831142304
2 1 2.9246864608666834522 −1.0586559382600050357
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Figure 11. The first and second flat pose (left and center, respectively) and the translational self-motion
between them (right). This circular translation can also be seen as a point-symmetric motion, where
the corresponding curve (half-circle) is illustrated in red.

Finally it should be noted that there is no branching singularity between plane-symmetric
self-motions and point-symmetric self-motions as e0 = e1 = e2 = e3 = 0 has to hold, which contradicts
the normalizing condition N = 1. Summed up one can say, that the Duporcq hexapod is a
twofold kinematotropic mechanism, as there are branching singularities between the two-dimensional
line-symmetric self-motion and the one-dimensional

• point-symmetric self-motion,
• plane-symmetric self-motion.

Due to its kinematotropic behavior and its total flat branching singularities the Duporcq
manipulator is possibly of interest for the design of deployable structures.

5. Conclusions

This paper gives a complete classification of hexapods with plane-symmetric self-motions. It turns
out that besides the planar/spherical symmetric rollings with circular paths and two trivial cases
(butterfly self-motion and two-dimensional spherical self-motion), only one further solution exists,
which is the so-called Duporcq hexapod. This is the only manipulator possessing plane-symmetric
self-motions, which are neither planar nor spherical motions (and therefore also no line-symmetric
motions). Moreover, the Duporcq hexapod is may be of interest for the design of deployable structures
due to its kinematotropic behavior and total flat branching singularities.

Funding: The author is supported by Grant No. P 24927-N25 of the Austrian Science Fund FWF within the project
“Stewart Gough platforms with self-motions”.
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