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Abstract: This paper presents a robotic sensing system that evaluates the texture of gel-like food,
in which not only mechanical characteristics, but also geometrical characteristics of the texture are
objectively and quantitatively evaluated. When a human chews a gel-like food, the person perceives
the changes in the shape and contact force simultaneously on the tongue. Based on their impression,
they evaluate the texture. To reproduce this procedure using a simple artificial mastication robot,
the pressure distribution of the gel-like food is measured, and the information associated with both
the geometrical and mechanical characteristics is simultaneously acquired. The relationship between
the value of the human sensory evaluation of the texture and the pressure distribution image is then
modeled by applying a convolutional neural network. Experimental results show that the proposed
system succeeds in estimating the values of a human sensory evaluation for 23 types of gel-like food
with a coefficient of determination greater than 0.92.

Keywords: food texture sensing; pressure distribution measurement; convolutional neural network;
artificial mastication

1. Introduction

So far, human haptic perception [1] and haptic sensor-display devices [2,3] have been studied.
Let us consider food texture that a human perceives in the mouth. Gel-like foods used in nursing
care have been developed for the nutritional support and rehabilitation of elderly people with oral
difficulties. Such gel-like foods are soft and fragile, allowing them to be broken up by the tongue
without the use of the teeth. However, from the viewpoint of quality of life for persons under
nursing-care, it is desirable for such foods to have a delicious taste while maintaining safety during
mastication and swallowing [4]. Deliciousness depends not only on the chemical properties such as
taste or aroma, but also on physical properties such as texture [5]. Compared with liquid food, texture
is particularly more important for solid food, including gel-like food used in nursing care [6].

When a human compresses and fractures food with their teeth, tongue and palate, he/she perceive
the changes in food shape, size and contact force simultaneously. Food texture is the impression
in mouth during this process. Food texture is expressed by various terms [7] and categorized into
mechanical characteristics (e.g., hardness and fragility) and geometrical characteristics (e.g., smoothness,
stickiness and granularity) [8] and is evaluated by humans directly through a sensory evaluation.
Therefore, a tremendous amount of labor is required to collect reliable and equitable evaluation data.
Regarding such mechanical characteristics, an instrumental evaluation method that quantitatively
assesses the food texture through physical measurements has been developed. In texture profile analysis
(TPA) [9], the texture is evaluated based on the force response curve obtained through compression.
The instruments used with this principle have come into practical use [10,11]. In addition, other studies
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have applied robotics and sensing techniques to evaluate texture. Iwata et al. developed a haptic
device that displays the force profile obtained via measurements in a human’s mouth when biting
into food [12]. Sun et al. discussed the design of a chewing machine that can analyze the food texture,
where the 3D force profile during food chewing is measured [13]. Xu et al. developed a life-sized
masticatory robot for characterizing texture, where the required torque of the actuators for chewing
motion is evaluated using foods with different degrees of hardness [14]. These studies have attempted
to evaluate the force- or torque-response-based texture, namely the mechanical characteristics.

On the other hand, a vision system and image analysis have been utilized to recognize the
geometrical condition of food bolus during or after mastication. Hoebler et al. employed an image
analysis to recognize the particle sizes of pasta after mastication [15]. Using the spatial gray level
dependence method (SGLDM) [16], Arvisenet et al. differentiated the images of apples crunched
using instrumental mastication with different compression motions [17]. Tournier et al. succeeded in
classifying bread boluses made under different conditions of mastication using SGLDM [18]. Instead of
using vision, Kohyama et al. discussed the relationship between the water activity value of crackers
and the pressure distribution measured through a compression test [19]. Using SGLDM, they also
discussed the characterization of the pressure distribution of the fracturing of a crispy food product [20].
In the authors’ previous work, we discussed a method for modeling the pressure distribution data and
texture using SGLDM [21]. Johnson and Adelson developed the GelSight sensor that can measure the
3D shape and size of an object and detected the characteristic appearance of the surface of a biscuit [22].
As mentioned above, there are several approaches to acquiring the geometrical characteristics of food.
However, there are no instrumental methods that can adapt to various food textures associated with
delicate impressions during mastication.

This paper presents a robotic sensing system for evaluating food texture, in which not only
mechanical characteristics, but also geometrical characteristics of the texture of gel-like food can be
evaluated. To artificially reproduce the basic principle of human texture sensing, the proposed system
comprises pressure distribution measurements and texture estimation processing. Using a simple
artificial mastication robot, the pressure distribution of the gel-like food during compression and
fracturing is measured, allowing the information associated with both the geometrical and mechanical
characteristics to be simultaneously acquired. The pressure distribution data are treated as a time series
image. In recent years, convolutional neural networks (CNN) have been actively used as a powerful
tool for adaptive image classification [23–27]. The advantage of CNN is to learn the filters that work
as the feature extractor, whereas this function was hand-designed based on the prior knowledge and
effort of designers in traditional methods. By employing a CNN, appropriate features of a pressure
distribution image are extracted, and the relationship between the human sensory evaluation of texture
and the pressure distribution data is mathematically modeled. Finally, the proposed system was
verified experimentally using 23 different kinds of gel-like food and four texture terms. It was shown
that the values of a sensory evaluation can be appropriately estimated.

The remainder of this paper is organized as follows. In Section 2, an outline of the proposed
system is described. In Section 3, pressure distribution measurements using a simple mastication
robot are provided. In Section 4, an input image and the architecture of the CNN model are presented.
In Section 5, the experimental validation is described. Finally, Section 6 provides some concluding
remarks regarding this study.

2. Outline of the Proposed Sensing System

Figure 1 shows an outline of the proposed sensing system evaluating the texture of gel-like foods.
Preparation of the value of the sensory evaluation: The values of the human sensory evaluation

for various types of gel-like food, which are handled as the teaching data, are obtained by a panel of
experts, as shown in Figure 1a. Let ni denote the value of the sensory evaluation for texture term i
(e.g., elasticity, i = 1; smoothness, i = 2), where ni is defined within the range of 0–100. See Section 5.1
for details.



Robotics 2017, 6, 37 3 of 12

0 50 100

Texture term i (ex. Smoothness)

Value of sensory evaluation: ni 

Gel
A B C

Very 
smooth

Not 
smooth 
at all

(a) 

Compressing and fracturing gel 
by using tongue

P
re

p
ro

ce
ss

in
g 

of
 

in
p

u
t 

im
ag

e Estimation of 
value of sensory evaluation:

n ^i

(b) (c) 

Pressure distribution imageArtificial mastication

C
on

vo
lu

ti
on

al
 

N
eu

ra
l 

N
et

w
or

k

Base

Gel

Compression 
Plate

p
 (
x

, y
, t

)

x
y

p

Fram
e (t)

y

x

W

H

Sensor

Figure 1. Outline of the proposed system for estimating the food texture. (a) Texture values of
various gel-like foods are obtained by expert panelists through a sensory evaluation; (b) the pressure
distributions of the gel-like foods are measured using artificial mastication; (c) an input image of the
CNN is preprocessed. The CNN outputs an estimation of the texture through a sensory evaluation.

Pressure distribution measurement: To reproduce human mastication using the tongue, a simple
mastication robot is utilized, as shown in Figure 1b. The robot is composed of a base, movable upper
plate and a pressure distribution sensor. The pressure distribution sensor is implemented in the base.
The gel-like food sample is compressed and fractured on the base, and the pressure distribution p is
measured as time series data, which can be processed as image frames. The pressure distribution data
of various types of gel-like food with different textures are collected.

Texture estimation processing: As shown in Figure 1c, the relationship between the pressure
distribution and the value of the sensory evaluation is modeled using a CNN. First, the input image for
the CNN is formed by connecting the frames of the pressure distribution images. Then, a CNN model
that outputs the value of the sensory evaluation of texture is constructed. The CNN model is trained
using back propagation to reduce the error between the estimation and the true value. By giving the
pressure distribution image of an unknown gel-like substance to the trained model, the value of the
texture sensory evaluation can be estimated.

The details of the above procedure are described in the next section, along with representative
experimental data.

3. Pressure Distribution Measurement

This section describes the pressure distribution measurement during artificial mastication.
After describing the experimental setup, how the pressure distribution changes through the
compression and fracturing of the gel-like food is shown.

3.1. Artificial Mastication

Figure 2a shows an overview of the experimental setup. Whereas the upper compression plate
is driven using a linear slider controlled by a PC, the lower plate is fixed at the base. A pressure
distribution sensor (I-SCAN System [28]), with a measurement range of 44 mm × 44 mm, a spatial
resolution of 1 mm, a temporal resolution of 10 ms and a pressure resolution of 0.2 kPa, is attached to
the surface of the lower plate. Figure 2b shows a representative gel-like food. The gel-like food has a
cylindrical shape (diameter of 20 mm and height of 10 mm) and is placed at the center of the pressure
distribution sensor. The upper plate moves downward and makes contact with the gel-like food
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(t = 0 s). The rigid plate moves downward at a speed of 2 mm/s, and the gel-like food is compressed
and fractured for 4.5 s. During this period (0 ≤ t ≤ 4.5 s), the pressure distribution is measured and
recorded as time series data in the PC.

Gel Pressure distribution sensor

Compression plate

Control PC

Linear slider
Position command

Pressure data

(a) (b)

1
0
 m

m

20 mm

Figure 2. (a)Experimental setup; (b) representative gel-like food.

3.2. Pressure Distribution Image

Considering a spatial resolution of 1 mm and measurement range of 44 mm × 44 mm for
the pressure distribution sensor, a frame of the pressure distribution is converted into an image
of 44 pixels × 44 pixels in size. Each pixel has an integer value within the range of 0–255,
which corresponds to a pressure value within the range of 0–45 kPa.

Figure 3 shows images of a representative gel-like food during compression and fracturing, with the
pressure distribution images shown in the second row. Figure 3a shows the first contact between the upper
plate and the gel-like food, which can be detected by observing the output of the pressure distribution
sensor. From this moment, the pressure distribution is recorded. As shown in Figure 3b, as the gel-like
food is compressed, a pressure distribution with a circular shape is observed. As shown in Figure 3c,
the gel-like food is further compressed, and the pressure distribution, which represents the surface size of
the gel-like food, increases. The gel-like food is then fractured, as shown in Figure 3d, and it can be clearly
observed based on the pressure distribution. Figure 3e shows the final state. In this case, the gel-like food
is broken into smaller pieces, forming a paste. As described above, based on the pressure distribution
measurement, we can see what occurs during the compression-fracture test of the gel-like food.
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Figure 3. Compression and fracturing of a representative gel-like food.
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4. Texture Estimation Processing Using CNN

This section describes the preprocessing of the input image and the architecture of the CNN
for modeling the relationship between the pressure distribution and the value of the texture
sensory evaluation.

4.1. Input Image

As described in the previous section, time series pressure distribution data are treated as time
series image data. Thus far, methods applying a time series image or video data as the input of a
CNN have been proposed [29,30]. Saitoh et al. proposed a sequence image representation, namely
a concatenated frame image (CFI) and a CFI-based CNN model for visual speech recognition [30].
A CFI is formed by concatenating frames sampled at uniform intervals from a video sequence. Based on
this approach, some representative frames are chosen from the pressure distribution images and are
serially connected. An outer frame with a width of two pixels and a value of zero is given in advance
to each pressure image. This outer frame works as the boundary between neighboring images.
Consequently, each pressure image becomes H × W = 48 pixels ×48 pixels in size. In Figure 4,
a reaction force response curve during compression and fracturing of a gel-like food is illustrated.
As the plate compresses the gel-like food, the force increases. The gel-like food then begins to be
fractured. At this moment (t = TA), the force decreases. Here, t = TA can be detected by checking
whether the force response curve decreases with an appropriate threshold. After the force decreases
once, it increases again until the plate stops (t = TN). Along with such a force response, we adopt
two methods for sampling the pressure image frames. For the first method, fifteen image frames
are sampled with uniform time intervals and are serially connected, as shown in the lower image in
Figure 4. The number of frames is P = 15, and the frames at ti =

TN
P i (i = 1, 2, · · · , P) are sampled.

For the second method, two representative image frames in the compression-fracture sequence are
sampled and concatenated, as shown in the upper image in Figure 4. We sample the frame at the
moment of fracture (t = TA) and the frame at the final state of compression (t = TN). Note that the
P = 15 input image contains sufficient information regarding the temporal transition of the pressure
distribution, whereas the P = 2 input image contains the minimum information in this regard.

t (s)

P
 =

 1
5
 

im
ag

e

T1 T2 T3 = TN

P
 =

 2
 

im
ag

e

TAT4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

R
ea

ct
io

n
 f

o
rc

e

0 T15

Im
ag

e 
fr

am
e

H

W

Figure 4. Selection of frames of the pressure distribution image.

4.2. CNN Model

Various CNN models have been proposed, and the performance for classification tasks has been
improved [23–27]. We designed a CNN model based on AlexNet [23], which is a typical CNN model.
Figure 5 shows the CNN architecture utilized in this study, where local response normalization is
skipped for simplicity. In addition, because we use this type of CNN model for regression, not for
classification, the loss function is the mean squared error. The input data are a P = 15 image or
P = 2 image, and the output is the value of the sensory evaluation of the texture. The size of the input



Robotics 2017, 6, 37 6 of 12

image is (H × P)×W. The CNN has four convolution layers, three pooling layers, two fully-connected
layers and an output layer. The convolution layers C1, C2 and C3 have 3 × 3 filters with a stride of one.
Each convolution layer is followed by a pooling layer. All pooling layers use 2 × 2 max pooling with a
stride of two. The convolution layer C4 has 2 × 2 filters with a stride of two. The number of filters for
the four convolution layers are D1 = 96, D2 = 96, D3 = 96 and D4 = 32, respectively. Through the
fully-connected layers F1 and F2 (output layer) for regression, the estimated value of the sensory
evaluation ni is obtained.
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Figure 5. CNN architecture.

5. Experimental Validation

This section describes the experiments conducted to confirm the validity of the proposed system
for the texture estimation.

5.1. Materials and Method

Twenty-three different types of gel-like food were tested. They were made by blending water,
gellan gum, agar, etc. Figure 6 shows the fracture characteristics of the tested gel-like foods A–W.
Four texture terms, elasticity (i = 1), smoothness (i = 2), stickiness (i = 3) and granularity (i = 4) were
considered (Elasticity is the impression of a gel-like food’s extension and the extent to which it pushes
back the tongue before fracturing. Smoothness is the impression of smoothness at the surface of the gel
before fracturing. Stickiness is the impression of difficulty in spreading the gel-like food after fracturing.
Granularity is the impression of granularity at the surface of the gel-like food after fracturing. We chose
them from [7], as representative texture terms for evaluating gel-like foods.). Whereas elasticity is
a mechanical characteristic, smoothness, stickiness and granularity are geometrical characteristics.
In the preparations, a sensory evaluation based on the visual analog scale method [31] was carried out.
In this method, a 100 mm-long scale was set with a texture term description, as shown in Figure 1a.
The left side represents no sensation, and the right side indicates the maximum sensation of the texture
term. The panelist marks a point on the line representing the sensation during mastication. The value
of the sensory evaluation is determined by measuring the length from the left end of the line to the
point marked by the panelist, in millimeters. Eight panelists participated in this experiment (they are
experts of sensory evaluation of food texture). The mean values of the eight panelists were used as the
teaching data ni for the modeling process. Table 1 shows n1–n4 for the gel-like foods A–W.

Figure 7 shows examples of the input images of P = 15 and P = 2. For each texture term shown
in (a–d), the upper row shows the input image of the gel-like food with the maximum value of the
sensory evaluation, and the lower row shows the input image of the gel-like food with the minimum
value of the sensory evaluation. In Figure 7, the pixel value of the image is twice its original value for
greater visibility. In the lower row of Figure 7a,c, the input image of P = 2 is formed by concatenating
the same two pressure images at t = TN . In these gel-like foods, the force curve did not decrease
clearly during the compression-fracturing test. Based on this, we set TA = TN .
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The pressure distribution data of 138 specimens (=23 types × 6 specimens each) were measured
through the compression-fracture tests conducted on artificial mastication. We augmented the data by
employing rotated images with angles of 90◦, 180◦ and 270◦. Here, a leave-one-out cross validation
(LOOCV) [32] was employed. In this experiment, one data point was excluded in advance from all
138 data points, where a data point consists of pressure distribution data and the value of the sensory
evaluation. Using other (138 − 1)× 4 = 548 data points, we trained the CNN model and estimated the
value of the sensory evaluation of the excluded data point. Such training and estimation were applied
for all 138 data points. Note that the CNN model was trained for each texture term i. We created and
trained the CNN model on Chainer, a flexible framework for neural networks. We adopted a rectified
linear unit (ReLU) as the activation function, except for the output layer. The activation function of
the output layer is the identity function for regression. We trained the model using Adam [33] as the
optimizer. Training was conducted with mini-batches of size eight and was stopped after 200 epochs.
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Table 1. Values of sensory evaluation.

Gel-Like Food Elasticity n1 Smoothness n2 Stickiness n3 Granularity n4

A 11.8 70.3 11.5 61.5
B 82.0 61.2 21.9 45.0
C 19.5 84.8 12.5 86.0
D 13.0 73.1 10.9 53.5
E 83.9 21.2 85.0 34.8
F 19.8 78.9 13.5 45.0
G 26.4 85.5 15.5 79.6
H 10.1 74.3 8.8 84.6
I 73.6 52.7 64.6 25.3
J 52.1 75.9 29.0 22.0
K 70.4 42.8 72.3 16.4
L 79.0 49.9 66.1 18.4
M 5.0 4.9 10.8 38.0
N 43.4 39.1 65.4 14.6
O 86.1 72.4 23.1 26.4
P 46.4 37.5 29.8 21.1
Q 41.9 63.5 20.3 39.4
R 40.1 64.6 25.1 18.9
S 12.3 55.2 69.9 4.6
T 8.6 50.6 23.6 8.8
U 71.4 68.5 47.8 37.5
V 21.5 18.5 59.6 9.9
W 64.5 46.4 68.6 35.5

5.2. Results and Discussion

Figure 8a,b shows the estimation error when using the P = 15 and P = 2 input images,
respectively, where the horizontal axis shows the epoch, and the vertical axis shows the absolute
value of the mean error. The real and dashed lines show the errors in the test and training data,
respectively. From these figures, it can be seen that the error decreases as the CNN becomes further
trained. With the P = 15 input image, the training advanced quickly. Because the training speed
differs depending on the texture term, the termination condition should be defined based on the
texture term. Figures 9–11 show the estimation results using the P = 15 and P = 2 input images and
the conventional methods based on SGLDM [21], respectively. These figures show the relationships
between the value of the sensory evaluation ni and the estimated value n̂i after the training for the
four texture terms. The accuracy of the texture estimation can be evaluated based on the coefficient of
determination R2. From Figures 9 and 10, we can confirm that the proposed method can accurately
estimate both the geometrical and mechanical texture terms. Figure 12 summarizes the coefficient
of determination R2 for the four texture terms under the three conditions. In both input images,
the average value of R2 achieved by the proposed method was R2 ≥ 0.97. Particularly for the texture
terms, smoothness (i = 2) and stickiness (i = 3), R2 for the conventional method was extremely low.
In contrast, R2 was sufficiently high for the proposed method even with these two texture terms.
This result strongly supports the advantage of the proposed method and indicates its potential to treat
various texture terms adaptively.

In this experiment, the accuracy of the estimation using the P = 2 image showed no significant
difference from the accuracy when using the P = 15 image. This result may imply that the pressure
image frames at the moment of fracture and the final compression state of the food contain sufficient
information to evaluate the various textures. If we use these frames, at most two pressure frames will
be sufficient to accurately estimate the texture of gel-like food.
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6. Conclusions

This paper presented a robotic sensing system that evaluates the texture of gel-like food.
The proposed method applies a pressure distribution measurement during artificial mastication
and texture estimation processing using a CNN. The relationship between the pressure distribution
image of a gel-like food during mastication and the human sensory evaluation of the texture was
modeled using the CNN. During the experiments, the values from the sensory evaluation for not only
mechanical characteristics, but also geometrical characteristics were accurately estimated. In addition,
the experimental results suggest that at most, two pressure image frames (the frame at the moment of
fracture of the gel-like food and the frame at the final compression state) are sufficient to accurately
estimate the texture.

Humans use various motions of the tongue in eating. For a given target texture term, humans
may change the velocity and direction of the tongue’s motion. In the future, we should examine the
various motions of the tongue. In addition, we would like to train the CNN model by augmenting
the number of types of gel-like food and total data for estimating the texture of completely unknown
gel-like foods not included in the applied model. Other CNN models [24–27,29] should be examined to
investigate which architecture is appropriate for modeling the relationship between the various textures
and the pressure distribution image. Furthermore, depending on the texture terms, a single pressure
image (P = 1) may be sufficient to estimate the value from a sensory evaluation. Determining such
a single image based on an understanding of the human sensory evaluation mechanism is an area of
future interest.
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