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Abstract: In order to deal with the scaling problem of volumetric map representations, we propose
spatially local methods for high-ratio compression of 3D maps, represented as truncated signed
distance fields. We show that these compressed maps can be used as meaningful descriptors for
selective decompression in scenarios relevant to robotic applications. As compression methods,
we compare using PCA-derived low-dimensional bases to nonlinear auto-encoder networks. Selecting
two application-oriented performance metrics, we evaluate the impact of different compression rates
on reconstruction fidelity as well as to the task of map-aided ego-motion estimation. It is demonstrated
that lossily reconstructed distance fields used as cost functions for ego-motion estimation can
outperform the original maps in challenging scenarios from standard RGB-D (color plus depth)
data sets due to the rejection of high-frequency noise content.
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1. Introduction

A signed distance field (SDF), sometimes referred to as a distance function, is an implicit surface
representation that embeds geometry into a scalar field whose defining property is that its value
represents the distance to the nearest surface of the embedded geometry. Additionally, the field is
positive outside the geometry, i.e., in free space, and negative inside. SDFs have been extensively
applied to e.g., speeding up image-alignment [1] and raycasting [2] operations as well as collision
detection [3], motion planning [4] and articulated-body motion tracking [5]. The truncated SDF [6]
(TSDF), which is the focus of the present work, side-steps some of the difficulties that arise when fields
are computed and updated based on incomplete information. This has proved useful in applications
of particular relevance to the field of robotics research: accurate scene reconstruction ([7–9]) as well as
for rigid-body ([10,11]) pose estimation.

The demonstrated practicality of distance fields and other voxel-based representations such as
occupancy grids [12] and the direct applicability of a vast arsenal of image processing methods to
such representations make them a compelling research topic. However, a major drawback in such
representations is the large memory requirement for storage, which severely limits their applicability
for large-scale environments. For example, a space measuring 20× 20× 4 m3 mapped with voxels of
2 cm size requires at least 800 MB at 32 bits per voxel.

Mitigating strategies, such as cyclic buffers ([8,9]), octrees ([13,14]), and key-block swapping [15],
have been proposed to limit the memory cost of using volumetric distance-fields in very different ways.
In the present work, we address the issue of volumetric voxel-based map compression by an alternative
strategy. We propose encoding (and subsequently decoding) the TSDF in a low-dimensional feature
space by projection onto a learned set of basis (eigen-) vectors derived via principal component
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analysis [16] (PCA) of a large data set of sample reconstructions. We also show that this compression
method preserves important structures in the data while filtering out noise, allowing for more stable
camera-tracking to be done against the model, using the SDF Tracker [10] algorithm. We show that
this method compares favorably to nonlinear methods based on auto-encoders (AE) in terms of
compression, but slightly less so in terms of tracking performance.

The proposed compression strategies can be applied to scenarios in which robotic agents with
limited on-board memory and computational resources need to map large spaces. The actively
reconstructed TSDF need only be a small fraction of the size of the entire environment and be allowed
to move. The regions that are no longer observed can be efficiently compressed into a low-dimensional
feature space and re-observed regions can be decompressed back into the original TSDF representation.
Although the compression is lossy, most of the content is lost in the higher-frequency domain which
we show to have positive side effects in terms of noise removal. When a robot re-observes previously
explored regions of a compressed map, the low-dimensional feature representation may serve as
a descriptor, providing an opportunity for the robot to, still in the descriptor-space, make the decision
to selectively decompress regions of the map that may be of particular interest. A proof of concept
for this scenario and tracking performance evaluations on lossily reconstructed maps are presented
in Section 5.

The remainder of the paper is organized as follows: an overview on related work in given in
Section 2. In Section 3, we formalize the definition of TSDFs, and present a brief introduction to the
topics of PCA and AE networks. In Section 4, we elaborate on the training data used, followed by
a description of our evaluation methodology. Section 5 contains experimental results, followed by
Section 7, which presents some possible extensions to the present work, and Section 6 lastly presents
our conclusions.

2. Related Work

Our work is perhaps most closely related to sparse coded surface models [17] which use K-SVD [18]
to reduce the dimensionality of textured surface patches. K-SVD is an algorithm that generalizes
k-means clustering to learn a sparse dictionary of code words that can be linearly combined to
reconstruct data. Another recent contribution in this category is the Active Patch Model for 2D
images [19]. Active patches consist of a dictionary of data patches in input space that can be warped
to fit new data. A low-dimensional representation is derived by optimizing the selection of patches
and pre-defined warps that best use the patches to reconstruct the input. The operation on surface
patches instead of volumetric image data is more efficient for compression for smooth surfaces, but
may require an unbounded number of patches for arbitrarily complex geometry. As an analogy, our
work can be thought of as an application of eigenfaces [20] to the problem of 3D shape compression and
low-level scene understanding. Operating directly on a volumetric representation, as we propose, has
the advantage of a constant compression ratio per unit volume, regardless of the surface complexity, as
well as avoiding the problem of estimating the optimal placement of patches. The direct compression of
the TSDF also permits the proposed method to be integrated into several popular algorithms that rely
on this representation, with minimal overhead. There are a number of data-compression algorithms
designed for directly compressing volumetric data. Among these, we find video and volumetric image
compression ([21,22]), including work dealing with distance fields specifically [23]. Although these
methods produce high-quality compression results, they typically require many sequential operations
and complex extrapolation and/or interpolation schemes. A side effect of this is that these compressed
representations may require information far from the location that is to be decoded. They also do not
generate a mapping to a feature space wherein similar inputs map to similar features, so possible uses
as descriptors are limited at best.
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3. Preliminaries

3.1. Truncated Signed Distance Fields (TSDF)

TSDFs are three-dimensional image structures that implicitly represent geometry by sampling,
typically on a uniform lattice, the distance to the nearest surface. A sign is used to indicate whether
the distance is sampled from within a solid shape (negative, by convention) or in free space (positive).
The approximate location of surfaces can be extracted as the zero level set. Let

d′(p) : R3 → R (1)

be defined as the distance field of some arbitrary closed surface in Q in R3 ,

d′(p) = argmin
q∈Q

||p− q||2. (2)

Given the closed (no holes) property of the surface, one may assume that every surface point has
an associated outward-oriented normal vector n(q). The expression I±(p) = sign(n(q)T · (p− q)) then
consistently attributes a sign to indicate on which side of the surface p is located. Finally, truncating
the value of the field in an interval [dmin, dmax] produces the TSDF,

d(p) : R3 → [dmin, dmax] , (3)

defined, for any closed surface, as

d(p) = min(dmax,max(dmin, I±(p) argmin
q∈Q

||p− q||2)). (4)

3.2. Principal Component Analysis (PCA)

PCA [16] is a method for obtaining a linear transformation into a new orthogonal coordinate
system. In this system, the first dimension is associated with the direction, in a data set, that exhibits
the largest variance. The second dimension is aligned with a direction, perpendicular to the first,
along which the second most variance is exhibited and so on. We achieve this by first subtracting the
data set mean a0 from each sample in the data matrix (centering) and then applying a singular value
decomposition (SVD). SVD creates a principal component matrix of 4096× 4096 elements, producing
a mapping from input space into a new space of orthogonal basis vectors, one for each singular value.
The magnitude of these singular values relate to the amount of variance observed along their associated
basis vector in the data set and can be sorted in descending order, the smallest of which are typically
close to zero. This suggests that some columns from the principal component matrix can be removed,
as they are related to the lower-variance components.

Multiplying a (centered) vector from the input space, i.e., a voxel block unrolled into a vector
(of 4096 elements), with the reduced set of principal components then projects the voxel data onto a
lower-dimensional space. Inversely, multiplying a lower-dimensional vector from the feature space
with the transpose of the principal component matrix, maps back into the input space. The resulting
voxel block is then a low-rank approximation of the initial data.

Writing the singular value decomposition of our centered data-matrix Y0 as

[U, Σ, V] = svd(Y0). (5)

The matrix A = UΣ contain the principal components of the data. For any given sample, p ∈ R4096 in
input space, we can generate a descriptor dp of lower dimensionality:

dp = AT(p− a0). (6)
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Mapping back to the input space is done by computing,

p̂ = a0 + Adp. (7)

Using PCA, we can thus design low-dimensional descriptors for the high-dimensional voxel
chunks, while making use of statistics related to the training data set to pick a good approximation.

3.3. Artificial Neural Network

Artificial neural networks (ANNs) are often described using biological analogies, as a nonlinear
computational architecture with several layers that connect multiple inputs to outputs as the weighted
sum of their contributions, plus some bias. For a fully connected neural network, this is essentially
a vector-matrix product followed by addition. Described is an affine function that could be replaced
by a single layer of multiplication without any loss. However, nonlinear properties are introduced by
applying an element-wise activation function on the vector resulting from the computation at each layer.
A descriptor dp can thus be computed from the input vector p by chaining the multiplications with
layers L1 through Lk interleaved with element-wise activation functions f ,

dp = f (Lk · · · f (L2 f (L1 p + b1) + b2) · · ·+ bk). (8)

Finding an appropriate set of weights for the layers L1...k and biases b1...k is done by comparing the
output of the network with some reference and minimizing an objective related to this error using
numerical optimization techniques. This optimization process is appropriately called “training” the
network.

Training an ANN as an auto-encoder can be done in a straightforward manner by setting its
desired output to be equal to its input and employing e.g., back-propagation [24] to minimize the
difference over a large quantity of representative data from the target domain. For some form of
encoding to occur, it is required that somewhere in between the input layer and output layer, there
exists an intermediary hidden layer whose dimensionality is smaller than those of the input and output
(which are the of the same size). We refer to this intermediate “bottleneck” layer as a code or feature
layer. The portion of the ANN up until the feature layer can then be treated as an encoder and the
portion after is treated as a decoder. For practical reasons (particularly when layer-wise unsupervised
pre-training is involved [25]), it makes sense to keep the encoder and decoder symmetric.

4. Methodology

4.1. Training Data

The data set used for training consists of sub-volumes sampled from 3D reconstructions of
real-world industrial and office environments c.f. Figure 1. These reconstructions are obtained
by fusing sequences of depth images into a TSDF as described in [6] with truncation limits set to
dmin = −0.04 and dmax = 0.1. Camera pose estimates were produced by the SDF Tracker algorithm
(though any method with low drift would do just as well). The real-world data are augmented by
synthetic samples of TSDFs, procedurally generated using libsdf [26], an open-source C++ library that
implements simple implicit geometric primitives (as described in [2,27]). Some examples from our
synthetic data set can be seen in Figure 2.

Sub-volumes were sampled from the real-world reconstructions by taking 16× 16× 16 samples at
every eight voxels along each spatial dimension and permuting the indexing order along each axis for
every sample to generate five additional reflections at each location. Distance values are then mapped
from the interval [dmin, dmax] to [0, 1] and saved. Furthermore, to avoid a disproportionate amount of
samples of empty space, sub-volumes for which the mean sum of normalized (∈ [0, 1]) distances is
below 0.85 are discarded, and a small proportion of empty samples is explicitly included instead.
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The procedurally generated shapes were sampled in the same manner as the real-world data.
It was generated by randomly picking a sequence of randomly parametrized and oriented shapes
from several shape categories representing fragments of: flat surfaces, concave edges, convex edges,
concave corners, convex corners, rounded surfaces, and rounded edges. For non-oriented surfaces,
convexity and concavity does not matter, since one is representable by a rotation of the other, but
need to be represented as separate cases here, since the sign is inverted in the TSDF. The distances are
truncated and converted to the same intervals as with the real data. The use of synthetic data allows
generating training examples in a vast number of poses, with a greater degree of geometric variation
than would be feasible to collect manually through scene reconstructions alone.

The sub-volumes, when unrolled, define an input of a dimensionality equal to n = 4096 (i.e., 163),
and the combined number of samples number m = 200, 000. Our data set is then X ∈ {Rm×n|0 ≤
xi,j ≤ 1}.

Figure 1. Examples from the real-world data, showing the extracted zero level set as a polygonal
surface mesh. The picture depicts a partial reconstruction of a small office environment.

Figure 2. Examples from the synthetic data set showing a variety of shapes represented by truncated
distance fields, sampled onto a small volume containing 4096 voxels.

4.2. Evaluation Methodology

Having defined methods for obtaining features, either using PCA or ANN, what is a good balance
between compression ratio and map quality in the context of robotics? We explore this question by
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means of two different fitness quality measures. Reconstruction fidelity and ego-motion estimation.
To aid in our analysis, we use a publicly available RGB-D (color plus depth) data set [28] with ground
truth pose estimates provided by an independent external camera-tracking system. Using the provided
ground truth poses, we generate a map, by fusing the depth images into a TSDF representation. This
produces a ground truth map. We chose teddy, room, desk, desk2, 360 and plant from the freiburg-1
collection for evaluation as these are representative of real-world challenges that arise in simultaneous
localization and mapping (SLAM) and visual odometry, including motion blur, sensor noise and
occasional lack of geometric structure needed for tracking. We do not use the RGB components of
the data for any purpose in this work. We perform two types of experiments, designed to test the
reconstruction fidelity and the reliability of tracking algorithms operating on the reconstructed volume.

As a measure for reconstruction error, we compute the mean squared errors of the decoded
distance fields relative to the input. This metric is relevant to path planning, manipulation and object
detection tasks since it indirectly relates to the fidelity of surface locations. For each data set, using
each encoder/decoder, we compute a lossy version of the original data and report the average and
standard deviation across all data sets.

Ego-motion estimation performance is measured by the absolute trajectory error (ATE) [28].
The absolute trajectory error is the integrated distance between all pose estimates relative to the ground
truth trajectory. The evaluations are performed by loading a complete TSDF map into memory and
setting the initial pose according to ground truth. Then, as depth images are loaded from the RGB-D
data set, we estimate the camera transformation that minimizes the point to model distance for each
new frame. The evaluation was performed on all the data sets, processed through each compression
and subsequent decompression method. As a baseline, we also included the original map, processed
with a Gaussian blur kernel of size 9 × 9 × 9 voxels and a σ parameter of 4/3.

Building on the experimental results, we are able to demonstrate two applications: selective map
decompression based on descriptor matching and large-scale mapping in a dense TSDF space, by fast
on-the-fly compression and decompression.

5. Experimental Results

The PCA basis was produced, using the dimensionality reduction tools from the scikit-learn [29]
library. Autoencoders were trained using pylearn2 [30] using batch gradient descent with the change
in reconstruction error on a validation data set as a stopping criterion. The data set was split into 400
batches containing 500 samples each, of which 300 batches were used for training, 50 for testing, and
50 for validation. The networks use sigmoid activation units and contain 4096, 512, d, 512, 4096 nodes,
with d representing the number of dimensions of the descriptor.

The runtime implementation for the encoder/decoder architectures was done using the
cuBLAS [31] and Thrust [32] libraries, enabling matrix-vector and array computation on the graphics
processing unit (GPU).

5.1. Reconstruction Error

We report the average reconstruction error over all non-empty blocks in all data sets and the standard
deviation among data sets in Table 1. The reconstruction errors obtained strongly suggest that increasing
the size of the codes for individual encoders yields better performance, though with diminishing returns.
Several attempts were made, to out-perform the PCA approach, using Artificial Neural Networks (ANN)
trained as auto-encoders, but this was generally unsuccessful. PCA-based encoders, using 32, 64 and 128
components, produce better results than ANN encoders in all of our experiments.
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Table 1. Average reconstruction and ego-motion estimation results across all data sets. PCA—Principal
component analysis compression, NN—Artificial neural network compression, MSE—Mean squared
error, ATE—Absolute trajectory error.

Reconstruction Method Reconstruction Error (MSE) ± σ Mean ATE [m] ± σ Median ATE [m]

Original data - 0.63 ± 0.56 0.72
PCA 32 42.8 ± 6.39 0.23 ± 0.34 0.049
PCA 64 33.81 ± 3.88 0.36 ± 0.47 0.047
PCA 128 26.88 ± 2.57 0.56 ± 0.68 0.12
NN 32 59.66 ± 7.17 0.16 ± 0.29 0.057
NN 64 49.18 ± 4.72 0.12 ± 0.17 0.049
NN 128 45.66 ± 4.25 0.13 ± 0.20 0.046
Gaussian Blur 9 × 9 × 9 - 0.10 ± 0.17 0.038

The best overall reconstruction performance is given by the PCA encoder/decoder, using 128
components. We illustrate this with an image from the teddy data set in Figure 3. Note that the
decoded data set is smoother, so, in a sense, the measured discrepancy is partly related to a qualitative
improvement.

(a) (b)

Figure 3. Example reconstruction using a PCA basis with 128 components. The reconstructed version
(b) includes some blocking artifacts, visible as tiles on the floor of the room, but contains visibly
less noise than the original map (a).

5.2. Ego-Motion Estimation

The ego-motion estimation, performed by the SDF Tracker algorithm, uses the TSDF as a cost
function to which subsequent 3D points are aligned. This requires that the gradient of the TSDF be of
correct magnitude and point in the right direction. To get a good alignment, the minimum absolute
distance should coincide with the actual location of the surface.

In spite of being given challenging camera trajectories, performance using the decoded maps
is on average better than the unaltered map. When the tracker keeps up with the camera motion,
we have observed that the performance resulting from the use of each map is in the order of their
respective reconstruction errors. In this case, the closer the surface is to the ground truth model,
the better. However, tracking may fail for various reasons, e.g., when there is little overlap between
successive frames, when the model or depth image contains noise or when there is not enough
geometric variation to properly constrain the pose estimation. In some of these cases, the maps that
offer simplified approximations to the original distance field fare better. The robustness in tracking
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is most likely owed to the denoising effect that the encoding has, as evidenced by the performance
on the Gaussian blurred map. Of the encoded maps, we see that the AE compression results in better
pose estimation. In Figure 4, we see a slice through a volume color-coded by distance. Here, we note
that, even though the PCA-based map is more similar to the original, on the left side of the image, it is
evident that the field is not monotonically increasing away from the surface. Such artifacts cause the
field gradient to point in the wrong direction, possibly contributing to failure in finding the correct
alignment. The large difference between the median and mean values for the pose estimation errors
are indicative of mostly accurate pose estimations, with occasional gross misalignments.

(a) (b)

(c) (d)

Figure 4. A slice through the distance field reconstructed through different methods, using 64-element
encodings. Shown here are (a) the original map; (b) the Gaussian filtered map; (c) PCA reconstruction;
and (d) auto-encoder reconstruction.

5.3. Selective Feature-Based Map Expansion

Although the descriptors we obtain are clearly not invariant to affine transformations (if they were,
the decompression would not reproduce the field in its correct location/orientation), we can still create
descriptor-based models for geometries of particular interest by sampling their TSDFs over the range of
transformations to which we want the model to be invariant. If information about the orientation of
the map is known a priori, e.g., some dominant structures are axis-aligned with the voxel lattice, or
dominant structures are orthogonal to each other, the models can be made even smaller. In the example
illustrated in Figure 5, a descriptor-based model for floors was first created by encoding the TSDFs of
horizontal planes at 15 different offsets, generating one 64-element vector each. Each descriptor in the
compressed map can then be compared to this small model by the squared norm of their differences and
only those beneath a threshold of similarity need to be considered for expansion. Here, an advantage
of the PCA-based encoding becomes evident: since PCA generates its linear subspace in an ordered
manner, feature vectors of different dimensionality can be tested for similarity up to the number of
elements of the smallest, i.e., a 32-dimensional feature descriptor can be matched against the first half of
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a 64-dimensional feature descriptor. This property is useful in handling multiple levels of compression,
for different applications, whilst maintaining a common way to describe them.

(a)

(b)

Figure 5. Selective reconstruction of floor surfaces. Given a compressed map, the minimum distance
for each compressed block, to a set of descriptors that relate to horizontal planes can be computed
(e.g., floors). Only the blocks that are similar enough to this set of descriptors need to be considered for
actual decompression. In (a), the uncompressed map is shown, with each region colored according
to its descriptor’s distance to the set of descriptors that relate to floors. In (b), we see the selectively
expanded floor cells.

5.4. Large-Scale Mapping

By extending the SDF Tracker algorithm with a moving active volume centered around the camera
translation vector, for every 16-voxel increment, we can encode the voxel blocks exiting the active
TSDF on the lagging end, (if not empty), and decode the voxel blocks entering the active TSDF on
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the front end (if they contain a previously stored descriptor). This allows mapping much larger areas,
since each voxel block can be reduced from its 4096 voxels to the chosen size of a descriptor or a token,
if the block is empty. Since the actual descriptor computation happens on the GPU, the performance
impact on the tracking and mapping part of the algorithm is not too severe. An example of this is
shown in Figure 6.

Figure 6. Large scale mapping, enabled by real-time encoding and decoding of data as the
reconstruction volume translates to keep the camera within its bounds. The active reconstruction
volume is shown in black outlines. Each block is color-coded according to which descriptors it mostly
resembles. In this example, we have compared the descriptors against those associated with walls and
the floor, as described in the previous section.

The tracking and mapping algorithm itself is a real-time capable system with performance that
scales with the size of the volume and resolution of the depth images given as input. While it only
handles volumes of approximately 1603 voxels at QVGA resolution (320 × 240 pixels) and lower at 30
Hz, it does so solely on an Intel i7-4770K 3.50 GHz CPU (Örebro, Sweden). This leaves the GPU free to
perform on-the-fly compression and decompression.

Timing the execution of copying data to the GPU, encoding, decoding and copying it back to the
main CPU memory results in an average between 405 and 520 µs per block of 163 voxels on a Nvidia
GTX Titan GPU (Örebro, Sweden). For an active TSDF volume of 160 × 160 × 160 voxels, shifting
one voxel-block sideways would result in 100 blocks needing to be encoded, 100 blocks decoded, and
memory in both directions’ transfers, in the worst case. Our round-trip execution timing puts this
operation at approximately 41 to 52 milliseconds.

The span in timings depend on the encoding method used, with PCA-based encoding representing
the lower end and ANN the upper, for descriptors of 128 elements.

6. Conclusions

In this paper, we presented the use of dimensionality reduction of TSDF volumes, which lie at the
core of many algorithms across a wide domain of applications with close ties to robotics. We proposed
PCA and ANN encoding strategies and evaluated their performance with respect to a camera tracking
application and to reconstruction error.
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We demonstrate that we can compress volumetric data using PCA and neural nets to small sizes
(between 128:1 and 32:1) and still use them in camera tracking applications with good results. We show
that PCA produces superior reconstruction results and although neural nets have inherently greater
expressive power, training them is not straightforward, often resulting in lower quality reconstructions
but nonetheless offering slightly better performance in ego-motion estimation applications. Finally, we
have shown that this entire class of methods can be successfully applied to both compress and imbue
the data with some low-level semantic meaning and suggested an application in which both of these
characteristics are simultaneously desirable.

7. Future Work

It is clear that the resulting features are not invariant to rigid-body transformations and
experimentally matching features of identical objects in different poses suggests that features
do not form object-centered clusters in the lower-dimensional space. A method for obtaining a
low-dimensional representation as well as a reliable transformation into some canonical frame of
reference would pave the way for many interesting applications in semantic mapping and scene
understanding. Furthermore, it seems unfortunate that pose-estimation ultimately has to occur in the
voxel domain. Given that the transformation to the low-dimensional space is a simple affine function
(at least for the PCA-based encoding), it seems intuitive that one should be able to formulate and solve
the pose-estimation problem in the reduced space with a lower memory requirement in all stages of
computation. Investigating this possibility remains an interesting problem, as it is not clear if this
would represent a direct trade-off between memory complexity and computational complexity.
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