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Abstract: Nowadays, engineering is working side by side with medical sciences to design and create 
devices which could help to improve medical processes. Physiotherapy is one of the areas of 
medicine in which engineering is working. There, several devices aimed to enhance and assist 
therapies are being studied and developed. Mechanics and electronics engineering together with 
physiotherapy are developing exoskeletons, which are electromechanical devices attached to limbs 
which could help the user to move or correct the movement of the given limbs, providing automatic 
therapies with flexible and configurable programs to improve the autonomy and fit the needs of 
each patient. Exoskeletons can enhance the effectiveness of physiotherapy and reduce patient 
rehabilitation time. As a contribution, this paper proposes a dynamic model for two degrees of 
freedom (2 DOF) leg exoskeleton acting over the knee and ankle to treat people with partial 
disability in lower limbs. This model has the advantage that it can be adapted for any person using 
the variables of mass and height, converting it into a flexible alternative for calculating the 
exoskeleton dynamics very quickly and adapting them easily for a child’s or young adult’s body. In 
addition, this paper includes the linearization of the model and an analysis of its respective 
observability and controllability, as preliminary study for control strategies applications. 
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1. Introduction 

Currently a new concept of a human-machine robot is being studied and developed; different 
from traditional robots, exoskeletons are intelligent robot systems used widely around the world in 
many areas. Exoskeleton applications involve using them to increase human strength, speed, and 
performance in areas such as the military [1]; in medicine, they are used to train humans on surgery 
devices [2], to help humans perform surgeries [3], to increase the effectiveness of gait rehabilitation 
therapies [4] and for general physical therapies [5,6]. The entertainment industry employs them in 
video games as controllers, and manufacture industry applications include teaching movements to 
robot arms tele-operated by exoskeletons [7], heavy load lifting, and many others. In this paper, we 
propose a dynamic model to design a two degrees of freedom leg exoskeleton for the rehabilitation 
of knee and ankle injuries. Several methods for exoskeleton modeling have been employed, some of 
which independently model the human leg and the exoskeleton frame [8]. Among the different 
proposals, there are, for instance, developments that use Denavit-Hartenberg parameters to model 
the exoskeleton leg and the use of PID (Proportional-Integral and Derivative) controllers to control 
the angular position of each joint [2,9]. Others use parallel robots instead of rigid structures coupled 
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to the body [10], while still other kinds of models, like the one presented in [11], use basic mechanical 
and dynamical data to create a simple representation of the exoskeleton aiming to control purposes 
or virtual models to implement a dynamic and cinematic model using software such as OpenSim 
[12]. Most of these proposed models for exoskeletons use Euler-Lagrange equations to determine the 
system dynamics, as this allows them to design robust controllers with gravity compensation and 
virtual joint torque control [13,14]. However, in most of these cases some variables are assumed, 
which are not described by their respective studies. Other works consider the mathematical 
modelling of elements to be added to existent exoskeletons, for instance, the development of a hand 
crank generator for powering lower-limb exoskeletons [15]. In this paper, a model for a two degrees 
of freedom (2 DOF) exoskeleton is developed using Euler-Lagrange mechanics where the exoskeleton 
structure and the leg are considered as one body, which is modeled as a two-link pendulum 
combined with a biomechanics model in order to include leg kinematics and dynamics as described 
in [16]. This paper is organized as follows: Section 2 describes the model development and its linear 
approximation; Section 3 shows the simulation process as well as the simulation results of the 
nonlinear and linear model with a controllability and observability analysis; and finally, Section 4 
shows the description of the exoskeleton considered. Conclusions are discussed with considerations 
for future research at the end of this paper. 

2. Methods 

This section shows the development of the proposed model to describe the dynamics of the 
exoskeleton attached to the leg acting over two joints (knee and ankle); it involves double pendulum 
dynamics combined with a popular biomechanical model.  

2.1. Model Description 

The proposed model for the exoskeleton is a variation of a two-link pendulum dynamic model, 
where biomechanical and anthropometric models are added to create a generalized, versatile, and 
flexible dynamic model which can describe the dynamics of a human leg performing movements in 
the sagittal plane. In addition, the model can be calculated and altered for use with a patient’s 
individual characteristics. 

For this purpose, a Hanavan biomechanical model was used, which describes human limbs as 
geometrical forms, specifically, truncated cones for legs and feet [17]. To make sure that the model 
can be calculated for every kind of person, a generalized Hanavan model was calculated by a 
geometrical analysis of the truncated cone (see Figure 1) and its kinematics were combined with the 
anthropometric model of Drillis and Contini [18]. To calculate the lower radius  of the truncated 
cone, according to Figure 1, consider that: ℎ = ℎ − ℎ  ℎ = ℎ = ℎ−  (1) 

replacing it into the cone mass equation: = ℎ3  (2) 

Thus, the resulting expression for the lower truncated cone radius is: 3	 	ℎ	 + + 1 =  (3) 

where  and  are the lower and higher radius of the truncated section,  the truncated cone 
height (all in meters),  is the density of the piece, and  its mass. As the lower radius is function 
of itself, the ratio / 	was calculated using direct measurements with a sample of 50 Colombians 
aged between 18 and 45 years. The length of each section of the leg was calculated using the Drillis 
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and Contini model illustrated in Figure 2. From Equation (3), density ( ) is calculated using the Drillis 
and Contini equation for average density (human body density), which is shown in Equation (4) [19]. = ℎ/ 	 

= 0.69 + 0.9  
(4) 

 

Figure 1. Truncated cone kinematic analysis. 

 

Figure 2. Body segment length according to D&C model. 

Average density is expressed in terms of the c parameter, which is called the ponderal index or 
index of corpulence; it is a measure of the contexture calculated as the ratio between mass and body 
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height, where ℎ is the size or height of the person in meters and  is the mass of the person in 
kilograms. 

Mass and distance to the center of mass are calculated using tabulated data shown in [19]; to 
simplify calculations, the center of mass distance of each limb segment was considered to be located 
at 50% of each cone length, resulting in the generalized Hanavan model of the human leg illustrated 
in Table 1. 

Table 1. Generalized Hanavan model of the human leg. 

Limb Section Parameters

Thigh 

= 0.245 ∗= 1.53  = 0.1	  = 3 4.8709 

Leg 

= 0.246 ∗= 1.54  = 0.0465	  = 3 4.9116 

Foot 

= 0.152 ∗= 0.5 ∗ 0.039 ∗  = 0.0145  = 0.77  
where , , 	are the corresponding lower radii, { , , } are the higher radii,  is the limb 
length, and  is the height of the person (all in meters);  is the density of the body in [ / ]	, 

 is the segment mass, and  is the person mass in [Kg]. 

Once the Hanavan model is generalized, it is necessary to calculate its kinematics. To do that, 
the moment of inertia across the “X” axes (see Figure 1) is calculated and is expressed as follows: 

= 920 ℎ 1 + + + +
1 + + 	+ 3ℎ80 1 + 4 + 10 + 4 +

1 + +  (5) 

This generalized biomechanical model is combined with the double link pendulum model to 
enhance it and describe the behavior of the exoskeleton coupled to the human leg. According to this, 
each link of the pendulum is considered as a truncated cone; the kinematics for the proposed model 
is described in Figure 3. 
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Figure 3. Leg double pendulum representation reference frame. 

The displacement of the center of mass is defined as: 

= 2 cos( ) 
= 2 sin	( ) 

= + 2 cos	( + ) 
= + 2 sin( + ) 

(6) 

where ,  is the angular position of each link, ,  represents each link length. The angular position 
of the second link is referenced to the first link, so it will be zero if it is aligned with it.  

The speed of center of mass is defined as: 	 = =  = =  
(7) 

The moment of inertia across the center of mass of each segment is defined using Equation (5): 
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= 920 1 + + + +
1 + + 	+ 380 1 + 4 + 10 + 4 +

1 + +  (7) 

= 920 1 + + + +
1 + + 	+ 380 1 + 4 + 10 + 4 +

1 + +  (8) 

To find the dynamic model of the double pendulum enhanced with the biomechanical model, 
Lagrange equations of the second kind or Euler-Lagrange equations were used. Those are a 
reformulation of classical mechanics where the constraints are incorporated directly by the selection 
of generalized coordinates for the system being studied. Instead of forces, Lagrangian mechanics use 
the energies in the system, described using the Lagrangian; the nonrelativistic Lagrangian for a 
system of particles can be defined by: = −  (9) 

where T and V are the kinematic energy and potential energy of the system, respectively. 
The Euler-Lagrange equation is obtained from Equation (10) and, establishing that, if not all the 

forces acting on a system are derivable from a potential, those can be written as [20]: 

− =  (10) 

where L contains the potential of conservative forces (Equation (10)), qj represents the generalized 
coordinates of the system, Qj denotes the generalized forces acting outside the system, and j 
represents each particle or body analyzed. According to this, external forces acting over the 
exoskeleton coupled to the leg are considered; those external forces are torque and viscous friction at 
each joint, and the Euler-Lagrange equation for the system will be: 

− = −  (11) 

where  represents links 1 and 2 of the pendulum, which denotes the leg and foot. The angle  
represents the position of each link,  is the applied torque, and  is the viscous friction coefficient. 

To calculate the Lagrangian, it is necessary to define the kinetic and potential energy of the 
system; kinetic energy is defined as follows [21]: = +  = 12 + 12  

(12) 

where  is the translational kinetic energy and  is the rotational kinetic energy;  is the linear 
speed and  is the angular speed of the center of mass,  represents bodies mass and  is the 
moment of inertia at the center of mass. Since there are two joints to be considered, the total kinetic 
energy  of the system will be expressed as: = +  = 12 + 12 + 12 + 12  

(13) 

Potential energy is defined as: 
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= ℎ (14) 

so total potential energy  for the system will be: = +  = +  
(15) 

where ,  is the mass of each segment,  is the gravity used as 9.8	 / , and ,  is the center of 
mass altitude calculated using the y coordinate of Equations (6) and (7). 

Using Matlab-MuPAD, dynamic equations which describe the exoskeleton are calculated by 
replacing Equations (8) and (9) into Equation (14) to calculate the total kinetic energy of the system; 
after calculating the kinetic and potential energy, the Lagrangian (10) is calculated and replaced into 
Equation (12). Once all the parameters are established, Equation (12) is solved and simplified for  
and , resulting in two nonlinear equations, one for each link describing the dynamic behavior of 
the proposed system. The resulting dynamic model is: 

= −
2 2 + cos( ) − sin( ) − 2 sin( ) − 4+4 + 2 cos( ) + 4 cos( ) + 2 cos( + ) + 1280(4 + 4 cos( ) + ) + 320 + 20  

(16) 

= −(80 )
2 2 + cos( ) − sin( ) −

+ + cos( + )2 + sin( ) ( + )2 + 380  

(17) 

where: = + 12 + 4 + 12 + 10 + 12 + 4 + 12+ + 12  = 23 + 36 + 52 + 36 + 90 + 36 + 52 + 36+ 23 + 36  = + +  = 23 + 36 + 52 + 36 + 90 + 36 + 52 + 36+ 23 + 36  = ( + + )  

Those constants are calculated by using Table 1 parameters where  is the leg higher radius, 
 the leg lower radius,  the foot higher radius,  the foot lower radius,  the leg length, and 
 the foot length. 

This model can be represented as the general form of the Euler-Lagrange equations, such that: 

( ) + ( , ) + ( ) =  (18) 

where M is the inertial properties matrix, V the coriolis and centripetal vector, and G the gravity 
vector of the system. According to the generalized coordinates, the generalized equation for our 
system is: 

( , ) ( , )( , ) ( , ) + ( , )( , ) + ( , )( , ) =  (19) 
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where the parameters of Equation (20) are: 

( , ) = (2 + 2 cos( ) + 2 )2 + 3 80 + 80 

( , ) = ( , ) = (2 cos( ) + 2 )2 + 3 80 

( , ) = 4 + 3 80 

( , ) = − sin( )	 + sin( )	2 +  

( , ) = sin( )	2 +  

( , ) = cos	( )2 + cos	( ) + cos	( )cos	( )2 − sin	( )sin	( )2  

( , ) = cos	( )cos( )2 − sin( )sin( )2  

(20) 

2.2. Linear Approximation of the Model 

To perform a comparison between the nonlinear model and a linear model suitable to design 
controllers, the system is linearized.  

Since Equations (17) and (18) are second order, it is necessary to transform them into a pair of 
first-order differential equations, therefore the following variables are introduced: = = =  = 	 =  = 	 = =  = =  = =

(21) 

Those equations are linearized around an equilibrium point based on the Taylor series expansion 
[22]. Thus, the Equations in (22) can be represented as: ( , ) =  ( , ) = (17) ( , ) =  ( , ) = (18) 

 

so, the linear approximation of the system will be calculated as follows: 

=
( , )

	+
( , )

	 (22) 

The equilibrium point was selected at the point where the system has lost all its energy; 
according to the reference settled in Figure 3 it is: 
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= = 90°== 0°= , = = 0= 0  (23) 

Finally, the linear approximation of the system in state-space is: 

=
0 1 0 0−4 −4 −2 00 0 0 1− 0 − − 80 +

0 04 00 00 80  

= 1 0 0 00 0 1 0  

(24) 

where P2 and P3 are the same as in Equations (17) and (18), so: = 2 + + 2  

= (4 + 4 + ) + 3 20 + 20 

= 40
 

3. Simulation Results 

The aim of the experiments is to validate the developed model by simulation. In this sense, the 
dynamic models (nonlinear and linear) are implemented to validate the results in the linearization 
process and the equivalence with the nonlinear model, after which the controllability and 
observability analysis are performed to the linearized model as a further step to verify the feasibility 
of control implementation. 

3.1. Dynamic Model Simulation 

This section describes the developed process to simulate the linear and nonlinear dynamics of 
the proposed model; for this purpose, Matlab-Simulink was used. Proposed linear and nonlinear 
models were simulated, calculating its parameters by considering a person with a height of 1.90 m 
and weight of 90 Kg. Viscous friction at each joint was assumed as = = 	0.3 and applied torque 
as = = 0, to obtain a lightly damped response of the system. To simulate the exoskeleton, 
motors and structure weights were added to each link mass; the motors to be used are flat brushless 
DC motors coupled to a reduction gear capable of generating a maximum torque of 15 Nm. Those 
motors coupled with the reduction gear box weigh around 0.57 Kg, and the exoskeleton structure 
was assumed to weigh 0.13 Kg, amounting to a total of 0.7 Kg. These values were added to the second 
link mass; as the motor acting over the knee at the first link is not going to lift its own weight over 
the first link, only the structure weight was added. 

3.2. Nonlinear Model Simulation 

For simulating the nonlinear model, the ordinary differential equation (ODE) system composed 
by the generalized Euler-Lagrange equation was solved by using its explicit form: = ( )(− ( , ) − ( ) + ) (26) 

where M is the inertial properties matrix, V the coriolis and centripetal vector, and G the gravity 
vector of the system. According to the generalized coordinates, the generalized equation for our 
system is: 
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= ( , ) ( , )( , ) ( , ) − ( , )( , ) − ( , )( , ) +  (25) 

where each matrix parameter is shown in Equation (21). After calculations with selected personal 
characteristics, they are defined as: 

( , ) = 0.2706 cos( ) + 0.8133 ( , ) = ( , ) = 0.1353 cos( ) + 0.0616 ( , ) = 0.0616 ( , ) = −0.1231 sin( )	 + 0.1353 sin( )	 + 0.3	  ( , ) = 0.1353 sin( )	 + 0.3	  ( , ) = 19.0664 cos( ) + 2.8373 cos( ) cos( ) − 2.8373	sin	( )sin	( ) ( , ) = 2.8373 cos( ) cos( ) − 2.8373 sin( )sin( ) 
(26) 

Once the system of ordinary differential equations (ODEs) is defined, it is necessary to reduce it 
from two second-order equations to four first-order equations; this is done by applying the same 
process employed for linearizing the model. This time, for the nonlinear functions described by 
Equation (27), the following variables must be introduced: = = =  = 	 = = ( , ) = 	 = =  = 	 = = ( , ) = =  

(27) 

where ( , ) corresponds to each  expression given by solving Equation (27): ( , ) = ( , ) − ( , ) − ( , ) + + ( , ) − ( , ) − ( , ) +  ( , ) = ( , ) − ( , ) − ( , ) + + ( , ) − ( , ) − ( , ) +  
(28) 

Simulink “ode15s” solver was selected to solve this ODE system, and as a nonlinear model 
reference uses horizontal axes as 0° degrees and the gravity vector (G(q)) is used, no initial conditions 
were needed. The simulation block diagram is illustrated in Figure 4 and the dynamic behavior of 
the model is shown in Figure 5. 

 
Figure 4. Non-linear model simulation scheme. 
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Figure 5. Non-linear model positions response. 

The model behavior was as expected; the first link falls and moves describing a damped sine 
wave, which loses energy due to friction causing it to stabilize in −90°, and the second link movement 
is induced by the movement of the first link—as its angle is referenced to the first link, it stabilizes on 
line with it, which is why it reaches 0°. The model speed response is illustrated in Figure 6. 

Using Figure 7, it is easy to see that the nonlinear system has two equilibrium points at (90, 0) 
and (0, 0); this is what allowed us to define and apply the linearization method mentioned before. 

As the purpose of the proposed model is to be controlled, to check if the input variable of the 
system affects its stabilizing point for a possible position control, different torque values were applied 
to each link. Tests were done by applying torques to the first link in between 0 and 18 Nm while the 
applied torque to the second link was 0 Nm; for the second link, due to its low mass, torques between 
0 and 2.5 Nm were applied while the applied torque to the first link was 0 Nm. Results are shown in 
Figures 8 and 9. 

For the first link, the test torque vector is defined as Equation (30); each element in the vector 
corresponds to an applied torque at each joint: = [0 2 4 6 8 10 12 14 16 18] = 0 

(29) 

After applying this vector to the system, is clear that this input modifies the model steady state 
value, which is as expected for control purposes. Furthermore, it also affects the oscillation behavior 
of the system, making it slower and decreasing its amplitude (see Figure 8). 
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Figure 6. Non-linear model speed response. 

 

Figure 7. Non-linear model phase plane. 
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Figure 8. Link 1 position response (Non-linear). 

For the second link, the test torque vector is defined as: 

= 0 = [0 0.1 0.3 0.6 0.8 1 1.2 1.6 1.8 2] (30) 

Making some tests and applying different torque values to the second link, some instability 
points were encountered for input  ( = ). The model response for the second link is shown in 
Figure 9, due to its nonlinearities, it is possible to observe that different answers are obtained with 
different behaviors, but after 1.2 Nm the system becomes completely unstable (see Figure 9). 

 

Figure 9. Link 2 position response (Non-linear). 
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To check the behavior of the model when user characteristics vary, several tests were performed 
following the simulation scheme used before; a few of those tests are shown below. For this purpose, 
we refer to them as test 2 and test 3; test 2 was conducted by simulating a person of 65 Kg, 1.70 meters 
tall, and test 3 simulated a person of 50 Kg, 1.50 m tall (See Figures 10–13). 

Test 2: 

 

Figure 10. Link 1, test 2 position response (Non-linear). 

 

Figure 11. Link 2, test 2 position response (Non-linear). 
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Test 3: 

 
Figure 12. Link 1, test 3 position response (Non-linear). 

 

Figure 13. Link 2, test 3 position response (Non-linear). 
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In the above-mentioned tests, many more nonlinearities were encountered when varying the 
user characteristics, which could be mitigated by using robust nonlinear controllers. Besides the 
nonlinearities, the system behavior was as expected and followed the results shown before.  

3.3. Linear Model Simulation 

Calculating all parameters and applying them to Equation (25), it is possible to obtain the 
following state-space representation of the linear approximation of the model: 

= 0 1 0 0−20.2072 −0.2768 −2.6176 00 0 0 1−50.1722 0 −50.1722 −5.3099 + 0 00.9225 00 00 17.6830  

= 1 0 0 00 0 1 0  

(31) 

Matlab-Simulink was used to obtain the system time response; due to the linear approximation 
method used, made around the equilibrium point (22), the system reference changed. Thus, the 
system 0° degrees are located at the negative vertical axes so initial conditions were needed, which 
were taken as (0) = (0) = 90°. Results are shown in Figure 14. 

 

Figure 14. Linear Model Position response. 

The linear model differs from the nonlinear model response, but behaves as expected following 
the dynamics of a double pendulum stabilizing at 0° degrees. This because the linear model is merely 
an approximation made to work with the nonlinearities present in the original model. This model is 
affected in a higher way for the friction factor than the dynamical one; therefore, it loses energy faster 
and reaches the steady state faster. The model speed response is illustrated in Figure 15. 
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Figure 15. Linear Model Speed response. 

With this linear approximation, the phase diagram softens and converges into the steady state 
value more smoothly than the nonlinear one (see Figure 16). 

 
Figure 16. Linear model phase plane. 

To check if the input variable of the system affects its stabilizing point, the same vectors of 
Equations (31) and (32) were applied to the linear model, the results of which are shown in Figures 
17 and 18. 
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Figure 17. Link 1 position response (Linear). 

 

Figure 18. Link 2 position response (Linear). 

For both links, each input produces a significant change in the steady state of the model. It also 
reveals that the nonlinearity which produced the uncontrolled increase in the response of the system 
was eliminated, making the system proper for control design and tuning. 

The results from tests 2 and 3 are shown below (Figures 19–22). 
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Test 2: 

 
Figure 19. Link 1, test 2 position response (Linear). 

 

Figure 20. Link 2, test 2 position response (Linear). 
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Test 3: 

 

Figure 21. Link 1, test 3 position response (Linear). 

 

Figure 22. Link 2, test 3 position response (Linear). 

As expected, the linearized model behavior stabilizes at a different rate according to the mass 
and length of each segment of the leg. This speed change requires a robust speed control in order to 
avoid injuring a person with different characteristics when using the same device; it also could be 
configurable to enhance the therapy. 
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4. Observability and Controllability Analysis 

The linear model is planned to be used to design and tune linear control strategies, which is why 
it must be analyzed to ensure that it is controllable and/or observable. Defining the controllability 
matrix (Co) and observability matrix (O) as: = [ ⋯ ]  

= ⋮   

where n is the range of A matrix. Using the linear state-space of Equation (33), which is in the form:  = +   =   

it is easy to define that n = 4, so our analysis will be defined as: = [ ] (34) 

=  (35) 

replacing the matrices of Equation (33) into Equations (34) and (35) will result in a controllability 
matrix of dimensions (4 × 8) and an observability matrix of dimensions (8 × 4), as the model is a multi-
input multi-output (MIMO) system with two inputs and two outputs. To obtain the controllability 
matrix for each input-output pair, it is necessary to take columns (1–7) of Co to build the 
controllability matrix for the first pair ( −	 ) and to take columns (2–8) to build the controllability 
matrix for the second pair ( −	 ); in the case of observability, is the same process but selecting 
rows. The controllability and observability matrices will look like: 

= 0 0.9225 −0.2553 −18.57140.9225 −0.2553 −18.5714 10.29930 0 0 −46.28610 0 −46.2861 258.3534   

= 0 0 0 −46.30 0 −46.3 258.40 17.7 −93.8 −389.617.7 −93.8 −389.6 6773.1   

= 1 0 0 00 1 0 0−20.2072 −0.2768 −2.6176 05.5926 −20.1306 0.7244 −2.6176   

= 0 0 1 00 0 0 1−50.1722 0 −50.1722 −5.3049−266.1583 −50.1722 266.1583 −22.0303   

Nonsingular matrices indicate that the system is fully observable and controllable. 

5. Exoskeleton Design Proposal 

The model previously described is oriented to describe a simple exoskeleton with 2 DOF. Figures 
23 and 24 show the general idea for the implementation; the exoskeleton consists of active and passive 
elements which are attached to the legs in a non-invasive way. The main idea is that the device can 
be wearable and adapted to the features of individual patients. 
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Figure 23. Exoskeleton proposed design (Right view). 

 
Figure 24. Exoskeleton design proposal (Left view). 

The structure is intended to work as Master-Slave, where one leg controls the other one. This 
enables the user to use the non-injured leg to perform rehabilitation exercises that can be replicated 
in the injured one. The employed actuators are planned to be brushless DC motors coupled to a 
reduction gear (see Figures 25 and 26). 
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Figure 25. Motor coupled to joint 1 (Knee). 

 
Figure 26. Motor coupled to joint 2 (Ankle). 

6. Conclusions 

The contribution of this paper focuses on extending the exoskeleton line of research by 
proposing a new way of modeling such that the followed objective is to develop a dynamic model 
using a combination of different models which mathematically describe the human body. The 
proposed model is a combination of three models, which, when united, can describe the physical 
behavior of the exoskeleton frame coupled to the human leg. This model has the advantage that it 
can be calculated for any kind of person given their its mass and height, converting it into a flexible 
alternative for calculating the exoskeleton dynamics very quickly and adapting them easily for a 
child’s or young adult’s body. As a secondary goal, the paper focuses on showing that the model can 
be controlled in different ways to satisfy the different characteristics of each possible rehabilitation 
therapy for which the exoskeleton could be used. As the resulting model is a highly nonlinear model, 
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it was linearized and tested using simulation environments to ensure that it works as expected and 
its able to design and test control strategies. The linear representation results were fully controllable 
and observable, which fulfills the secondary objective proposed. Since this work was focused in the 
mathematical model description, and its validation was performed by software simulation, it is 
necessary to perform a validation with the physical device. As future work, tests with the physical 
device will be conducted and tests with human patients will then be considered so as to define a 
medical protocol to evaluate the device under the supervision of physical therapists. This model is 
also planned to be extended to three links, to be used to describe all leg movements in the sagittal 
plane. Also, control strategies including force feedback and/or joint virtual torque control with 
gravity compensation will be tested with the real equipment. 
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