
Robotics 2015, 4, 316-340; doi:10.3390/robotics4030316
OPEN ACCESS

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

A Spatial Queuing-Based Algorithm for Multi-Robot
Task Allocation
William Lenagh 1, Prithviraj Dasgupta 1,* and Angelica Munoz-Melendez 2

1 Computer Science Department, University of Nebraska, Omaha, NE 68182, USA;
E-Mail: wlenagh@unomaha.edu

2 Computer Science Department, Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla,
Pue. 72840 Mexico; E-Mail: munoz@inaoep.mx

* Author to whom correspondence should be addressed; E-Mail: pdasgupta@unomaha.edu;
Tel.: +1-402-554-4966 or +1-402-554-2380.

External Editor: Huosheng Hu

Received: 13 May 2015 / Accepted: 21 August 2015 / Published: 28 Agust 2015

Abstract: Multi-robot task allocation (MRTA) is an important area of research in
autonomous multi-robot systems. The main problem in MRTA is to allocate a set of
tasks to a set of robots so that the tasks can be completed by the robots while ensuring
that a certain metric, such as the time required to complete all tasks, or the distance
traveled, or the energy expended by the robots is reduced. We consider a scenario where
tasks can appear dynamically and a task needs to be performed by multiple robots to
be completed. We propose a new algorithm called SQ-MRTA (Spatial Queueing-MRTA)
that uses a spatial queue-based model to allocate tasks between robots in a distributed
manner. We have implemented the SQ-MRTA algorithm on accurately simulated models
of Corobot robots within the Webots simulator for different numbers of robots and tasks and
compared its performance with other state-of-the-art MRTA algorithms. Our results show
that the SQ-MRTA algorithm is able to scale up with the number of tasks and robots in
the environment, and it either outperforms or performs comparably with respect to other
distributed MRTA algorithms.

Keywords: multi-robot systems; task allocation; spatial queueing

Robotics 2015, 4 317

1. Introduction

Multi-robot task allocation (MRTA) is an important aspect of multi-robot systems, where robots have
to autonomously perform tasks that are distributed spatially and temporally within an environment.
MRTA is used in numerous applications of robotic systems, including reconnaissance [1], unmanned
search and rescue operations [2,3], cooperative transportation [4–6] and autonomous exploration [7,8].
The fundamental problem addressed in MRTA is the following: Given a set of robots and a set of tasks
that need to be performed by the robots, what is a suitable assignment of robots to tasks so that a global
objective, such as the time to complete the tasks, or the distance traveled, or the energy expended by the
robots is reduced. The MRTA problem is known to be an NP-hard problem [9], and finding the optimal
solution to the problem is not feasible beyond very trivial scenarios.

Over the past decade, researchers have proposed several solutions to the MRTA problem. These
solutions include both centralized MRTA techniques that can guarantee optimal or near-optimal
solutions and decentralized or distributed approaches that rely on local computations on each robot and
communication between robots to solve the MRTA problem in a coordinated manner. Popular methods
for distributed MRTA are to partition the environment into logical regions [1,10] and to use market-based
techniques, such as auctions, to enable robots to select tasks to perform [11]. Many MRTA algorithms
usually consider that only one robot is required to complete a task, that the information about the task
is available a priori and that the task information does not change over time as robots operate in the
environment. However, in many real-life scenarios, a single task might require operations from multiple
robots to be completed. Static allocation of tasks to robots might not be valid in scenarios where multiple
robots are required to complete a task, as the availability of a task to a robot can change dynamically
as other robots perform operations on the task. To handle MRTA efficiently in such scenarios, it makes
sense to investigate techniques that will allow robots to select tasks while considering their individual
preferences, as well as the current task availabilities.

To address these issues, we propose an MRTA algorithm called SQ-MRTA (Spatial Queueing-MRTA)
based on the concept of spatial queues [12]. The SQ-MRTA algorithm locally builds a queue of preferred
tasks for each robot based on calculations that take into account the robot’s location and its distance to
the available tasks within the environment. An auction-based mechanism is then used as a coordination
mechanism to enable robots to avoid conflicts between tasks they select to perform and to choose the
most suitable task at the current instant. Combined together, these two aspects enable robots to quickly
select tasks in a distributed manner while allowing for dynamic changes, such as new tasks getting added
to the environment or existing tasks getting completed by other robots. We have evaluated our proposed
MRTA algorithm using an accurately-simulated model of the Coroware Corobot robot within the Webots
robot simulator and compared its performance with three other state-of-the-art MRTA algorithms. Our
experimental results show that the SQ-MRTA algorithm is able to scale up in terms of the time taken
to complete tasks and the distance traveled by the robots as the number of robots and tasks increases.
Our algorithm also outperforms an optimal, but centralized assignment technique and a distributed, but
greedy heuristic and performs comparably with another distributed MRTA technique.

The remainder of this paper is structured as follows: The next section introduces related works
on MRTA. Section 3 provides a formalization of the problem studied in this paper and presents our

Robotics 2015, 4 318

MRTA algorithm called SQ-MRTA. Section 4 lays out our experimental setup, describes the algorithms
chosen for comparison and reports the results and analysis of our algorithm with respect to the compared
algorithms. The last section summarizes conclusions drawn from our research and points to ongoing
and future directions of this work. An earlier version of this work has appeared in [13]. This paper
significantly extends [13] by formalizing our spatial queue technique for MRTA, implementing three
additional MRTA techniques for comparison and reporting a detailed analysis of the performance of the
SQ-MRTA algorithm for different task and robot distributions.

2. Related Work

Multi-robot task allocation (MRTA) has been an active area of research in robotics over the past
decade, and several researchers have proposed techniques based on constrained optimization techniques,
local heuristics, market-based algorithms, etc., to solve the MRTA problem. MRTA algorithms can
generally be divided into two categories: centralized and decentralized or distributed. In centralized
MRTA algorithms, a single entity, usually a central controller station, has a global view of the
system [14]. This offers the advantage of reducing the complexity of the algorithm by diminishing
the amount of inter-robot communication and coordination, but it also adversely affects the scalability
and robustness of the algorithm, as the central station has to handle more computation as the number of
robots or tasks increase, and the failure of the central station could stop the operation of all of the robots.
To address the deficiency of centralized MRTA algorithms, researchers have proposed decentralized and
distributed algorithm.

For distributed MRTA, Gerkey and Mataric [9] described a formal taxonomy using three problem
features: robots can either be single-task (ST) or multi-task (MT), signifying whether or not the robots
are capable of executing more than one task at a time. The second feature consists of single-robot (SR)
or multi-robot tasks (MR), wherein a task requires either one robot (SR) or more than one robot (MR) to
get completed. The third feature relates to the flow of tasks into the robots environment: instantaneous
assignment (IA) refers to a static scenario, where the assignment of tasks to robots is finalized at the
beginning of the robots’ operations and future changes to the assignments are not allowed; conversely
time-extended assignment (TA) implies a dynamic setting in which allocations may change or additional
tasks enter the system over time. In [4], the same authors have utilized this classification to minimize
resource usage, task completion time and communication overhead for an MRTA algorithm using a
fitness-based auction technique with negotiation and task commitment. In [15], Gerkey’s taxonomy
was extended to include more complex dependencies and constraints between robots and tasks. For
performing MRTA with task constraints, Zlot and Stentz [16] have proposed an auction-based algorithm.
Gil Jones et al. [7] focus on MRTA methods for forming ad hoc teams of heterogeneous robots in short
notice, such as for emergency scenarios. The robots are assumed to have little a priori knowledge
about tasks, about other robots and their capabilities or about their environment and use auction-based
algorithms enhanced with learning mechanisms for MRTA [2] followed by clustering techniques and
genetic algorithms for further improvements [3]. Other auction-based MRTA algorithms have been
described in [17,18].

Robotics 2015, 4 319

Liu and Shell focus on a large-scale online MRTA algorithm in [10] that mixes both centralized and
decentralized approaches in order to take advantage of spatial and temporal efficiencies, while reducing
overall global communication. Their algorithm identifies clusters, or partitions, of strongly-connected
robot-task pairs and operates on these clusters in parallel. The same authors introduce the interval
Hungarian algorithm in [19], which focuses on measuring the effects of uncertainty on the outcome
of task allocation. This algorithm assigns robots to tasks in a one-to-one ratio, but also calculates
an interval representing the tolerance of the assignment to outside forces modeled as a probability
distribution, which may disrupt or invalidate the value of the assignment. In [20,21], the authors propose
an incremental allocation system based on the Hungarian algorithm, which can produce an optimal
solution with increasingly efficient feasible solutions at each intermediate step.

Another work, focusing on uncertainty, is Sucan and Kavraki’s simultaneous task and motion planning
(STAMP) in [22]. They argue that motion planning cannot be decoupled from task planning, as any
infeasibility in executing physical motions renders the task planning useless. They use their concept
of a task motion multigraph (TMM) to encode hardware capabilities into the task graph and then
implement a Markov decision process to guide the robot by incorporating feasibility probabilities into
the decision-making process.

The MRTA problem has also been studied recently in the context of multi-vehicle routing. In [23], the
authors investigate a scenario much like a time-extended version of our environment: routing policies
for multiple vehicles servicing tasks with multiple classes of demands (priorities). Seow, Dang and Lee
apply task allocation to the real-world taxi dispatch system of Singapore in [6]. Using the infrastructure
of the centralized system currently in place, they propose a distributed model, whereby the on-board
computers act as agents on behalf of the drivers. The environment is partitioned into logical regions,
grouping taxis within those regions who then negotiate concurrent assignments of pending requests with
a focus on the group average, resulting in reduced average customer wait time and reduced empty taxi
cruising time. In a similar vein, Lim and Rus test their stochastic path planning solution against a
Singapore road network incorporating historical traffic and travel data in [5]. Dasgupta describes a
cooperative foraging scenario with shared task execution using pheromones to denote a task progress
in [8]. Four heuristic-based algorithms with increasing levels of efficiency are then proposed to solve the
MRTA problem. Celik and Modiano have framed MRTA within a mobile data collecting network in [1]
with policies for single and multiple collector scenarios with and without possible interference between
assigned sectors and frequency bands. Zhang, Collins and Barbu build on stochastic clustering auction
research in [24], which uses simulated annealing to explore an allocation space. Luo generalizes the
competitive analysis of the online weighted bipartite matching problem for groups of tasks in [25].

In contrast to the works above, our spatial queuing approach considers the inter-dependencies between
tasks. It takes advantage of the knowledge that tasks require multiple inspections and grades each task
based on its overall proximity to all other known tasks. Between two tasks that are equidistant from a
robot’s current location, the task that is closer to a third task will be selected by the robot to perform
first. This will ensure that the robot will have the opportunity to efficiently visit multiple tasks in one
sortie. Our intuition is that this consideration for future assignments should reduce the time and distance
required to complete all task demands when compared to an approach that is only concerned with finding
a task schedule that allocates tasks individually.

Robotics 2015, 4 320

3. Multi-Robot Task Allocation Using Spatial Queuing

To motivate our MRTA problem, we consider an automated landmine detection scenario where a set
of robots are deployed within a bounded 2D environment with potential landmines. The location of
the landmines is not known a priori. Robots are equipped with sensors that are capable of detecting
landmine-like objects, albeit within a certain level of uncertainty due to sensor noise. Robots initially
explore the environment, and when a robot finds an object of interest that could potentially be a landmine,
it requests other robots, possibly with different sensor types, to visit the location of the detection and to
confirm the object on their sensors. Within this scenario, the following points summarize the setting for
our MRTA problem:

• A task corresponds to a set of robots visiting the location of an object of interest and recording
the object’s characteristics such as its magnetic signature on their sensors. For legibility, we have
referred to each robot’s visit to the object’s location and taking its reading as the robot performing
its portion of the task.
• Tasks are homogeneous, and the order of performing the tasks does not affect the outcome of

performing the tasks.
• Robots can perform a task asynchronously by performing their portion of the task at

different times.
• A task is considered to be complete when the desired number of robots have performed their

portion of the task.
• Tasks can arrive dynamically: when a robot finds an object of interest (e.g., a potential landmine),

it records the location of the object and broadcasts it to other robots in the system.
• Robot and task positions are initially shared between robots and assumed to be

common knowledge.
• Finally, we assume that the time required to perform a task, e.g., to analyze a potential landmine

with a robot’s sensor, is nominal as compared to the time required by robots to navigate
between tasks.

Within the aforementioned context, the MRTA problem corresponds to finding a suitable allocation
of tasks to robots, so that the total time required to complete the tasks is reduced. Because the time
to perform tasks by robots is considered to be much less than robot navigation times between tasks,
our MRTA problem attempts to find an allocation or ordering of tasks for each robot that minimizes
robots’ inter-task navigation times. The MRTA problem described above corresponds to the MR-ST-TA
setting [9], where MR (multi-robot task) denotes that multiple robots are required to complete a task,
ST (single-task robot) denotes each robot can perform a single task at a time and TA (time-extended
assignment) denotes that each robot can determine and update its schedule or order of tasks to perform
over a finite time window, as opposed to determining the task schedule instantaneously.

Formally, we consider a set of mobile robots R = {ri : i = 1, 2, ...,m} that are deployed within a
bounded environment E ⊂ <2. We assume that each robot is capable of localizing itself with respect
to the environment, and its pose at any instant is given by ρri . The environment also contains a set
of tasks T = {τi : i = 1, 2, ..., n} that are distributed arbitrarily within the environment; the location
of task τi is denoted by ρτi . Following the task setting described above, the objective of the robots

Robotics 2015, 4 321

is to visit the location of each task and to perform certain operations related to the task. We assume
that task τi requires operations to be performed by dτi ≤ |R| distinct robots to be completed. Because
the focus of this paper is on the task allocation algorithm, we assume that techniques for appropriately
positioning and localizing robots to perform operations at the locations of the tasks are already available.
The distance between two tasks, τi and τj , is denoted by dij = ‖ρτi − ρτj‖, while the distance between
robot ri and task τj is denoted by d̂ij = ‖ρri − ρτj‖. Furthermore, we let ρ0i denote the initial position of
robot ri and τr1i denote the first task selected by robot ri. Within this setting, the MRTA problem can be
formally defined as the following:

Definition: Multi-robot task allocation. Given a set of robots R and a set of tasks T , find a suitable
allocation A : 2R → T such that:

min
∑
ri∈R

‖ρ0ri − ρτr1
i

‖+
∑

(τj ,τk)∈A(R)

‖ρτj − ρτk‖

 , ∀R ⊆ R : ri ∈ R

subject to:

τj 6= τk ∀(τj, τk) ∈ A(R), ∀R ⊆ R : ri ∈ R,∀ri
|A(R)| = dτi A(R) = τi, R ⊆ R, ∀τi

The above formulation of the MRTA problem attempts to find an allocation for each robot, such that
the distances traveled by the robots to perform the tasks are minimized. The two constraints of the
problem ensure that the same task does not get allocated to the same robot more than once, and the total
number of robots allocated to perform a task equals the demand for the task.

The solution to the MRTA problem has been shown to be an instance of the dynamic traveling
salesman problem and proven to be NP-hard [8]. In this paper, we propose a spatial queue-based [12]
MRTA solution technique that attempts to solve the MRTA problem using a heuristic that represents
the distances between robots and tasks as an ordered queue based on the robots’ locations and
inter-task distances. To achieve this in a systematic manner, each robot utilizes the following four
mathematical constructs:

1. Inter-task transition matrix: Inter-task distances form the basis of our method, as the objective of
the MRTA technique is to enable robots to find a suitable schedule or order of navigating between
tasks, so that the total distance traveled by them is reduced. The inter-task distances are represented
as a transition matrix. The transition matrix at time-step t is denoted by M(t) and given by the
normalized inverse Euclidean distances between every task pair, as shown in Equation (1):

M(t) =

π11 π12 ... π1n

π21 π22 ... π2n

...

πn1 πn2 ... πnn

 (1)

where πi,j =
1

di,j∑
j 6=i

1
di,j

.

Robotics 2015, 4 322

Each entry πij of M(t) represents the probability of a robot to select task τj following τi, based on
the distance between the tasks’ locations. Note that πii = 0, and therefore, the diagonal elements
of the matrix are zeros. The transition matrix values are calculated independently by all robots.
Initially, the transition matrix is computed for all task pairs, but as time proceeds, each robot
recalculates the matrix when it completes a task or when it receives information that a task has
been completed by other robots. The transition probabilities of completed tasks are set to zero, and
the probability values in M(t) are re-normalized. Figure 1a shows an example of initial transition
matrix values for six tasks in a 20× 20 m2 environment.

(a) (b)

Figure 1. (a) A representation of an environment with six tasks and the corresponding
inter-task transition probabilities; (b) a visual representation of a robot’s state vector from its
initial deployment position in the same environment.

2. Robot state vector: The state vector of a robot is comprised of the inverse Euclidean distances
between the robot and each task in the environment. The state vector for robot i, Vri at time-step t
is given by:

Vri(t) = (π̂i1(t), π̂i2(t), ..., π̂in(t))where π̂ij(t) =
1

d̂i,j(t)
(2)

where d̂i,j(t) is the distance between robot ri and task τj at time-step t. Figure 1b illustrates an
example of the state vector values for a robot with six tasks.

3. Task proximity vector: The task proximity vector of a robot ri represents its preference for each
task τj in the environment based on performing task τj first, followed by the remaining tasks. It is
calculated as the product of the robot ri’s state vector and the inter-task transition matrix. The task
proximity vector for robot ri at time-step t, V́ri(t), is given by:

V́ri(t) = Vri(t)×M(t) (3)

Robotics 2015, 4 323

4. Robot spatial task queue: The spatial task queue of a robot denotes the order in which the robot
plans to perform the tasks in the environment. It is calculated by removing all tasks from the
task proximity vector that are either occupied or completed and sorting the remaining tasks in
descending order based on their proximity vector values. The task queue for robot ri at time-step
t, Qri(t), is given by:

Qri(t) = {q1, q2, ..., qn : qk ≥ qk+1∀k, qk ∈ V́ri(t)} (4)

The SQ-MRTA algorithm used by a robot ri to select a task using its spatial task queue is shown in
Algorithm 1. The algorithm is fully distributed, and each robot decides to select and perform a task at
each time-step based on a bid that it submits representing the distance to the most suitable task calculated
using the spatial queue equations described above. The algorithm takes as input the set of tasks T and
corresponding locations. Robot ri first checks if there are tasks that it is eligible to perform; tasks that
are not yet complete and that have not been performed by itself (Line 4). If robot ri has not submitted
a bid in the current time-step, then it selects a task using the spatial queue equations (Lines 6–9) and
submits a bid for the task at the head of its spatial queue by broadcasting a bid message to other robots
(Lines 16–17). However, because other robots are simultaneously and asynchronously selecting tasks
using the SQ-MRTA algorithm, there might be no task available for robot ri (Line 10). In such a scenario,
robot i waits to receive a message from another robot signaling that it finished performing its operations
for a certain task. Once a performed task signal is received, robot ri checks to see if the task that was
just performed also got completed, and if the task was completed, robot ri rebuilds the transition matrix,
removing the recently completed task (Lines 11–14). If robot ri has already submitted a bid for a certain
task, it waits until it receives competing bids for the task from all other robots. If ri is the highest bidder,
it accepts the task and broadcasts the acceptance information to all other robots. It then starts to navigate
towards the location of the task to perform its operations on the task and, after performing the task,
rebuilds the transition matrix (Lines 21–25). On the other hand, if it is not the highest bidder, it selects
the next available task in its spatial queue. If there is no task in the spatial queue, it waits for a task to
become available by waiting for a performed task signal from another robot, as before (Lines 27–35).
When there are no more eligible tasks, robot ri infers that all tasks have been completed, and it terminates
its task allocation algorithm.

Robotics 2015, 4 324

Algorithm 1 Spatial queuing multi-robot task allocation.
1: Input: T = { τi : 1 ≤ i ≤ n }
2: Build transition matrix Mt as shown in Equation 1
3: bid← 0
4: while an eligible task remains do
5: if I have not bid in this time-step then
6: Calculate state vector as shown in Equation 2
7: Generate task proximity vector using Equation 3
8: Remove proximity vector entries for tasks completed by me or occupied by other robots
9: Sort remaining proximity vector values in descending order and insert into queue Q

10: if Q is empty then
11: wait until task-performed signal received from another robot
12: if a performed task is now complete then
13: Rebuild transition matrix Mt

14: end if
15: else
16: bid← queue[head] . = value of most preferred task
17: sendBroadcast(BID, bid)
18: end if
19: else
20: wait until competing bids received from all other robots
21: if I am the highest bidder for my preferred task then
22: if If task I have bid on is still available then
23: sendBroadcast(ACCEPT, task)
24: Execute task
25: Rebuild transition matrix Mt

26: else
27: Move to next entry in queue
28: if there is a task available in the queue then
29: bid← queue[head]
30: sendBroadcast(BID, bid)
31: else
32: wait until task-performed signal received from any active robot
33: bid← 0
34: if a performed task is now complete then
35: Rebuild transition matrix Mt

36: end if
37: end if
38: end if
39: end if
40: end if
41: end while

4. Experimental Setup and Results

We have verified the performance of the SQ-MRTA algorithm using simulated Corobot robots on the
Webots Version 6.3.0 simulator. Webots is a fully-integrated design and coding platform, allowing for
both virtual robot and environment design. Robot controllers can be written in a high-level programming

Robotics 2015, 4 325

language and can interact with the sensors and actuators of the simulated robot. The robot prototype
utilized in all of our simulations is the Coroware Corobot robot, an indoor, four-wheeled, skid-steer
robot. The footprint of the robot measures 40 cm × 30 cm. Each robot also has a unique, integer-based
identifier. For detecting obstacles, the robot is equipped with four infra-red (IR)-based distance sensors,
one on each side, oriented at 60◦ from the front of the vehicle, and two cross beam IR sensors mounted on
the front bumper. The robot also includes an emitter-receiver pair for bidirectional Wi-Fi communication
with other robots. An indoor localization device, called a Hagisonic Stargazer, with a localization
accuracy of ±2 cm, was added to the robot. On the simulated robot, a GPS and a compass node were
used to emulate the behavior of the localization device. The errors introduced by noise in the different
sensors and actuators of the physical robot were also included in the simulated robot, following the noise
vs. range characteristics of the IR sensors (Sharp GP2Y0D21YK) on the physical Corobot robot; the IR
sensors on the simulated Corobot had a 5% error due to noise for readings taken at ranges of 0.1–0.8 m,
and 50% error for ranges beyond 0.8 m. Each wheel of the simulated Corobot robot had a maximum and
frictional force of 10 and 2.26 units, respectively, in correspondence to the physical Corobot robot; wheel
slip noise was set to zero by observing the amount of wheel slippage of the robot within a test arena.
Finally, the communication noise (packet loss) was set to zero, while observing average communication
packet loss in the WiFi network setup between the robots. A photograph of the Corobot robot is shown
in Figure 2a, and the simulated robot within Webots is shown in Figure 2b.

(a) (b) (c)

Figure 2. (a) Photograph of a Corobot robot; (b) simulated Corobot robot with visible
distance sensor rays used for simulations within Webots; (c) screenshot of the 20 m × 20 m
arena within Webots with 10 Corobot robots deployed.

Collision avoidance and navigation: For avoiding static obstacles, like walls, in the environment, the
robot uses a Braitenberg vehicle-like controller [26]. Using this controller, when the robot encounters
an obstacle, it attempts motion after adjusting its orientation randomly to between between 30◦ and 90◦,
in both negative and positive sense of its original orientation. For avoiding mobile obstacles, like other
robots, robots communicate the coordinates of their current location and heading intermittently with
each other. If two robots’ paths intersect within a range of three meters of their current locations, they
adjust their courses by temporarily changing their orientation to 10◦ of their original orientation if their
headings are exactly opposite of each other or giving ‘right-of-way’ to the robot with the lower-ID, as
described in [27].

Robotics 2015, 4 326

Each robot’s navigation is controlled using a subsumption architecture [28], as shown in Figure 3.
A subsumption architecture works by directing sensor inputs to encapsulated control units representing
the internal processes responsible for controlling outward behavior. The outputs of these units either
feed into more complex functions or, ultimately, result in actionable vectors in response to the stimuli
provided. These control units are organized into layers based on the level of complexity associated with
the behavior. All of the tiers for a specific behavior converge to one point; therefore, the architecture
must specify which outputs have priority, overriding lower priority directives. In our system, the robot’s
primary directive is to move towards a goal point generated by the task allocation system. However,
other sensory data may override this directive by adjusting wheel speeds in order to avoid an obstacle or
to prevent collision with another robot (mobile obstacles) in the vicinity.

Figure 3. Generic subsumption architecture for a Corobot.

4.1. Algorithms Compared

We have compared the performance of our proposed SQ-MRTA algorithm with three other
state-of-the-art MRTA algorithms, as described below:

1. Hungarian algorithm (HA): The Hungarian algorithm (HA) [29], is a classic algorithm for task
assignment under constraints. The algorithm takes as input the locations of the tasks and the initial
locations of the robots and outputs a feasible assignment of tasks to robots that minimizes the
distance traveled by each robot. The Hungarian algorithm is an offline algorithm, and it works with
a static view of the environment; it does not take into account dynamic attributes, such as delays
arising due to collision avoidance between robots or when tasks become temporarily unavailable
due to ongoing operations by a robot. In our setting, because the number of tasks (number of tasks
× demanded for each task = n × dτi) is greater than the number of robots (m), we applied the
Hungarian algorithm iteratively for sets of tasks equal to the number of robots. In each iteration,
a subset of m tasks, ordered by a task identifier, are allocated to m robots using the Hungarian
method. In the final iteration, if there are less thanm tasks remaining, dummy tasks are introduced
to get the number of tasks passed to the Hungarian algorithm to m.

2. Decentralized greedy algorithm (DG): In the decentralized greedy (DG) algorithm, each robot uses
a contract net-like protocol [30] to select tasks. The information about task locations is common
knowledge to all robots, but robots are not aware of each other’s locations. Each robot broadcasts
a bid corresponding to the distance to its closest task and also receives bids from other robots for
their respective closest tasks. If a robot has the lowest bid on a certain task, it selects to perform

Robotics 2015, 4 327

the task and broadcasts its selection to other robots. A robot that did not submit the lowest bid on
a task then bids on its next closest task. The protocol continues until each task has been selected
(visited) by the number of robots corresponding to the task’s demand. In the DG algorithm, all
robots are either allocated to a task or, if all tasks are already selected by some robot, the remaining
robots must sit idle and await the completion of some task, so that it may again submit a bid. The
pseudo-code of the DG algorithm used in our simulations is shown in Algorithm 2.

3. Repeated auctions algorithm (RA): The repeated auctions (RA) algorithm [25] treats groups of
tasks in a time-extended manner with the condition that all tasks in one group must be satisfied
or performed before allocating the next group of tasks. We have adapted the repeated auction
algorithm, so that as tasks become available, new auctions begin immediately in order to allocate
free tasks to idle robots. Our repeated auction algorithm works as follows: each robot determines
the utility of every task by subtracting their private value of the task from the current maximum
price of that task (set to zero initially). The private value of a robot for a task is simply the inverse
Euclidean distance between the robot’s position and the location of the task. A bid is then formed
by finding the difference of the two highest utilities, adding a small offset and adding this result to
the current price. As this is a distributed model, each robot must track these prices individually via
broadcast communication. If a robot is outbid, this process is repeated until the maximum utility
value is negative, at which point the robot has nothing to gain and will remain idle and wait for the
next auction. When a stable allocation is determined, a round of the auction terminates, and the
winning robots proceed to perform their tasks. The pseudo-code for our RA algorithm is given in
Algorithm 3.

Experimental setup: The simulations were run in a bounded two-dimensional environment with three
different environment sizes: 5×5 m2, 10×10 m2 and 20×20 m2. Results are reported for the 20×20 m2

environment that is shown in Figure 2c. The number of robots was varied over 5, 10, 15 and 20 robots,
while the number of tasks was varied over 6, 12, 18 and 24 tasks. Task locations were generated randomly
while ensuring that that tasks must be at least 1 m from the walls of the environment and that inter-task
distances were at least 2 m. The required number of robot visits (task demand) to complete a task was
varied between 3 and 5. For each robot-task pair, 10 environments with different task locations and initial
robot locations were generated. Results were averaged over 10 simulation runs. To enable a systematic
comparison of the performance of the algorithms, the initial locations of the robots and tasks were the
same for each algorithm.

4.2. Experimental Results

For our simulation results, we measured the performance of the SQ-MRTA algorithm along the
following metrics: the time required to complete all tasks while varying both the number of robots
and tasks separately, the distance traveled by robots to perform tasks and the total idle time during which
robots were waiting for other robots to perform tasks, so that tasks become available. The data were
extracted from each robot, for each of the 10 environments, over all combinations of tasks and robots
and then averaged first at the environment level and then again at the robot-task pair level, resulting in
16 robot-task combinations for each of the four algorithms compared.

Robotics 2015, 4 328

Algorithm 2 Decentralized greedy task allocation using the contract-net protocol.
1: Input: T = { τi : 1 ≤ i ≤ n }
2: while an incomplete task exists do
3: Set bid as the distance to the closest available task
4: Set task to the task number of the closest task
5: if an available task was found then
6: sendBroadcast(BID, bid)
7: else
8: wait until task-complete signal received
9: end if

10: wait until competing bids received
11: if my bid is the global minimum then
12: sendBroadcast(ACCEPT, task)
13: Execute task
14: else
15: wait for ACCEPT signal
16: end if
17: end while

Algorithm 3 Repeated greedy auctions for online MRTA.
1: Input: T = { τi : 1 ≤ i ≤ n }
2: while an incomplete task exists do
3: for all unoccupied tasks do
4: Set value← the inverse distance from my position and the task
5: Set utility← the difference between value and the task’s current price
6: Store task IDs and utilities for the highest and second highest utility values
7: end for
8: if an available task was found then
9: bid← price + (highest - second + ε) . ε is a small constant to ensure the bid price increases

10: sendBroadcast(BID, highestID, bid)
11: else
12: wait until task-complete signal received
13: end if
14: wait until competing bids received
15: if I am the high bidder then
16: sendBroadcast(ACCEPT, highestID)
17: Increment price by: highest - second + ε
18: Execute highestID
19: end if
20: end while

The completion time for all tasks is measured as the number of seconds elapsed when all of the tasks
are completed. Figure 4a–d show completion times for each of the four algorithms that are compared
while keeping the number of robots fixed and varying the total number of tasks in the environment.
In terms of completion times, the SQ-MRTA algorithm closely matches the results of the repeated
auctions algorithm. In contrast, the performance of the Hungarian and decentralized greedy approaches
diminishes consistently as the number of robots increases.

Robotics 2015, 4 329

6 tasks 12 tasks 18 tasks 24 tasks

400

200

600

800

1000

1200

A
v

g
.
T
a

s
k

C
o

m
p

le
ti

o
n

 T
im

e
(s

e
c

)

0
6 tasks 12 tasks 18 tasks 24 tasks

400

200

600

800

0

(a) (b)

6 tasks 12 tasks 18 tasks 24 tasks

400

200

600

A
v

g
.
T
a

s
k

C
o

m
p

le
ti

o
n

 T
im

e
(s

e
c

)

0
6 tasks 12 tasks 18 tasks 24 tasks

400

200

600

800

0

(c) (d)

Legend: SQ HARADG

Figure 4. Completion times with robot levels fixed for 6, 12, 18 and 24 tasks with:
(a) five robots; (b) 10 robots; (c) 15 robots; and (d) 20 robots.

Studying these results illuminates a couple of interesting conclusions, the first being that the
decentralized greedy approach is very inefficient when the number of tasks greatly outweighs the
number of robots. In Figure 4a, where the robot count is five, the decentralized greedy approach gets
progressively worse as more tasks are introduced to the system. As the task to robot ratio grows, a greedy
approach becomes ineffective, because it cannot cope with the number of possible trajectories available
for completing all outstanding task requirements; by definition, it can only superficially select the best
allocation for the immediate iteration and the constraints therein. It is only by adding more robots to
the environment that this approach mirrors the efficiency displayed by the repeated auction and spatial
queuing methods. In Figure 4d, when the robot count is 20, there is little statistical difference between
these three methods. However, the opposite can be said for the Hungarian method: at first, it is producing
results very similar to the repeated auction and spatial queuing algorithms, but as additional robots are
introduced, it performs poorly. This can be attributed to the fact that the Hungarian method calculates the
schedule off-line, and therefore, the algorithm has little ability to adapt to changes occurring dynamically
during run time, such as incorporating collision avoidance times when the number of robots in the
environment increases.

Robotics 2015, 4 330

The inefficiency of the decentralized greedy system with five Corobots can be seen clearly in
Figure 5a, which graphs the ratio of completion times as more tasks are added to the environment,
starting with six tasks. With five available robots, the decentralized greedy algorithm nearly triples in
running time with a task load of 24. In contrast, the other three methods accomplish the same task load
at slightly over 1.5-times the time taken for six tasks. Similar performance is obtained for 10, 15 and 20

robots. As observed in Figure 4, overall completion time increases as the task load increases; similarly,
the opposite is expected when the number of tasks is fixed, but additional robots are added to the system.
This is precisely what Figure 6a–d convey via charts of completion time from the perspective of task
load. Generally, we can observe from these results that the increase from five up to 10 robots offers the
most improvement in efficiency, after which path interference (collision avoidance) overhead introduced
by additional robots limits the gains or even decreases the system efficiency. In Figure 6a (six tasks),
an average decrease in execution time of 35% is visible when the number of robots increases from five
up to 10. However, 15 and 20 robots offer almost no advantage, and the growth is almost flat (±4%).
At 12 tasks, Figure 6c shows that performance gains are visible with 10 and 15 robots. The average
decrease in execution time nearly doubles from 15% with 10 robots to 29% with 15 robots; an additional
decrease of 5% accompanies an increase to 20 robots. Conversely, with task loads of 18 (Figure 6c)
and 24 (Figure 6d), growth is flat or negative when 15 or 20 robots are present. With 18 tasks, the
completion time decreases by 25% on average when jumping from five up to 10 robots; 15 robots offers
no advantage, and 20 robots actually performs worse by 4%. A task load of 24 is completed 24% faster
by 10 robots than five; 15 robots complete this same task load 2% slower than with 10, and 20 robots slip
another 4% as compared to 15 robots. A possible explanation for this anomaly is the ideal localization
of tasks with respect to robot deployment points; it should be noted that task groups are not super- or
sub-sets of one another, each grouping being unique and independent.

It should also be noted that both our spatial queuing algorithm and repeated auctions show their worth
by outperforming the greedy heuristic in scenarios that require multi-stage path planning in order to visit
all of the tasks. This happens when the ratio of robots to tasks is less than one. As the ratio of robots
to tasks approaches one and beyond, the greedy algorithm closes the gap and produces similar results.
At a ratio of one or more, every task can be assigned to the closest robot, and there is less efficiency to
be gained through decision making to select tasks using the SQ-MRTA or repeated auctions algorithm.
Examples of the benefits of this decision making are visible in Figures 6b, 12 tasks and five robots
(23%), Figure 6c, 18 tasks, with five and 10 robots (31% and 14%, respectively), and Figure 6a, 24 tasks,
with 5, 10 and 15 robots (37%, 38% and 26%, respectively) by calculating the average improvement in
completion time using the greedy results as a baseline. The Hungarian algorithm, as mentioned before,
cannot respond to change and, therefore, performs poorly.

The ratios for the completion time of 10, 15 and 20 robots (as compared to a baseline of five robots
for each method) are shown in Figure 7. These results show that, except for six tasks where the number
of robots greatly outnumbers the tasks, the decentralized greedy heuristic improves the most with more
robots (an average overall gain in efficiency of 35%), while at the same time, the Hungarian algorithm
improves the least (15%).

Robotics 2015, 4 331

6 tasks 12 tasks 18 tasks 24 tasks
0

1

2

3

R
a

ti
o

 o
f

c
o

m
p

le
ti
o

n
 t

im
e

 w
.r
.

t.
c
o

m
p

le
ti
o

n
 t

im
e

 o
f

6
 t

a
s
k
s

6 tasks 12 tasks 18 tasks 24 tasks

0

1

2

3

(a) (b)

6 tasks 12 tasks 18 tasks 24 tasks
0

1

2

3

R
a

ti
o

 o
f

c
o

m
p

le
ti
o

n
 t

im
e

 w
.

r.
 t

.
c
o

m
p

le
ti
o

n
 t

im
e

 o
f

6
 t

a
s
k
s

0

1

2

3

6 tasks 12 tasks 18 tasks 24 tasks

(c) (d)

Legend: SQ HARADG

Figure 5. Ratio of completion times of 12, 18 and 24 tasks as compared to six tasks with: (a) five
robots; (b) 10 robots; (c) 15 robots; and (d) 20 robots.

The average distance traveled per robot is another key metric when analyzing overall MRTA
performance. Minimizing the distance traveled in turn decreases the usage of a robot’s power source,
which is a valuable resource in practical settings. Figure 8a–d show the average total distance traveled
per robot, with 5, 10, 15 and 20 robots, as the task load increases from 6 to 24. The average total distance
traveled per robot is directly proportional to the number of tasks and inversely proportional to the number
of robots, or in other words, distance increases with task load and decreases with the number or robots.
The data show quite clearly that the repeated auction, SQ-MRTA and Hungarian algorithms perform
comparably in all scenarios (overall average distance of 50 m for the repeated auction method and 53 m
for both spatial queuing and Hungarian). The greedy algorithm, however, operates less efficiently, as
the task load is increased, culminating in a gap of approximately 60 m in the worst case (five robots,
24 tasks). Its overall average distance traveled was 65 m. As we witnessed with task completion times,
the greedy algorithm does improve with the addition of more robots, and this can be seen in Figure 8d,
where its performance is comparable to the other methods, barring a slight increase of about 12% in the
24-task case. As observed in Figure 8, in terms of average distances traveled by robots, the SQ-MRTA
algorithm performs comparably (within 1% lesser distance traveled) to the RA algorithm. In general, the
SQ-MRTA algorithm can be used as a complementary mechanism to the RA algorithm for MRTA.

Robotics 2015, 4 332

5 robots 10 robots 15 robots 20 robots

0

200

400

800

A
v

g
.

T
a

s
k

 C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e

c
)

5 robots 10 robots 15 robots 20 robots

0

200

400

600

(a) (b)

5 robots 10 robots 15 robots 20 robots

0

200

400

800

1000

600

A
v

g
.

T
a

s
k

 C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e

c
)

5 robots 10 robots 15 robots 20 robots
0

200

400

800

1000

600

1200

(c) (d)

Legend: SQ HARADG

Figure 6. Completion times with task load fixed for 5, 10, 15 and 20 robots for: (a)six
robots; (b) 12 robots; (c) 18 robots; and (d) 24 tasks.

Finally, another important performance metric for MRTA algorithms is the time for which robots
remain idle while waiting for tasks to become available. The idle time denotes wasted energy by robots,
and lower idle times correspond to better MRTA algorithm performance. Instead of reporting the idle
time or the time for which a robot is waiting for available tasks, we have reported the average simulation
time, which is the time for which a robot is active as a fraction of the total time required to completed all
tasks. Since the robots using the Hungarian method are following a schedule calculated offline, they can
terminate their operations immediately upon completing their assigned tasks; they do not need to remain
idle waiting for performing more tasks on demand. Therefore, we have used the average simulation
time for the Hungarian method as a benchmark for comparing the performance of the remaining three
algorithms in terms of simulation time. Their average simulation times will be some multiple of the
simulation time taken by the Hungarian method. Figure 9 graphs the evolution of the simulation time for
all 16 combinations of robots and tasks. Again, we see that the decentralized greedy algorithm cannot
compete in many situations that benefit from path planning. Its overall average simulation time ratio
is 1.47, whereas the simulation time ratios with repeated auction and spatial queuing algorithms are
1.25 and 1.27, respectively. However, its performance improves as the robot to task ratio approaches
one. We also notice that there are sharp increases in the ratio of simulation times for 15 robot-six tasks

Robotics 2015, 4 333

(1.86) and for 20 robot-six tasks (1.97), as compared to an average ratio of 1.24 for all other scenarios.
These sharp increases can be explained by the fact that many robots sit idle, never winning any tasks
in the spatial queuing, decentralized greedy and repeated auctions algorithms, while these same robots
terminate immediately in the Hungarian case as soon as their schedule of initially assigned tasks is
performed. Apart from these two spikes, spatial queuing and repeated auctions maintain a simulation
time ratio just above one (Hungarian algorithm baseline). For scenarios with 15 robots-six tasks and for
scenarios with 20 robots, the ratio increases considerably, giving an average of 1.57 and reaching two
in two cases, as compared to a composite average of 1.25 for the 5-, 10- and 15-robot environments,
respectively. The reason for this increase is that as the number of robots grows, the congestion in the
environment also increases, and more time is spent by robots, both to reach task locations and to wait for
tasks to become available.

15 robots10 robots 20 robots5 robots

1

0

0.2

0.4

0.6

0.8

R
a

ti
o

 o
f

c
o

m
p

le
ti
o

n
 t

im
e

 w
.

r.
 t

.
c
o

m
p

le
ti
o

n
 t

im
e

 t
a

k
e

n
 b

y
 5

 r
o

b
o

ts

15 robots10 robots 20 robots5 robots

1

0

0.2

0.4

0.6

0.8

(a) (b)

1

0.2

0.4

0.6

0.8

15 robots10 robots 20 robots5 robots
0

R
a

ti
o

 o
f

c
o

m
p

le
ti
o

n
 t

im
e

 w
.

r.
 t

.
c
o

m
p

le
ti
o

n
 t

im
e

 t
a

k
e

n
 b

y
 5

 r
o

b
o

ts

15 robots10 robots 20 robots5 robots

1

0

0.2

0.4

0.6

0.8

(c) (d)

Legend: SQ HARADG

Figure 7. Ratio of completion times as robots are added to the simulation: (a) six tasks;
(b) 12 tasks; (c) 18 tasks; and (d) 24 tasks.

Robotics 2015, 4 334

6 tasks 12 tasks 18 tasks 24 tasks

0

20

40

60

80

100

120

140

160

180

200

A
v
g

.
d

is
ta

n
c
e
 t

ra
v
e
le

d
 i
n

 m
e
te

rs

6 tasks 12 tasks 18 tasks 24 tasks

0

20

40

60

80

100

120

140

160

180

200

(a) (b)

6 tasks 12 tasks 18 tasks 24 tasks

0

20

40

60

80

100

A
v
g

.
d

is
ta

n
c
e
 t

ra
v
e
le

d
 i
n

 m
e
te

rs

6 tasks 12 tasks 18 tasks 24 tasks

0

20

40

60

(c) (d)

Legend: SQ HARADG

Figure 8. Overall distance traveled in meters with: (a) five robots; (b) 10 robots;
(c) 15 robots; and (d) 20 robots.

0

1

2

R
a
ti

o
 o

f
s
im

u
la

ti
o

n
 t

im
e
s
 o

f
d

if
fe

re
n

t
a
lg

o
ri

th
m

s
w

.
r.

 t
.
s
im

u
la

ti
o

n
 t

im
e
 o

f
H

u
n

g
a
ri

a
n

 a
lg

o
ri

th
m

DG Algorithm

RA Algorithm
SQ-MRTA Algorithm

5R
, 6

T

5R
, 1

8T
5R

, 2
4T

10
R
, 6

T

10
R
, 1

2T
10

R
, 1

8T
10

R
, 2

4T
15

R
, 6

T
15

R
, 1

2T
15

R
, 1

8T
15

R
, 2

4T
20

R
, 6

T
20

R
, 1

2T
20

R
, 1

8T
20

R
, 2

4T

5R
, 1

2T

Robot-task combinations

Figure 9. Ratio of simulation times of different methods with respect to the simulation time
of the Hungarian method as the baseline.

Robotics 2015, 4 335

Figure 10a–d report the scalability of the SQ-MRTA algorithm as the number of robots increases from
5–30, with 6, 12, 18 and 24 tasks. Figure 10a,b show that the average distances traveled by each robot
increase linearly as the number of tasks increases, for different numbers of robots. A similar, linear
scalability trend is observed for the completion times of all tasks as the number of tasks increases, with
a different number of robots. These results indicate that the SQ-MRTA algorithm has linear scalability
in the number of robots and tasks: when the number of tasks or robots increases, the algorithm performs
the additional computation within a time that is linearly proportional to the number of tasks or robots
added, and each additional robot does not impose any extra overhead on the computation done by the
remaining robots.

 0

 50

 100

 150

 200

 250

5 robots 10 robots 15 robots 20 robots 25 robots 30 robots

Ti
m

e
(s

ec
)

Distance - SQ-MRTA

6 tasks
12 tasks
18 tasks
24 tasks

 0

 50

 100

 150

 200

 250

6 tasks 12 tasks 18 tasks 24 tasks

Ti
m

e
(s

ec
)

Distance - SQ-MRTA

5 robots
10 robots
15 robots
20 robots
25 robots
30 robots

(a) (b)

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

5 robots 10 robots 15 robots 20 robots 25 robots 30 robots

Ti
m

e
(s

ec
)

Completion Time - SQ-MRTA

6 tasks
12 tasks
18 tasks
24 tasks

 200

 400

 600

 800

 1000

 1200

 1400

6 tasks 12 tasks 18 tasks 24 tasks

Ti
m

e
(s

ec
)

Completion Time - SQ-MRTA

5 robots
10 robots
15 robots
20 robots
25 robots
30 robots

(c) (d)

Figure 10. Average distance traveled by each robot for different numbers of robots between
five and 30 for 6, 12, 18 and 24 tasks grouped by robots (a) and grouped by tasks (b).
Completion times of all tasks for different numbers of robots between five and 30 for 6, 12, 18
and 24 tasks grouped by robots (c) and grouped by tasks (d).

Overall, our simulation results show that our proposed spatial queuing algorithm for MRTA achieves
a suitable task allocation for robots that performs comparably to other algorithms in terms of task
completion times and distances traveled by the robots for different combinations of numbers of robots

Robotics 2015, 4 336

and tasks. The relative performance of each algorithm is susceptible to several parameters, including
the number of robots, the number of tasks and environment features, such as the size and number
of obstacles. The specific MRTA algorithm that will guarantee the best performance in terms of task
completion time, distance traveled by robots and robot waiting times can be selected in accordance to
these parameters.

5. Communication Complexity

Estimating the amount of communication among the members of a multi-robot system for performing
common tasks is crucial for designing reliable MRTA algorithms. In this section, we analyze the cost of
communicating our system using the SQ-MRTA algorithm based on common metrics.

The communication network created by our system can be represented by a connected graph where
robots are represented as the edges and their interconnections as the vertexes. The topology of this
network is a full mesh structure or complete graph where robots are able to communicate to each other,
as illustrated in Figure 11. This is a redundant network with a redundancy level equal to m − 1, which
for all our test systems is bigger than three, a level considered as a highly-robust network [31].

Figure 11. Network topology required by the SQ-MRTA(Spatial Queueing-Multi Robot
Task Allocation) algorithm.

Now, concerning the cost of communication, the problem of finding efficient allocations using
auctions has been classified as a demand queries’ problem that is known to be exponential when
based on combinatorial allocations [32]. Blumrosen and Nisan [33] have analyzed more in detail the
computational power of the mechanism of demand queries, and they have proven that it can be efficient
with an approximate polynomial cost when considerations, such as weaker types of queries, can be done
in the system and that, in general, the communication cost for allocation problems is exponentially lower
than the cost needed in traditional bundle-price auctions.

In our case, the set of robots R, where |R| = m, represents the bidders in a combinatorial auction
scheme and the set of tasks T , where |T | = n, represents the items to be sold. The task queue for robot
ri at time-step t, Qri(t), given in Formula (4), plays the role of the valuation function commonly defined
in price and combinatorial auctions settings. Qri(t) is effectively the function to find an allocation of
k subsets of tasks (T1, ..., Tk). The goal is to calculate an allocation of tasks that maximizes the global
benefit of the multi-robot system:

∑
i(Qri(Ti)). For that, an upper bound estimated on the number of

bids four one round is at most n ×m. If at each round of n ×m consecutive rounds, only one task is
allocated, the upper bound based on the exchange of queries-bids is O(n2m2). However, the number of
tasks does not remain constant in our domain, since any task can be allocated to one robot only once.
Hence, the lower bound based on the exchanges of queries-bids is O(n log m).

Robotics 2015, 4 337

6. Conclusions and Future Work

In this paper, we proposed a spatial queuing algorithm for the multi-robot task allocation problem. We
verified the performance of our proposed algorithm on accurate models of the Corobot robot simulated
on the Webots simulator for different combinations of numbers of robots and tasks. We also compared its
performance with three different state-of-the-art algorithms for MRTA, namely a decentralized greedy
algorithm, a repeated auction algorithm and an optimized offline schedule based on the Hungarian
algorithm. Our results show that the offline schedule calculated by the Hungarian algorithm, while
optimal in theory, does not necessarily translate to a real-world scenario where small changes in the
environment, such as collision avoidance time incurred by robots and wait times for robots for tasks
to become available, can significantly affect the performance of the algorithm. In addition, the results
clearly indicate that a greedy allocation heuristic is inefficient in situations that require managing a small
set of robots with a large number of tasks; only when the number of robots approaches the number of
tasks does the greedy algorithm match the performance of repeated auctions or of the spatial queuing
algorithm. Our spatial queuing method performed well in all scenarios and was comparable to the
performance of the repeated auctions algorithm in all scenarios.

There are several directions in which this work is being extended currently. We are working on
implementing the SQ-MRTA algorithm on physical robots. There are many simplifying assumptions
in a simulated environment, such as communication reliability and accurate localization of the robots
based on a simulated GPS receiver that needs to be relaxed in a physical environment. Yet another
direction we are investigating is to use a set of heterogeneous robots instead of the homogeneous set of
robots assumed in this paper. It may be beneficial to include robots with varying operational and sensor
capabilities, especially when the primary goal is to detect buried objects, such as landmines. As such,
the confidence levels of performing a task, such as landmine detection by a particular robot, may need
to be graded and would necessitate the inclusion of priorities based on these confidence levels. Lower
confidence levels may require supplemental inspections, possibly by specific sensor types, and higher
confidence levels may change the priority of a task, so that it attracts fewer other robots and directs robots
towards regions with higher priority tasks.

Further directions that we plan to investigate are to introduce a minimum number of tasks to allocate
at one time, at least within some limited window of time, and also exploring the option of augmenting
the transition matrix used in the spatial queue formation with data discovered during run time. With the
current settings, the time-step, or intervals at which the robot checks for new tasks in the SQ-MRTA
algorithm, is determined manually. A more sophisticated method that adjusts the time-step based
on feedback from the robots about the current completion time for tasks could improve the time
performance of the algorithm. In this paper, all tasks have been assumed to be of the same priority.
For further generalization of the SQ-MRTA algorithm, task priorities could be integrated into the matrix
by weighting the combination of distance and task priority. In this work, we have assumed that tasks are
homogeneous and that the order of performing the tasks does not affect the outcome of performing the
tasks. This assumption is valid for the example domain of multi-robot landmine detection used in the
paper, as well as for similar domains that involve detection tasks that do not have hard completion

Robotics 2015, 4 338

deadlines. Another future direction we are investigating to generalize our approach is to relax this
assumption to introduce task deadlines and to consider temporal constraints between tasks.

In this paper, we have provided a novel, fully-decentralized algorithm for MRTA based on a spatial
queueing model. We envisage that further investigation of queuing models for the MRTA problem can
lead to improved solutions that will enable multiple robots to perform spatially-distributed tasks in an
efficient manner.

Acknowledgments

The work reported in this paper has been partially supported by the U.S. Department of Defense,
Office of Naval Research, as part of the COMRADES project, grant no. N00014− 09− 1− 1174.

Author Contributions

All authors made substantial contribution to this research. A. Munoz-Melendez designed the original
algorithm; W. Lenagh revised and implemented the algorithm and performed Webots simulations to
evaluate its performance. P. Dasgupta wrote the journal manuscript and supervised the research. All
authors discussed and interpreted the results, and, agreed about the conclusions.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Celik, G.; Modiano, E. Dynamic Vehicle Routing for Data Gathering in Wireless Networks. In Proceedings
of the 49th Conference on Decision and Control, Atlanta, GA, USA 15–17 December 2010; pp. 2372–2377.

2. Gil Jones, E.; Dias, M.; Stentz, A. Learning-Enhanced Market-based Task Allocation for Oversubscribed
Domains. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, 29 October–2 November 2007; pp. 2308–2313.

3. Gil Jones, E.; Dias, M.; Stentz, A. Time-Extended Multi-Robot Coordination for Domains with Intra-Path
Constraints. Auton. Robots 2011, 30, 41–56.

4. Gerkey, B.; Mataric, M. Sold!: Auction Methods for Multirobot Coordination. IEEE Trans. Robot. Autom.
2002, 18, 758–768.

5. Lim, S.; Rus, D. Stochastic Motion Planning with Path Constraints and Application to Optimal Agent,
Resource, and Route Planning. In Proceedings International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 4814–4821.

6. Seow, K.; Dang, N.; Lee, D. A Collaborative Multiagent Taxi-Dispatch System. IEEE Trans. Autom. Sci.
Eng. 2010, 7, 607–616.

7. Gil Jones, E.; Browning, B.; Dias, M.; Argall, B.; Veloso, M.; Stentz, A. Dynamically Formed
Heterogeneous Robot Teams Performing Tightly-Coordinated Tasks. In Proceedings of the International
Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 570–575.

8. Dasgupta, P. Multi-Robot Task Allocation for Performing Cooperative Foraging Tasks in an Initially
Unknown Environment. Innovation in Defense Support Systems-2, Studies in Computational Intelligence,
2011, 338, 5–20.

Robotics 2015, 4 339

9. Gerkey, B.; Mataric, M. A Formal Analysis and Taxonomy of Task Allocation in Multi Robot Systems.
Int. J. Robot. Res. 2004, 23, 939–954.

10. Liu, L.; Shell, D. Multi-Level Partitioning and Distribution of the Assignment Problem for Large-Scale
Multi-Robot Task Allocation. In Robotics: Science and Systems VII; MIT Press: Cambridge, MA, USA,
2011; pp. 26–33.

11. Dias, M.B.; Zlot, R.; Kalra, N.; Stentz, A. Market-based multirobot coordination: A survey and analysis.
Proc. IEEE Spec. Issue Multirobot Syst. 2006, 94, 1257–1270.

12. Bruer, L. From Markov Jump Processes to Spatial Queues; Springer: Dordrecht, The Netherlands, 2003.
13. Munoz-Melendez, A.; Dasgupta, P.; Lenagh, W. A stochastic queuing model for multi-robot task allocation.

In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics
(ICINCO), Rome, Italy, 28–31 July 2012; pp. 256–261.

14. Ahmed, S.; Pongthawornkamol, T.; Nahrstedt, K.; Caesar, M.; Wang, G. Topology-aware optimal task
allocation for publish/subscribe-based mission critical environment. In Proceedings of the IEEE Military
Communications Conference (MILCOM), Boston, MA, USA, 18–21 October 2009; pp.1–7.

15. Ayorkor Korsah, G.; Stentz, A.; Bernardine Dias, M. A comprehensive taxonomy for multi-robot task
allocation. Int. J. Robot. Res. 2013, 32, 1495–1512.

16. Zlot, R.; Stentz, A. Market-Based Multi-robot Coordination for Complex Tasks. Int. J. Robot. Res. 2006,
25, 73–101.

17. Li, X.; Sun, D.; Yang, J. Networked Architecture for Multi-Robot Task Reallocation in Dynamic
Environment. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics
(ROBIO), Guilin, China, 19–23 December 2009; pp. 33–38.

18. Nanjanath, M.; Gini, M. Repeated auctions for robust task execution by a robot team. Robot. Auton. Syst.
2010, 58, 900–909.

19. Liu, L.; Shell, D. Assessing Optimal Assignment Under Uncertainty: An Interval-Based Approach. Int. J.
Robot. Res. 2011, 30, 936–953.

20. Liu, L.; Shell, D. Tunable Routing Solutions for Multi-Robot Navigation via the Assignment Problem: A
3D Representation of the Matching Graph. In Proceedings of the International Conference on Robotics and
Automation, Saint Paul, MN, USA, 14–18 May 2010; pp. 4800–4805.

21. Liu, L.; Shell, D. A Distributable and Computation-flexible Assignment Algorithm: From Local Task
Swapping to Global Optimality. In Robotics: Science and Aystems VIII; MIT Press: Cambridge, MA,
USA, 2012; pp. 33–41.

22. Sucan, I.; Kavraki, L. Accounting for Uncertainty in Simultaneous Task and Motion Planning Using
Task Motion Multigraphs. In Proceedings of the International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 4822–4828.

23. Pavone, M.; Smith, S.; Bullo, F.; Frazzoli, E. Dynamic Multi-Vehicle Routing with Multiple Classes of
Demands. In Proceedings of the American Control Conference, St. Louis, MO, USA, 10-12 June 2009;
pp. 604–609.

24. Zhang, K.; Collins, E.; Barbu, A. An Efficient Stochastic Clustering Auction for Heterogeneous Robot
Teams. In Proceedings of the International Conference on Robotics and Automation, Saint Paul, MN, USA,
14–18 May 2012; pp. 4806–4813.

25. Luo, L.; Chakraborty, N.; Sycara, K. Competitive Analysis of Repeated Greedy Auction Algorithm for
Online Multi-Robot Task Assignment. In Proceedings of the International Conference on Robotics and
Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4792–4799.

26. Braitenberg, V. Vehicles: Experiments in synthetic psychology; MIT Press: Cambridge, MA, USA, 1984.

Robotics 2015, 4 340

27. Woosley, B.; Dasgupta, P. Multi-robot Task Allocation with Real-Time Path Planning. In Proceedings of
the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference (FLAIRS-26
Conference), St. Pete Beach, FL, USA, 22–24 May 2013; pp. 574–579.

28. Murphy, R. Introduction to AI Robotics; The MIT Press: Cambridge, MA, USA, 2000.
29. Kuhn, H. The Hungarian Method for the Assignment Problem. Naval Res. Logist. Q. 1955, 2, 83–97.

30. Smith, R. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem

Solver. IEEE Trans. Comput. 1980, C-29, 1104–1113.

31. Van Mieghem, P. Performance Analysis of Complex Networks and Systems; Cambridge University
Press: Cambridge, UK, 2014.

32. Nisan, N.; Segal, I. Exponential communication inefficiency of demand queries. In Proceedings
of the 10th Conference on Theoretical Aspects of Rationality and Knowledge (TARK ’05"),
Singapore; pp. 158–164.

33. Blumosen, L.; Nisan, N. On the computational power of demand queries. SIAM J. Compt. 2015,
39, 1372–1391.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Related Work
	Multi-Robot Task Allocation Using Spatial Queuing
	Experimental Setup and Results
	Algorithms Compared
	Experimental Results

	Communication Complexity
	Conclusions and Future Work

