

Robotics 2015, 4, 284-315; doi:10.3390/robotics4030284

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

Intent Understanding Using an Activation

Spreading Architecture

Mohammad Taghi Saffar *, Mircea Nicolescu, Monica Nicolescu and

Banafsheh Rekabdar

Computer Science and Engineering Department, University of Nevada Reno, Reno, NV 89557, USA;

E-Mails: mircea@cse.unr.edu (M.N.); monica@cse.unr.edu (M.N.); brekabdar@unr.edu (B.R.)

* Author to whom correspondence should be addressed; E-Mail: msaffar@unr.edu;

Tel.: +1-775-954-3041.

Academic Editors: Nicola Bellotto, Nick Hawes, Mohan Sridharan and Daniele Nardi

Received: 1 March 2015 / Accepted: 15 July 2015 / Published: 30 July 2015

Abstract: In this paper, we propose a new approach for recognizing intentions of humans

by observing their activities with a color plus depth (RGB-D) camera. Activities and goals

are modeled as a distributed network of inter-connected nodes in an Activation Spreading

Network (ASN). Inspired by a formalism in hierarchical task networks, the structure of the

network captures the hierarchical relationship between high-level goals and low-level

activities that realize these goals. Our approach can detect intentions before they are realized

and it can work in real-time. We also extend the formalism of ASNs to incorporate contextual

information into intent recognition. We further augment the ASN formalism with special

nodes and synaptic connections to model ordering constraints between actions, in order to

represent and handle partial-order plans in our ASN. A fully functioning system is developed

for experimental evaluation. We implemented a robotic system that uses our intent

recognition to naturally interact with the user. Our ASN based intent recognizer is tested

against three different scenarios involving everyday activities performed by a subject, and

our results show that the proposed approach is able to detect low-level activities and

recognize high-level intentions effectively in real-time. Further analysis shows that

contextual and partial-order ASNs are able to discriminate between otherwise ambiguous

goals.

Keywords: intent recognition; activation spreading network; activity recognition;

scene understanding

OPEN ACCESS

mailto:mircea@cse.unr.edu
mailto:monica@cse.unr.edu
mailto:brekabdar@unr.edu

Robotics 2015, 4 285

1. Introduction

Intent understanding is the problem of recognizing people’s goals by passively observing them

perform some activities and predicting their future actions [1]. This is a crucial capability of an artificial

intelligent system which helps provide a proper level of social behaviors, when interacting with other

intelligent agents, including humans. Intent recognition is very similar to the problem of plan/activity

recognition, which has been extensively studied [1–3]. Plan recognition is the process of selecting the

most suitable plan that an agent is undertaking, based on an observed sequence of atomic actions [4].

Intent recognition aims to predict a high-level activity or goal well before it is realized, in contrast with

plan/activity recognition, which addresses the problem of recognizing activities after they are finished.

Due to the prediction aspect, a natural requirement of intent recognition systems is to work in real-time.

This is especially true for vision-based systems, which have to recognize intentions by analyzing a video

stream of a person performing some activities in real-time. Such a capability would be very valuable

in many application domains including surveillance, learning by observation and human-robot

interaction (HRI).

A plan is normally defined as a set of low-level actions with a partial order constraint to represent

ordering of actions [5]. Actions that precede another action should be performed prior to that action in

order to satisfy their pre-conditions. Actions that have no ordering constraints with respect to each other

can be performed in any arbitrary order. The observable evidence for a plan recognizer is one of many

possible linearizations of the plan that satisfies the existing partial ordering constraints. Plan/activity

recognizers are generally not designed to predict future activities and require observing the whole or a

large part of a sequence of low-level actions to robustly recognize the plan. However, early detection is

a key requirement for intent recognition systems and this is usually ignored in previous research on plan

recognition. Any automatic system for intent recognition should process incoming sensory data and

recognize the goal/intention in real-time to support early detection. The mainstream approach in plan

recognition is based on searching in a plan library to find a match with the observed evidence [1]. A

recent theoretical analysis on the complexity of this problem [6] shows that single-agent plan recognition

with a library of known plans and an evaluation function is in class P and multi-agent plan recognition

is NP-complete. This suggests that the running time requirement of single-agent plan recognizers is

related to the size of the plan library; therefore any such system cannot perform in real-time if the plan

library is large enough.

Intent understanding is also related to spatiotemporal pattern classification. Hidden Markov Models

(HMMs) and their extensions are widely used for classification of activities in many applications,

including vision-based systems, such as [7]. Evidence is usually encoded as observable random variables

and activities are represented as the hidden states of a Markov process, which models the behavior of

the observed agent. However, most vision-based previous work on activity recognition is centered on

detecting a particular activity in a specific scenario. Simple activities, such as “moving an object” or

“waving the hand”, which usually have a very short time-span, have been the focus of study in prior

work [8]. Such activities are normally considered as atomic actions in the planning literature, since they

are short and simple enough for the entire system to execute without breaking them down into even

simpler actions. Understanding high-level activities and detecting intentions are, however, more

challenging problems. Representing high-level activities as hidden states in an HMM is not trivial

Robotics 2015, 4 286

because they usually consist of several low-level actions and have a long time-span resulting in long and

complex temporal patterns that are hard to recognize with Bayesian-based approaches like HMMs.

A vision-based intent recognition system is introduced in this paper, to address the problems

mentioned above. We assume that domain knowledge about how certain activities are performed is

available as an HTN. The central idea of the proposed approach is to model intentions, high-level

activities and low-level actions in a distributed network of inter-connected nodes where activation

spreads in the network via synaptic connections. A low-level activity is a basic action with a short time

span, such as grabbing an object. A high-level activity/intention, such as making tea, is a more complex

activity with longer time span and is usually a composite of low-level actions. We show that Activation

Spreading Networks (ASN) are suitable for intent recognition, because their graph-based representation

can naturally model the hierarchical relationship between high-level, low-level activities and

goals/intentions. Inference in ASNs is done with spreading activation through the network, which is

inherently a distributed task. This feature makes ASNs particularly suitable for real-time intent

recognition. Intuitively, nodes represent activities and different edges represent different relationships

between activities such as decomposition of high-level intentions into low-level actions and partial order

constraints between actions. These edges are designed to spread activation messages from low-level

actions to high-level intentions. Activation values show the likelihood of each intention. Our approach

brings together several key contributions: (I) early detection of intentions/high-level activities before

they are realized; (II) processing of RGB-D video streams in real-time to detect and track objects, as

well as the subject and its skeleton joint positions in 3D, which are used as basic features in our

recognition network; (III) introducing an ASN-based approach to model hierarchical activities similar

to the formalism used in Hierarchical Task Networks (HTNs); (IV) extending the formalism of ASNs to

incorporate contextual information into intent recognition; (V) further augmenting the ASN formalism

with special nodes and synaptic connections to model ordering constraints between actions, in order to

represent and handle partial-order plans in our ASN. The effect of using contextual information and

ordering constraints to distinguish between similar intentions has been experimentally tested and the

results show that incorporating contextual and ordering information in the network significantly helps

in identifying the correct intentions. We incorporated 16 nodes representing high-level intentions and 80

nodes representing different instances of low-level actions in our ASN to show that our approach is

scalable in the number of nodes in the ASN and the number of intentions it can detect.

The rest of this paper is organized as follows: the next section presents an overview of previous work

in intent recognition. Section 3 introduces our video parser that is responsible for extracting vision-based

features, and Section 4 describes our ASN-based intent recognition approach. Section 5 presents our

experimental evaluation results. Finally, Section 6 provides the conclusion and a discussion on possible

future work.

2. Previous Work

In this section, we briefly present prior work related to intent recognition by considering symbolic

approaches and probabilistic frameworks, and we discuss how our ASN-based approach handles the

limitations of these previous methods.

Robotics 2015, 4 287

2.1. Symbolic Approaches

Symbolic approaches to goal or behavior recognition are based on abductive reasoning, which–unlike

deduction—cannot guarantee a conclusion. Abduction is the process of generating a hypothesis that best

explains the observed evidence [9]. This problem has been well studied in multi-agent domains and in

applications such as cooperative systems, opponent modeling and agent programming paradigms.

In [10], a general framework for plan recognition in the Belief/Desire/Intention (BDI) [11] paradigm is

introduced. The authors use a general logical abstraction of plans and Answer Set Programming (ASP) [12]

techniques to formalize a non-monotonic reasoning scheme for abduction. In a similar work [13], the

same authors formalized incomplete observations to expand the mental state abduction framework in the

presence of incomplete or missing information. Another similar work [14] uses situation-sensitive

Causal Bayesian Networks (CBNs) for intent recognition in the care of the elderly. Graphical

representations of CBNs are translated into a special form of declarative language. Abduction and

probabilistic reasoning are combined by using ASP on logical terms obtained from CBNs and

probabilistic analysis on CBNs. In a recent work [15], authors use predicate logic to encode a knowledge

base containing a set of decomposition rules describing domain knowledge with Hierarchical Task

Networks (HTN). A bottom-up abductive reasoning scheme tries to match the observed sequence of

actions with corresponding tasks and methods, resulting in recognition of a plan that best describes the

evidence. A theoretical study in ASP [16] shows that finding a stable model for a logic program is

NP-complete. This suggests such logic programming-based and abductive methods are not a good

candidate for real-time analysis. In addition, the significant challenge of relating predicates to sensory

data makes such symbolic systems of limited use in real-world applications, as they remain mostly

theoretical and not appropriate for the robotics and particularly computer vision domains.

2.2. Probabilistic Approaches

A large body of work uses HMMs to perform temporal inference for action recognition. For example,

in [17] Hidden Markov Models are used to represent and recognize strategic behaviors of robotic agents

in a game of soccer. After training HMMs corresponding to different actions, it is possible to determine

the likelihood that a given sequence of observations was produced from a model. In the scope of that

work, intent recognition is only performed in the context of a very controlled environment, where there

are few agents and a very limited number of possible actions. [18,19] also utilize the HMM-based

framework presented in [17]. In these approaches, however, intent recognition is performed in far less

structured environments. The authors show that this method can work for recognizing the intentions of

a human agent towards objects in a scene, or of two human agents towards each other or towards other

objects, using only observable variables from basic sensor information. More complex models, such as

parameterized-HMM [20], entropic-HMM [21], variable-length HMM [22], coupled-HMM [23], and

hierarchical-HMM [24] have been used to recognize more complex activities. In [25], the authors use

stochastic context-free grammars to compute the probability of a temporally consistent sequence of

primitive actions recognized by HMMs. Brand and Kettnaker [21] introduce an entropic-HMM approach

to organize the observed video activities (such as office activity and outdoor traffic) into meaningful

states. In [26], a Bayesian network is used to model intentions, with the highest level node representing

Robotics 2015, 4 288

the overall intention and the lower level nodes representing sub-actions that contribute to that intention.

In [27], authors use a Bayesian network and propose a two-stage inference process to predict the next

activity features and its label in the context of a smart room.

There are many other recent efforts using more complex Bayesian net approaches for recognizing

human activities [28–32]. In [33], a probabilistic framework for activity recognition from partially

observed videos is introduced. Sparse coding is used to estimate posterior probabilities with bag of visual

words representation. In another similar approach [34], object affordances and trajectories are used in a

temporal conditional random field. Activity recognition is done with a probabilistic inference in a set of

particles framework in which each particle is a conditional random field. Bayesian nets and specifically

HMMs are shown to be working very well for recognizing activities that are simple and short. However,

they tend to suffer from overfitting training data if they are used to recognize complex and long activities.

There has been little research on real-time probabilistic and specifically Bayesian-based intent

recognition systems in a hierarchical manner. Probabilistic approaches usually have difficulties

recognizing complex, long spatiotemporal patterns. It is not straightforward to model hierarchical

relationships between low-level actions and high-level intentions in such systems. Additionally, it is not

easy to incorporate domain knowledge into such frameworks and they rely on extensive datasets for

training. Our proposed ASN-based intent recognition approach addresses these shortcomings by

explicitly modeling different relationships between actions and intentions in the network. The structure

of the network is determined by conversion algorithms that create ASNs from domain knowledge given

as HTNs.

3. Vision-Based Capabilities

In order to detect human intentions, we process a video stream from a scene where a person is

performing various activities, including both short and long time span actions in accordance to

high-level intentions. This data stream is fed into a video parser to extract useful features for intent

recognition. The scene is observed with a Microsoft Kinect camera, which provides both depth and RGB

frames for the scene. In addition, we use the Microsoft Kinect skeleton-tracking package available in the

Microsoft Kinect SDK for Windows [35]. The camera position and orientation does not change during

recording. Table 1 shows the properties of the different Kinect streams used in our experiments.

Table 1. Kinect camera stream properties.

Stream Properties

RGB Frame 640 × 480 pixels, 30 fps

Depth Frame 640 × 480 pixels. Format = 13 bit depth in mm + 3 bit player index. Min 8 cm max 4 m

Skeleton 20 joints. Format = (x, y, z) metric 3D joint position in the camera coordinate system

The basic features that we use for intent recognition are the human pose and object locations in the

3D metric camera coordinate system. Obviously, detecting more features (such as object pose) can help

the recognition system, but estimating these more complex features requires more processing time and

they are not usually as robust as the simpler ones. Human joint locations are obtained in real-time with

the skeleton-tracking package from Microsoft. In order to robustly estimate object locations we

Robotics 2015, 4 289

developed a processing pipeline that works on RGB and depth frames in real-time and estimates object

locations in 3D. Figure 1 shows the overall architecture of the video parser. We describe the individual

stages of the pipeline in the following subsections.

Figure 1. Video parser architecture.

3.1. Background Subtraction

As the first step in our video parser, background subtraction helps reduce the computation

time significantly in later stages. By taking advantage of the fixed camera assumption in our scenarios,

we probabilistically model the background and use foreground regions for object detection. Figure 2

shows the steps for background subtraction in our system. We use both RGB and depth frames to build

a robust background subtraction module with no sensitivity to aperture changes in the RGB camera. We

use the Codebook background modeling [36] on RGB frames and a Mixture of Gaussians (MoG)

background modeling [37] on depth frames to independently build two background models in RGB and

depth space, and consequently determine two foreground masks. An aggregated mask is obtained by

applying a bitwise and operation between the two separate foreground masks. Finally, to remove small

pixel-level noise in the foreground mask, we use a contour-based segmentation algorithm to refine

foreground regions by filling out small holes and removing isolated pixels. We used the OpenCV library

in most parts of our video parser.

Figure 2. Background subtraction module.

3.2. Blob Detection

The output of the background subtraction stage is a binary foreground mask. In blob detection, we

detect individual candidate blobs in the foreground mask that contain foreground objects, by finding

connected components in the mask. The connectivity is simply defined by neighboring pixels with the

Robotics 2015, 4 290

same binary value in the foreground mask. It is important that blobs contain only a single foreground

object before initializing the object tracker, since we are using a holistic object descriptor for detection.

We assume that the foreground objects do no overlap in the RGB image when they initially appear in

the scene. This is no longer required after initializing the object tracker. An additional issue is caused by

the foreground regions corresponding to people in the scene, rather than objects. We use the human body

segmentation information provided by Microsoft Kinect (on the depth image) to discard foreground

regions that overlap with the segmented body, in order to avoid considering them as candidate blobs for

object detection.

3.3. Object Detection

We use the detected blobs in the foreground as inputs to a multi-class Support Vector Machine

(SVM) [38] classifier, which was trained using images for objects of interest in our scenarios. Since

real-time processing is a crucial feature of video-based intent recognition, we decided to use normalized

color histograms as features for classification, which are significantly faster to compute compared to

more sophisticated features, such as Scale-Invariant Feature Transform (SIFT) [39]. Since color

histograms are holistic properties, a segmentation of objects in the RGB space is required, and the blob

detection module discussed in Section 3.2 provides the segmentation we need. We used 8 bins for hue

and 8 different quantized values for saturation in each bin. The distance measurement used for the

classification of color histograms is the Bhattacharyya distance [40]; if the minimum distance of a blob’s

color histogram from any of the training color histograms is above a threshold, then no class will be

assigned to that blob, showing no known object is present in that region.

3.4. Object Tracking

After detecting an object in one of the blobs for several consecutive frames, we start tracking the

object in the scene and remove the corresponding class from the classifier in the object detector to reduce

the computational requirements of the system, since running the object detector on every blob in every

frame is a time-consuming process. To track objects we use the Continuously Adaptive Meanshift

(Camshift) [41] algorithm. For simplicity, we assume that no objects would leave the scene once they

are detected. This makes tracking easier, avoiding the need to stop or re-initialize the tracker when

objects leave the field of view and then re-enter. The output of the object tracker is a region in the RGB

frame corresponding to each detected object. We use the centroid of that region and the depth

information from the depth image to estimate the location of the objects in the 3D camera coordinate

system.

4. Intent Recognition with Activation Spreading Networks

In this section we formally define our ASN-based approach to intent recognition from RGB-D videos.

Activation Spreading Networks provide a parallel, distributed and fast search mechanism for intent

recognition. Through spreading activation messages to other nodes in the network and accumulating

activation by receiving messages from neighbor nodes, we can robustly detect the intention of a subject

of interest and the corresponding plan that the subject is following to realize that intention. We can

Robotics 2015, 4 291

predict a set of future activities of the subject based on the detected plan. These capabilities depend on

designing an activation-spreading network that captures the real structure of activities, plans and

intentions related to the system. This is the domain knowledge, which (in different forms) is incorporated

in every planning system. One of the most widely used forms of representing planning knowledge is

Hierarchical Task Networks (HTN) [42]. The main idea behind HTNs is to store mini-plans to achieve

common goals in a database of reusable methods, and to use them while planning—for fast processing.

Theoretical studies [43] show that HTNs in their unrestricted form are actually more complex than Partial

Order Planning (POP) [5]. Only after enforcing some limitations on the expressivity of HTNs, this form

of planning becomes tractable. In the following subsections we formally define ASN and HTN, provide

an algorithm to build an ASN from an HTN, and describe an inference algorithm based on ASN for

intent recognition.

4.1. Preliminaries

We adapt the definition of HTNs from SHOP2 [44], which is a well-known HTN planner.

Operator: an operator 𝑅(𝑣1, … 𝑣𝑛) = (𝑛𝑎𝑚𝑒(𝑅), 𝑝𝑟𝑒(𝑅), 𝑎𝑑𝑑(𝑅), 𝑑𝑒𝑙(𝑅)) is a parameterized

strips-like atomic action where 𝑣1, … , 𝑣𝑛 are variables used in precondition, add and delete lists. Each

variable 𝑣𝑖 has a set of all possible substitutions or domain 𝐷(𝑣𝑖).

Task: A task 𝑇(𝑥1, … , 𝑥𝑚) is either a primitive or a compound task where 𝑇 is task symbol along

with a list of terms 𝑥1, … , 𝑥𝑚 as arguments. If task 𝑇(𝑥1, … , 𝑥𝑚) is primitive then 𝑇 is an operator name

and the task arguments are used as the operator parameters.

Method: A method 𝑀 = (𝑛𝑎𝑚𝑒(𝑀), 𝑡𝑎𝑠𝑘(𝑀), 𝑝𝑟𝑒(𝑀), 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)) is a possible expansion of

the non-primitive task 𝑡𝑎𝑠𝑘(𝑀) and it is only applicable in situations satisfying the precondition

𝑝𝑟𝑒(𝑀). Intuitively, a method represents a particular way of achieving a given task.

Task Network: a task network 𝑁 is a tuple of the form (𝑈,<) where 𝑈 is a set of tasks and < is a

partial order constraint on 𝑈. If 𝑈 contains only primitive tasks, it is called a primitive task network

otherwise it is called non-primitive task network.

Hierarchical Task Network: a hierarchical task network is a set of operators, methods, task

networks and tasks. Intuitively, a hierarchical task network is a representation of the planning

domain knowledge.

The ultimate goal in HTN planning is to complete a task. Usually the goal task is compound and the

planner should choose a suitable method from the set of available methods to break down the goal task

into smaller tasks. This recursive procedure continues until all tasks in the network are primitive. HTN

planners are equivalent to context-free grammars in their set of possible solutions [43], but to simplify

our intent recognition problem, we restrict the HTN formalism to avoid recursion in the methods. Put

differently, we assume that no compound task can be a member of the subtasks of itself. The intention

of completing a compound task is the focus of our intent recognition system. From now on, when we

mention “detecting a task”, we implicitly mean detecting the intention to complete a task before its

completion. Next, we formally define an activation-spreading network.

Activation Spreading Network: An activation spreading network 𝐺 = (𝑉, 𝐸𝑆, 𝐸𝑀, 𝑐𝑙, 𝐹, 𝑑) is a

directed acyclic graph.

Robotics 2015, 4 292

 𝑉 is the set of nodes. Each node 𝑣 ∈ 𝑉 has an activation value 𝑎𝑐(𝑣) that is a positive

real number.

 𝐸𝑆 is the set of sum edges connecting nodes in the graph. Each sum edge 𝑒 ∈ 𝐸𝑆 has a weight

𝑤(𝑒) ≤ 1. A sum edge is an edge through which activation messages spread in the network and

the receiving node processes it by updating its activation value with a summation.

 𝐸𝑀 is the set of max edges connecting nodes in the graph. A max edge is another type of edge

through which activation messages spread in the network and the receiving node processes it by

updating its activation value with a maximum value selection.

 𝑐𝑙 is the internal clock sending periodic signals to all nodes in the graph.

 𝐹 is a firing threshold.

 𝑑 is a decay factor that is a real number between 0 and 1.

A node updates its activation value by multiplying it with the decay factor 𝑑 on every clock tick.

Upon receiving an activation message, a node updates its activation value by summing the activation

message multiplied by the edge weight, with its own activation value if the message was received via a

sum edge. A node updates its activation value by choosing the maximum activation message on all

ingoing max edges. Upon receiving a tick from the clock, a node sends activation messages equal to its

activation value on outgoing edges, if its activation value is above 𝐹. Algorithm 1 shows the algorithm

of processing activation messages in the ASN. This procedure is called for a node upon receiving an

activation message. Algorithm 2 shows the algorithm of activation spreading in the network. This

procedure is called for a node upon receiving a periodic signal from the clock.

Algorithm 1 Activation message processing algorithm in ASN

let 𝑣 ∈ 𝑉 be the node receiving activation message from 𝑠

let 𝑆𝑚𝑎𝑥 = {𝑛|(𝑛, 𝑣) ∈ 𝐸𝑀 𝑎𝑛𝑑 𝑛 𝑠𝑒𝑛𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑣 𝑖𝑛 𝑟𝑒𝑐𝑒𝑛𝑡 𝑐𝑙𝑜𝑐𝑘 𝑠𝑖𝑔𝑛𝑎𝑙}

if 𝑆𝑚𝑎𝑥 ≠ ∅

 𝑎𝑐(𝑣) = max
𝑣′∈𝑆𝑚𝑎𝑥

𝑎𝑐(𝑣′)

else

 𝑎𝑐(𝑣) = 𝑎𝑐(𝑣) + 𝑎𝑐(𝑠) × 𝑤((𝑠, 𝑣))

Algorithm 2 Activation spreading algorithm in ASN

let 𝑣 ∈ 𝑉 be the node receiving periodic signal from 𝑐𝑙

let 𝑎𝑐(𝑣) = 𝑎𝑐(𝑣) × 𝑑

if 𝑎𝑐(𝑣) > 𝐹

send activation messages to all nodes 𝑣′ in which (𝑣, 𝑣′) ∈ 𝐸𝑆 ∪ 𝐸𝑀

4.2. From Hierarchical Task Network to Activation Spreading Network

We define an activation-spreading network as an acyclic graph to simplify the design by avoiding

recurrent ASNs. This is in line with our simplifying assumption about not having recursions in the HTN

formalism that we adapted for our work. Each task in HTN can be seen as a potential intention. Tasks in

an HTN form a hierarchy according to the definition of methods. Intuitively, this means that intentions

can be sub-goals for a higher-level intention. Different methods of the same task describe different ways

Robotics 2015, 4 293

of achieving the goal. We now describe how to instantiate an ASN from the domain knowledge

represented as an HTN. Algorithm 3 shows the conversion algorithm.

Algorithm 3 HTN to ASN conversion algorithm

for every operator 𝑅(𝑣1, … 𝑣𝑛) in HTN

for every substitution (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑛) in the domain of 𝐷(𝑣1) × …𝐷(𝑣𝑛)

add node 𝑅(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑛) to the ASN

for every compound task 𝑇(𝑥1, … , 𝑥𝑚) in HTN

for every substitution (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) of (𝑥1, … , 𝑥𝑚)

add node 𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to the ASN if not already present

for every method 𝑀 ∈ 𝑚𝑒𝑡ℎ𝑜𝑑𝑠(𝑇) and (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) ⊢ 𝑝𝑟𝑒(𝑀)

add node 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to the ASN

add a max edge from 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to 𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚)

for every task 𝑇′(𝑥′1, … , 𝑥′𝑚′) in 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)

let (𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) be a substitution for (𝑥′1, … , 𝑥′𝑚′) in

agreement with (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚)

if 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) is compound then

add 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) if not already present

add a sum edge from 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) to 𝑇
𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) with

1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|
 as weight

else if 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) is primitive then

let 𝑅 be the operator corresponding to 𝑇′

add a sum edge from 𝑅(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) to 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) with
1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|
 as weight

The conversion algorithm first adds all possible instantiations of operators in the HTN as nodes

𝑅(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑛) in the ASN. These nodes will be the leaves of the hierarchical structure of the obtained

ASN. With a similar procedure, we also add new nodes 𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to the network for each unique

instantiation of compound tasks. Each instance of a compound task can be realized in different ways

represented by a set of methods. To capture this property of HTNs in our network, we add additional

nodes such as 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) for each method 𝑀 and connect these nodes to the parent node

𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) with max edges. With this configuration, the activation value of node 𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚)

would be the maximum activation value among all of its methods. Activation values of nodes in the

ASN provide a comparative measure for the likelihood of their corresponding tasks happening in the

scene and are used for inference. Sum edges are not a suitable choice for connecting method nodes to

task nodes because several methods with low activations should not accumulate a high activation in the

task node, since the likelihood of a high-level task happening in the scene is only as high as the maximum

likelihood of its methods.

Any method 𝑀 in our HTN, breaks down a high-level task into lower-level tasks (either compound

or primitive). This is captured in our ASN by connecting nodes of lower-level tasks to their parent node

corresponding to the method, which in turn is connected to the high-level task. A method should have a

higher likelihood if a larger number of its subtasks have higher activation values. For instance, a method

Robotics 2015, 4 294

with only a single subtask node with activation value greater than zero is less probable than another

method with two or more subtasks with the same activation values. This is why we chose to use sum

edges to connect subtasks to their parent method. The edge weights are
1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|
. This is a

normalization factor and it makes the activation values in method nodes comparable to each other,

regardless of their subtask size. A sample ASN created with this conversion algorithm is shown in Figure 3.

It is important to note that the algorithm in Algorithm 3 does not use the partial order relation. At this

stage, we simply ignore the ordering constraints between tasks and cannot distinguish between methods

(perhaps not even for the same high-level task) that have exactly the same subtasks but in different

orders. We will extend our ASN approach to handle partial order constraints in Section 4.5.

Figure 3. A sample portion of the ASN generated from an HTN. Red edges are max edges,

blue edges represent sum edges and red boxes represents method nodes.

4.3. Intent Recognition in Activation Spreading Networks

As explained in Section 4.2, the activation values are a comparative measure for selecting the most

probable intention based on the observed evidence. The hierarchical structure of tasks in HTN suggests

that at any given time, a subject is actively pursuing a set of intentions that are in agreement with each

other but are at different levels in the hierarchy. Lower-level tasks that normally correspond to short time

span activities that are a part of a larger and longer activity. This hierarchical structure is preserved in

the process of converting HTN to ASN in its connected nodes. We use this hierarchical structure and the

activation values of the nodes in the network to robustly detect the intention of completing a set of tasks

but at different levels in the hierarchy. More precisely, we start the search from the highest-level nodes

corresponding to the highest level intentions and choose the one with the largest activation value above

a threshold. If none of the nodes have activation values greater than the threshold, then the system detects

the idle state for the subject. We then continue our search by only considering the children of that node.

The highest activation value is chosen at each stage iteratively until we reach the lowest level, containing

only operators. To disregard very low activation values, any node with activation below a threshold

Robotics 2015, 4 295

cannot be chosen even if it has the highest activation. The intent recognition algorithm is presented in

Algorithm 4.

It is important to note that activation values of nodes are only comparable if they are on the same

level. Nodes in higher levels usually have smaller activation values, since they only receive activation

values from lower-level nodes and edges have weights less than one, which reduces the activation values.

This is why we only compare nodes at the same level in each stage of the recognition process. It is also

possible that the node with the highest activation value in a lower level conflicts with the node with the

highest activation in a higher level. The lower level node might belong to a task that does not contribute

to the higher-level task with the largest activation value. To have a coherent recognition of intentions on

different levels, at each stage of the process we limit our search space to nodes that are the children of

the selected higher-level task.

Algorithm 4 Intent recognition algorithm in ASN

let 𝑠 = {𝑣|𝑣 𝑖𝑠 𝑎 𝑛𝑜𝑑𝑒 𝑖𝑛 𝐴𝑆𝑁 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑛𝑜 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑎𝑟𝑟𝑜𝑤}

repeat until 𝑠 = ∅

let 𝑣𝑚𝑎𝑥 = argmax
𝑣∈𝑠

𝑎𝑐(𝑣)

add 𝑣𝑚𝑎𝑥 to the set of recognized intentions if 𝑎𝑐(𝑣) > 𝐹

𝑠 = {𝑣|𝑣 𝑖𝑠 𝑎 𝑛𝑜𝑑𝑒 𝑖𝑛 𝐴𝑆𝑁 𝑎𝑛𝑑 ℎ𝑎𝑠 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑎𝑟𝑟𝑜𝑤 𝑡𝑜 𝑣𝑚𝑎𝑥}

Since the network is acyclic, an external stimulus (i.e., observation of a low-level activity) starts the

activation spreading process in the network. Low-level activities correspond to operator nodes in the

network. These nodes are leaves in the network, and they can propagate activation values up in the

hierarchy, but no other nodes can send activation messages to them. We use simple formulas to compute

the activation values for the operator nodes, based on the features extracted by the video parser. This

part of the system will be defined in Section 5.2.

4.4. Context-Based Intent Recognition

The precondition properties of operators and methods in HTN allow us to choose suitable methods to

reduce a task network to a fully formed plan. These preconditions describe a context or situation in which

that operator or method is suitable for achieving a goal. Planning approaches usually need to know about

preconditions to successfully develop a plan suitable for the current circumstances by choosing suitable

methods and operators. Similarly for intent recognition, we also face the problem of choosing the

hypothesis that best describes the observed evidence. This suggests that having some information about

the actual context of the observed scene can help in intent recognition, by analyzing what method or task

is more probable for the subject to undertake, given the known circumstances. Unlike preconditions in

planning, which model the required conditions, contextual information for intent recognition in our

framework works as a favoring mechanism that makes some tasks more probable, and others less

probable.

In order to incorporate contextual information in our intent recognition system, we modify the

definition of ASN to include another type of nodes to represent contextual information and two special

types of edge to connect contextual information to the relevant task nodes in the network. The formal

definition of a contextual ASN (CASN) is as follows:

Robotics 2015, 4 296

Contextual Activation Spreading Network: A CASN is an ASN with an additional set of:

 Context nodes 𝑉𝐶 representing different contextual information. A context node 𝑣𝑐 ∈ 𝑉𝐶 has an

activation value 𝑎𝑐(𝑣𝑐) representing the level of certainty for that context.

 Positive context edges 𝐸𝐶+ connecting nodes in 𝑉𝐶 to nodes in 𝑉.

 Negative context edges 𝐸𝐶− connecting nodes in 𝑉𝐶 to nodes in 𝑉.

Nodes in 𝑉𝐶 represent contextual information and their activation values represent the level of

certainty about that information. It is important to note that the activation values do not represent

probabilities and should not be interpreted as such. Nodes in 𝑉𝐶 do not have any ingoing edges of any

type and cannot send activation messages to any other nodes. Nodes in 𝑉𝐶 cannot have activation values

greater than 1. Nodes in 𝑉𝐶 do not decay by clock ticks. Upon receiving activation messages, the

receiving node 𝑣 would update its activation value by first applying the procedure in Algorithm 1 and

then multiplying the activation value by (∑
(1+𝑎𝑐(𝑣𝑐))

|{(𝑣𝑐,𝑣)∈𝐸𝐶+}|
(𝑣𝑐,𝑣)∈𝐸𝐶+ − ∑

(1−𝑎𝑐(𝑣𝑐))

|{(𝑣𝑐,𝑣)∈𝐸𝐶−}|
(𝑣𝑐,𝑣)∈𝐸𝐶−). Algorithm 5

shows the algorithm for processing activation messages in the CASN.

Edges in 𝐸𝐶+ and 𝐸𝐶− show the positive and negative effect of contextual information on the tasks.

Having additional contextual information about the subject or the environment being observed by the

system should not increase or decrease the activation value of any tasks, unless we are observing some

activities in the scene. In other words, we should not detect any intentions when no activity is being

observed, even if all contextual information is in favor of a particular activity. That is why we chose the

above formula to update activation values. If no contextual information is available, then the activation

values of nodes in 𝑉𝐶 are zero and the multiplication factor is one. If contextual information in favor of

a task is stronger than contextual information against a task, then the multiplication factor would be

greater than 1, and it will be less than 1 otherwise. A sample of CASN is shown in Figure 4.

Algorithm 5 Activation message processing algorithm in CASN

let 𝑣 be the node receiving activation message from 𝑠

let 𝑆𝑚𝑎𝑥 = {𝑛|(𝑛, 𝑣) ∈ 𝐸𝑀 𝑎𝑛𝑑 𝑛 𝑠𝑒𝑛𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑣 𝑖𝑛 𝑟𝑒𝑐𝑒𝑛𝑡 𝑐𝑙𝑜𝑐𝑘 𝑠𝑖𝑔𝑛𝑎𝑙}

if 𝑆𝑚𝑎𝑥 ≠ ∅

𝑎𝑐(𝑣) = max
𝑣′∈𝑆𝑚𝑎𝑥

𝑎𝑐(𝑣′)

else

𝑎𝑐(𝑣) = 𝑎𝑐(𝑣) + 𝑎𝑐(𝑠) × 𝑤((𝑠, 𝑣))

𝑐(𝑣) = 𝑎𝑐(𝑣) × (∑
(1 + 𝑎𝑐(𝑣𝑐))

|{(𝑣𝑐 , 𝑣) ∈ 𝐸𝐶+}|
(𝑣𝑐,𝑣)∈𝐸𝐶+

− ∑
(1 − 𝑎𝑐(𝑣𝑐))

|{(𝑣𝑐 , 𝑣) ∈ 𝐸𝐶−}|
(𝑣𝑐,𝑣)∈𝐸𝐶−

)

The text in blue represents modifications to the original procedure for ASN presented in Algorithm 1.

Robotics 2015, 4 297

Figure 4. A sample portion of the CASN. Red edges are max edges, blue edges represent

sum edges, grey lines show positive context edges and orange represents negative context

edges. Red boxes represents method nodes and grey boxes show context nodes.

4.5. Partial-Order Modeling in Activation Spreading Networks

As previously discussed in Section 4.2, the ASN and CASN cannot model partial-order constraints

in the hierarchical task network formalism, and the intent recognition procedure in ASN and CASN

cannot distinguish between methods of two different tasks that are only different in their partial-order

constraints. We now propose an extension to ASN in order to model partial-order constraints by allowing

edges to receive activation messages and defining a special type of edge (ordering edges) to connect

nodes to other edges in the network.

Partial-Order Contextual Activation Spreading Network: A Partial-Order Contextual Activation

Spreading Network (POCASN) is a CASN with an additional set of:

 Ordering edges 𝐸𝑃𝑂 , connecting nodes in 𝑉 to edges in 𝐸𝑆 . Every sum edge 𝑒 ∈ 𝐸𝑆 has an

activation value 𝑎𝑐(𝑒) in addition to its weight 𝑤(𝑒) and can receive activation messages from

ordering edges in 𝐸𝑃𝑂.

 Min edges 𝐸𝑚, connecting nodes in 𝑉 to each other. A min edge is another type of edge in which

activation messages spreads in the network and the receiving node processes it by updating its

activation value with a minimum value selection.

Upon receiving an activation message from node 𝑛, a sum edge 𝑒 ∈ 𝐸𝑆 updates its activation value

with 𝑎𝑐(𝑒) = 𝑚𝑎𝑥{𝑎𝑐(𝑒) + 𝑎𝑐(𝑛), 1 − 𝑤(𝑒)} . With every clock tick, activation values of

all sum edges like 𝑒 ∈ 𝐸𝑆 decays according to: 𝑎𝑐(𝑒) = 𝑎𝑐(𝑒) × 𝑑 . Upon receiving an activation

message, a node updates its activation value by summing the activation message multiplied by the edge

weight plus the edge activation value, with its own activation value if the message was received via a

sum edge. A node would update its activation value by choosing the minimum activation message on all

ingoing min edges. Algorithm 6 shows the algorithm of processing activation messages in the POCASN.

Robotics 2015, 4 298

The main idea behind POCASN is to allow nodes to strengthen edges that connect subsequent tasks

(in the task partial ordering) to the common parent node, by sending activation messages to those edges.

If a task receives high activation values (showing a detection of that task), it cannot significantly affect

its parent node, unless the preceding task in the partial-order has been detected and strengthened the

edge connecting that task to its parent. The procedure of activation spreading in POCASN suppresses

spreading of activation among nodes, if the order of observed tasks is not in agreement with the partial

order constraints. The edges in 𝐸𝑃𝑂 connect task nodes to edges from the subsequent task nodes in the

partial order to their common parent. The reason behind defining min edges is to model tasks that have

no ordering constraints with respect to each other. For such tasks there is no requirement on their order

of execution. However, these tasks can all be the immediate prerequisite of another set of tasks. All the

prerequisite tasks should have been detected (have high activation values) to strengthen edges on the

subsequent set of tasks. We use min edges to connect all unrelated nodes to an extra node, which, in

turn, is connected to the edges of the subsequent set of tasks. This ensures that all prerequisite tasks are

detected before expecting to observe the subsequent tasks in the task network. We limit the activation

value of edges in 𝐸𝑆 to 1 − 𝑤(𝑒), mainly because any activation values more than that would amplify

the activation value of the sender node by multiplying it with a number greater than 1, which is not

desirable.

We now introduce the algorithm to convert HTN to POCASN by modifying the original conversion

algorithm presented in Algorithm 3. The new conversion algorithm that creates a POCASN from an

HTN is shown in Algorithm 7.

Algorithm 6 Activation message processing procedure in POCASN

let 𝑣 be the node receiving activation message from 𝑠

let 𝑆𝑚𝑎𝑥 = {𝑛|(𝑛, 𝑣) ∈ 𝐸𝑀 𝑎𝑛𝑑 𝑛 𝑠𝑒𝑛𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑣 𝑖𝑛 𝑟𝑒𝑐𝑒𝑛𝑡 𝑐𝑙𝑜𝑐𝑘 𝑠𝑖𝑔𝑛𝑎𝑙}

let 𝑆𝑚𝑖𝑛 = {𝑛|(𝑛, 𝑣) ∈ 𝐸𝑚 𝑎𝑛𝑑 𝑛 𝑠𝑒𝑛𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑡𝑜 𝑣 𝑖𝑛 𝑟𝑒𝑐𝑒𝑛𝑡 𝑐𝑙𝑜𝑐𝑘 𝑠𝑖𝑔𝑛𝑎𝑙}

if 𝑆𝑚𝑎𝑥 ≠ ∅

𝑎𝑐(𝑣) = max
𝑣′∈𝑆𝑚𝑎𝑥

𝑎𝑐(𝑣′)

else if 𝑆𝑚𝑖𝑛 ≠ ∅

𝑎𝑐(𝑣) = min
𝑣′∈𝑆𝑚𝑖𝑛

𝑎𝑐(𝑣′)

else

𝑎𝑐(𝑣) = 𝑎𝑐(𝑣) + 𝑎𝑐(𝑠) × (𝑤((𝑠, 𝑣)) + 𝑎𝑐((𝑠, 𝑣)))

𝑎𝑐(𝑣) = 𝑎𝑐(𝑣) × (∑
(1 + 𝑎𝑐(𝑣𝑐))

|{(𝑣𝑐 , 𝑣) ∈ 𝐸𝐶+}|
(𝑣𝑐,𝑣)∈𝐸𝐶+

 − ∑
(1 − 𝑎𝑐(𝑣𝑐))

|{(𝑣𝑐 , 𝑣) ∈ 𝐸𝐶−}|
(𝑣𝑐,𝑣)∈𝐸𝐶−

)

The text in blue represents modifications to the original procedure for CASN presented in Algorithm 5.

The conversion procedure is similar to the original algorithm in Algorithm 3 with some modifications.

Recall that partial-order constraints in HTN are a part of a task network which itself is the body of a

method for accomplishing a compound task. While processing different methods for a compound task,

we first need to topologically sort the set of tasks in the method body, according to their partial-order

constraints. While processing each task 𝑇′ in the body of a method, we first find a chain containing that

particular task to find out all the immediate prerequisite tasks 𝑝𝑟𝑒(𝑇′). Then we add a dummy node to

Robotics 2015, 4 299

the network for collecting activation values of all tasks in the 𝑝𝑟𝑒(𝑇′) via min edges. This dummy node

in turn spreads activation to the sum edge from 𝑇′ to the method, in order to model sequencing.

Algorithm 7 HTN to POCASN conversion algorithm

for every operator 𝑅(𝑣1, … 𝑣𝑛) in HTN

for every substitution (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑛) in the domain of 𝐷(𝑣1) × …𝐷(𝑣𝑛)

add node 𝑅(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑛) to the ASN

for every compound task 𝑇(𝑥1, … , 𝑥𝑚) in HTN

for every substitution (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) of (𝑥1, … , 𝑥𝑚)

add node 𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to the ASN if not already present

for every method 𝑀 ∈ 𝑚𝑒𝑡ℎ𝑜𝑑𝑠(𝑇) and (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) ⊢ 𝑝𝑟𝑒(𝑀)

add node 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to the ASN

add a max edge from 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) to 𝑇(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚)

let 𝑠𝑜𝑟𝑡𝑒𝑑(𝑀) be an topological sort of 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)

for every task 𝑇′(𝑥′1, … , 𝑥′𝑚′) in 𝑠𝑜𝑟𝑡𝑒𝑑(𝑀)

let (𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) be a substitution for (𝑥′1, … , 𝑥′𝑚′) in

agreement with (𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚)

let 𝑐ℎ𝑎𝑖𝑛(𝑇′) be the longest chain containing 𝑇’ and 𝑝𝑜𝑠(𝑇′) be

the position of 𝑇′ in 𝑐ℎ𝑎𝑖𝑛(𝑇′)

let 𝑝𝑟𝑒(𝑇′) = {𝑡𝑎𝑠𝑘|𝑡𝑎𝑠𝑘 < 𝑇′𝑎𝑛𝑑 ∄𝑡𝑎𝑠𝑘′: (𝑡𝑎𝑠𝑘 < 𝑡𝑎𝑠𝑘′𝑎𝑛𝑑 𝑡𝑎𝑠𝑘′ < 𝑇′)}

add node 𝑝𝑟𝑒(𝑇′) to ASN if not exists and 𝑝𝑟𝑒(𝑇′) ≠ ∅

add min edges from every node 𝑛 ∈ 𝑝𝑟𝑒(𝑇′) to node 𝑝𝑟𝑒(𝑇′)

if 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) is compound then

add node 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) if not already present

add a sum edge from 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) to 𝑇𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) with
1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|×𝑝𝑜𝑠(𝑇′)
 as weight

add ordering edge from 𝑝𝑟𝑒(𝑇′) to edge (𝑇’, 𝑇𝑀) if 𝑝𝑟𝑒(𝑇′) ≠ ∅

else if 𝑇′(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) is primitive then

let 𝑅 be the operator corresponding to 𝑇′

add a sum edge from 𝑅(𝑣𝑎𝑙′1, … 𝑣𝑎𝑙′𝑚′) to 𝑇
𝑀(𝑣𝑎𝑙1, … 𝑣𝑎𝑙𝑚) with

1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|×𝑝𝑜𝑠(𝑇′)
 as weight

add ordering edge from 𝑝𝑟𝑒(𝑇′) to edge (𝑅, 𝑇𝑀) if 𝑝𝑟𝑒(𝑇′) ≠ ∅

The text in blue represents modifications to the original algorithm for ASN presented in Algorithm 3.

Weights of sum edges in POCASN represent a minimum effective value for the edges, since they can

receive activation values from ordering edges to make them stronger. Unlike the original ASN in which

sum edges would connect task nodes to method nodes in the network with a shared normalization weight

of
1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|
, in POCASN we need to assign smaller weights to outgoing edges from tasks that come

after other tasks in the chain. This is because observing a task that comes after another task in the chain,

should not be sufficient for detecting the intention by itself. This observation is only important if we

previously detected preceding tasks (high activation values for preceding tasks). Weights of sum edges

should be normalized by the size of the subtasks in order for different methods on the same level to have

Robotics 2015, 4 300

comparable activation values.
1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|×𝑝𝑜𝑠(𝑇′)
 was chosen as the weight of sum edge connecting

node 𝑇′ to its parent.
1

|𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑀)|
 is the normalization factor for a method and

1

𝑝𝑜𝑠(𝑇′)
 is the effect of

ordering of task 𝑇′ among other tasks in the network. A sample POCASN is shown in Figure 5.

Figure 5. A sample portion of the POCASN. Red edges are max edges, green lines are

ordering edges, black lines are min edges, blue edges represent sum edges, grey lines show

positive context edges and orange represents negative context edges. Red boxes represents

method nodes, grey boxes show context nodes and green boxes represent dummy nodes used

to connect ordering edges to sum edges.

5. Experimental Evaluation

In this section we describe our implemented system and introduce the experiment domain, the HTN

domain knowledge we used for experiments, the contextual information incorporated in the system, the

resulting ASN, CASN and POCASN and the experimental results in three different tested scenarios.

5.1. Experiment Domain

The domain chosen for the experiments consists of 16 high-level daily activities and 2 different

low-level activities. All these activities are defined upon 8 different objects. Book, cup, bowl, kettle,

lettuce, tea bag, bottle and instant coffee are the objects of interest in our intent recognition system.

Figure 6 shows our training images for the video parser. We developed our real-time intent recognition

system in C++ using Microsoft Kinect SDK and OpenCV as our two main software tools. The system

captures live feed from a Kinect camera and outputs the results of intent recognition as activation values

for the important task nodes in our network. For a more natural interaction, we also used a NAO robot

(by Aldebaran Robotics) to provide audio feedback to the user to inform him/her about the detected

intention. The robot controller is designed to interpret detected intentions from our intent recognition

system and make the robot behave appropriately by having a real-time interaction with the user. Figure 7

shows a captured screen-shot of the developed software.

Robotics 2015, 4 301

Figure 6. Training images used for the object detector in the video parser module.

Figure 7. Screenshot of our intent recognition system.

Our low-level activities (corresponding to operators in the HTN formalism) are grabbing and moving.

The high-level activities (corresponding to compound tasks in the HTN formalism) are drink [what]

from [where] in which [what]={tea, water, coffee} and [where]={cup, bottle}, eat from bowl, pour from

[src] to [dest] in which [src]={kettle, bottle} and [dest]={cup, bowl, kettle}, make salad, organize desk,

make tea, make coffee, read book and eat lettuce. The set of all contextual information about the scene

contains 8 different items: person has exam soon, person has meeting soon, it is morning, it is night,

person is thirsty, person is hungry, weather is cold, and weather is hot. We use two different states for

contextual information, and we do not use the full spectrum of activation values of contextual nodes. We

either know a particular context is true, or it is either false or unknown. If it is known, then the activation

value is set to 0.2, otherwise it is set to 0. The effect of this contextual information on the compound

tasks is shown in Table 2.

Robotics 2015, 4 302

Table 2. The effect of contextual information on compound tasks.

Compound Task Positive Context Negative Context

drink tea from cup weather is cold, it is morning weather is hot

drink water from cup person is thirsty, weather is hot -

drink coffee from cup it is morning, weather is cold weather is hot, it is night

drink water from bottle person is thirsty, weather is hot -

eat from bowl person is hungry -

pour from kettle to cup weather is cold, it is morning -

pour from kettle to bowl - -

make salad - -

organize desk person has meeting soon -

make tea weather is cold, it is morning weather is hot

make coffee weather is cold, it is morning weather is hot, it is night

pour from bottle to kettle weather is cold -

pour from bottle to cup person is thirsty -

pour from bottle to bowl - -

read book person has exam soon -

eat lettuce person is hungry -

Table 3 shows the HTN-based representation of high-level tasks and their decomposition into

lower-level tasks and operators. The operator grab has a single parameter with the domain containing all

possible objects, and the operator move has two parameters: the first parameter is the object with the

domain containing all objects; the second parameter is the destination and it can be an object, a special

value self (the person is moving the object towards him/herself), or another special value not known.

Compound tasks do not have parameters for instantiation and have a single method of decomposition.

Table 3. A summary of domain knowledge as an HTN.

Compound Task Method Decomposition

drink tea from cup make tea < grab cup < move cup to self

drink water from cup pour from bottle to cup < grab cup < move cup to self

drink coffee from cup make coffee < grab cup < move cup to self

drink water from bottle grab bottle < move bottle to self

eat from bowl grab bowl < move bowl to self

pour from kettle to cup grab kettle < move kettle to cup

pour from kettle to bowl grab kettle < move kettle to bowl

make salad grab lettuce < move lettuce to bowl

organize desk grab object x < move object x to object y (for all possible x, y where x≠y)

make tea pour from kettle to cup, grab tea bag < move tea bag to cup

make coffee pour from kettle to cup, grab coffee < move coffee to cup

pour from bottle to kettle grab bottle < move bottle to kettle

pour from bottle to cup grab bottle < move bottle to cup

pour from bottle to bowl grab bottle < move bottle to bowl

read book grab book < move book to self

eat lettuce grab lettuce < move lettuce to self

Robotics 2015, 4 303

5.2. Activation Spreading Networks

The HTN introduced in Section 5.1 can be converted to an ASN. After instantiating all operators,

we have 80 operator nodes in the network. Figure 5 shows a portion of the resulting POCASN without

all the operators and context nodes for simplicity. The network contains 80 different operator nodes

accounting for all possible instantiations of grab and move. The clock in our ASN increments with

receiving a new frame from the camera, therefore the clock frequency is equal to the frame rate (25 to

30 fps for our configuration). We chose 0.98 as the decay factor in our network and the firing threshold

is set to zero for simplicity.

To determine the activation value of operators, we used simple formulas that can be directly computed

from the features extracted by the video parser. The activation value of move nodes is computed with

Equation (1) and the activation value of grab nodes is computed with Equation (2).

𝑎𝑐(𝑅) = min

{

 (−
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑛𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

0.2
)

(
0.4

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑛𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
)
}

 (1)

𝑎𝑐(𝑅) = 𝑚𝑖𝑛

{

 (−
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑎𝑛𝑑𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡

0.2
)

(
0.4

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑎𝑛𝑑𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡
)
}

 (2)

5.3. Scenarios

For experimental evaluation we performed three different scenarios, during which the intent

recognition system was running and the robot in the scene was interacting with the subject at runtime.

These scenes are also recorded and can later be fed into our system as a live stream to simulate the

situation where the program is actually processing frames as they stream in. This is useful for repeating

the same experiments given different contextual situations. The first scenario (eating) consists of a

person eating salad (lettuce) and then drinking water from a bottle. It is 60 s long and lettuce, bowl,

bottle, tea bag and cup are present in the scene. The second scenario (reading) consists of a person

reading a book, then making tea and finally drinking tea from a cup. Tea bag, coffee, book, kettle

and cup are visible in this scene and the video is 65 s long. In the final scenario (drinking) the subject

makes tea and drinks tea from the cup. Kettle, tea bag, cup and coffee are present in the scene.

The drinking scenario is 36 s long. We manually segmented the videos into partitions for different

high-level intentions and used that as the ground truth. We experimented with ASN, CASN and

POCASN to see how well they can handle these three scenarios. We also investigated the effect of

considering contextual information and partial-order constraints on the system performance. Section 5.4

provides a discussion of the results obtained during the experimental evaluation.

5.4. Experiments

A relevant performance metric for intent recognition is how early the system is able to detect an

intention reliably. Recall that for intent recognition we compare activation values of nodes at the same

Robotics 2015, 4 304

level in the hierarchical structure of the network, in order to choose the node with largest activation value

as the recognized intention. The difference between the highest and the second highest activation values

represents the level of confidence for recognition. For a quantitative analysis of the intent recognition

with ASNs, we used two metrics:

Early detection rate:
𝑡𝑖
∗

𝑡𝑖
 where 𝑡𝑖 is the total runtime of the segment for intention 𝑖 in a scenario, and

𝑡𝑖
∗ is the earliest time (from the start of the segment) at which the correct intention was recognized

consistently until the end of segment for intention 𝑖.

Confidence of detection:
𝑎𝑐(𝑖)

𝑎𝑐(𝑚𝑎𝑥−1)
where 𝑎𝑐(𝑖) is the activation value of the correct intention 𝑖 at

any given time and 𝑎𝑐(𝑚𝑎𝑥 − 1) is the second highest activation value of the nodes in the same

level as 𝑖.

For effective intent recognition we want the early detection rate to be close to 0, which means that

the system was able to detect that intention immediately. An average of early detection rate for a scenario

is simply computed over all intentions present in that scenario. For the confidence of detection, larger

values show a better (more confident) recognition of intentions. Any values greater than 1 show a correct

recognition at that particular time. An average confidence of detection for an intention in a scenario is

computed over all time-steps in a scenario in the intention’s ground truth segment.

5.4.1. Eating Scenario

Figure 8 shows the activation values of high-level (compound) tasks in our CASN. Figure 9 shows

the same results but with ASN. In the full context version, we assumed the system knows the following:

it is hot, it is night, the person is hungry and person is thirsty. We annotated the graph with how the

robot responded during each case. We also show the ground truth segmentation of intentions.

Figure 8. Activation values for the eating scenario with CASN.

Robotics 2015, 4 305

Figure 9. Activation values for the eating scenario with ASN

A comparison of Figure 8 with Figure 9 shows how CASN can distinguish between similar activities

better than the ASN. To highlight this improvement, Figure 10 and Figure 11 show a subset of related

tasks for these two networks. These activities are at the same level in the structure of the network,

therefore their activation values are comparable. In Figure 10, we can see a significant disambiguation

of similar activities including drinking water from bottle, pouring from bottle to cup and pouring from

bottle to bowl. The ASN was not able to choose the correct intention among these very similar tasks.

Figure 11 shows how the activation values of these three activities are very close, which makes a

reasonable detection impossible. The early detection results and average confidence of detections for

this scenario in CASN and ASN are shown in Table 4. CASN improves ASN by correctly detecting

drink water from bottle with 51.12% early detection rate, compared to no detection in ASN. The

confidence of detection is also improved for eat from bowl and drink water from bottle tasks. However

ASN worked slightly better for make salad, because in CASN contextual nodes are strengthening the

eat from bowl task, which has the second highest activation value in the make salad segment of this

scenario.

Table 4. Early detection rates and average confidence of detections for eating scenario.

Intention Early Detection Rate Average Confidence of Detection

CASN make salad 62.25% 1.02

eat from bowl 4.85% 1.60

drink water from bottle 51.12% 0.80

ASN make salad 57.84% 1.08

eat from bowl 5.42% 1.39

drink water from bottle no detection 0.68

Robotics 2015, 4 306

Figure 10. A subset of activities for the eating scenario with CASN.

Figure 11. A subset of activities for the eating scenario with ASN.

5.4.2. Reading Scenario

Figure 12 shows the activation values of high-level (compound) tasks in our CASN. Figure 13 shows

the same results but with ASN. In the full context version, we assumed the system knows the following:

person has exam soon, it is morning and weather is cold.

Robotics 2015, 4 307

Figure 12. Activation values for the reading scenario with CASN.

Figure 13. Activation values for the reading scenario with ASN.

A comparison of Figure 12 with Figure 13 shows that nodes in CASN accumulate higher activation

values. This is expected since contextual information can have positive effects on the activation values

of some task nodes in the network. In CASN, we would have no activation values spreading from context

nodes. This is visible in Figure 12, since we have no activation values at the beginning of this graph.

Context would only amplify the effect of activation spreading in the network in favor of some related

tasks. Figure 14 and Figure 15 show a subset of related tasks for these two networks. As shown in these

figures, ASN is not able to detect the make tea intention. The early detection results and average

confidence of detections for this scenario in CASN and ASN are shown in Table 5. It is clear that CASN

is performing better than ASN for this scenario by detecting make tea with 58.80% early detection rate

compared to no reliable detection of this intention in ASN. No detection for this task does not imply that

Robotics 2015, 4 308

it was not recognized in any time-step. This means that the network could not correctly recognize that

intention at the last time-step of its ground truth time segment. However, make tea had the highest

activation values for the most parts of the ground truth. An interesting property of our ASN is shown in

this experiment. Although the system was not able to detect make tea reliably (not until the end of ground

truth segment) it could correctly recognize the next task drink tea from cup. This shows that our

ASN-based intent recognition is able to recover from detection errors in the previous time-steps. The

use of context also improved the early detection rate for drink tea from cup by 16%.

Table 5. Early detection rates and average confidence of detections for reading scenario.

Intention Early Detection Rate Average Confidence of Detection

CASN read a book 21.22% 1.23

make tea 58.80% 1.31

drink tea from cup 22.66% 1.24

ASN read a book 23.58% 1.24

make tea no detection 1.18

drink tea from cup 38.66% 1.23

Figure 14. A subset of activities for the reading scenario with CASN.

Robotics 2015, 4 309

Figure 15. A subset of activities for the reading scenario with ASN.

5.4.3. Drinking Scenario

Figure 16 shows the activation values of high-level (compound) tasks in our POCASN.

Figure 17 shows the same results but with ASN. The drinking scenario is designed to evaluate the

performance of POCASN and its comparison with the original ASN. No contextual information is used

in POCASN, in order to see the effect of partial-order modeling for intent recognition. The first major

difference between POCASN and the original ASN is that in POCASN, activation values are much

higher. This is because of spreading activation values to edges in addition to nodes. A node

corresponding to a previous task would strengthen the edges of the next task, and this results in a higher

spreading of activation to the parent method node. Drink Tea from Cup and Drink Coffee from Cup are

similar tasks in our network, with only a difference on grabbing and moving coffee instead of tea. In the

reading scenario we could detect this activity with the help of contextual information, which here is

absent. POCASN is able to detect this intention reliably, as shown in Figure 18. A similar graph for ASN

in Figure 19 shows that ASN cannot disambiguate between these two tasks. Table 6 shows detection

rates and average confidence of detection for the drinking scenario, for both POCASN and ASN. In

POCASN, the network is expecting to observe the next correct task—the edges connecting the expected

task to its method node are already strengthened, which greatly helps decrease the early detection rate.

Even for drink tea from cup, the accumulated activation values received from make tea are enough for a

detection of that intention. The 0% early detection rate for drink tea from cup in POCASN illustrates

this situation.

Robotics 2015, 4 310

Figure 16. Activation values for the drinking scenario with POCASN.

Figure 17. Activation values for the drinking scenario with ASN.

Robotics 2015, 4 311

Table 6. Early detection rates and average confidence of detections for drinking scenario.

Intention Early Detection Rate Average Confidence of Detection

POCASN make tea 31.84% 1.63

drink tea from cup 0% 1.50

ASN make tea 76.01% 1.09

drink tea from cup no detection 1.06

Figure 18. A subset of activities for the drinking scenario with POCASN.

Figure 19. A subset of activities for the drinking scenario with ASN.

Robotics 2015, 4 312

6. Conclusions

In this paper we propose a novel real-time vision-based intent recognition system based on Activation

Spreading Networks (ASNs). The key idea behind employing ASNs for intent recognition is to use a

distributed network of connected nodes to robustly recognize the intention according to the activation

values accumulated on the nodes in the network. We formally defined ASNs and showed how we can

create a hierarchical ASN from Hierarchical Task Networks (HTNs). We then described an algorithm

for intent recognition with ASNs by selecting the maximum activation value from sets of comparable

nodes in the network. We extended this ASN formalism to handle contextual information. We formally

defined how to modify the original ASN to obtain a Contextual ASN (CASN) and to process this type

of information, and we showed how to relate context to different tasks. Finally, we extended the ASN

formalism to model partial-order constraints in the HTN to obtain a Partial-Order CASN (POCASN).

We implemented all three ASN, CASN and POCASN approaches in a fully functioning system. The

resulting system can process RGB-D video streams in real-time to detect, recognize and track objects,

extract features from video, and recognize intentions while observing a person performing daily tasks.

Our experiments showed that the system is able to efficiently and reliably recognize intentions, even

before activities are finished. In our experiments we also compared ASN, CASN and POCASN and

showed how CASN and POCASN can improve the performance of the original ASN.

As future work, we plan to extend our ASN-based approach in order to learn the structure of

the network by analyzing a training set of observed activities. For now, our system relies on having an

HTN-based description of the domain knowledge to detect intentions. We plan to investigate how this

kind of domain knowledge could be extracted by machine learning techniques. Another direction of

future work is related to handling missing information, which is frequent in real-world problems due to

partial observability of the environment (e.g., occlusion) or failing sensors. Furthermore, we plan to

analyze how well our approach is able to recover from errors in different modules of the system,

especially the video parser.

Acknowledgments

This work has been supported by Office of Naval Research grant #N000141210860.

Author Contributions

This work took place in the context of Masters project of Mohammad Taghi Saffar who is credited

for the majority of this work. Mircea Nicolescu and Monica Nicolescu defined the context of this

research and provided supervision. Banafsheh Rekabdar helped with experiments and evaluations. All

authors discussed the results and commented on the manuscript at all stages.

Conflicts of Interest

The authors declare no conflict of interest.

Robotics 2015, 4 313

References

1. Sukthankar, G.; Geib, C.; Bui, H.H.; Pynadath, D.; Goldman, R.P. Plan, Activity, and Intent

Recognition: Theory and Practice; Newnes: Waltham, MA, USA, 2014.

2. Armentano, M.G.; Amandi, A. Plan recognition for interface agents. Artif. Intell. Rev. 2007, 28,

131–162.

3. Han, T.A.; Pereira, L.M. State-of-the-art of intention recognition and its use in decision making.

AI Commun. 2013, 26, 237–246.

4. Kautz, H.A.; Allen, J.F. Generalized Plan Recognition. AAAI 1986, 86, 32–37.

5. Penberthy, J.S.; Weld, D.S. UCPOP: A Sound, Complete, Partial Order Planner for ADL. KR 1992,

92, 103–114.

6. Banerjee, B.; Lyle, J.; Kraemer, L. The complexity of multi-agent plan recognition. Auton. Agents

Multi Agent Syst. 2015, 29, 40–72.

7. Lehrmann, A.M.; Gehler, P.V.; Nowozin, S. Efficient Nonlinear Markov Models for Human

Motion. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,

Columbus, OH, USA, 2014; pp. 1314–1321.

8. Aggarwal, J.; Xia, L. Human activity recognition from 3D data: A review. Pattern Recognit. Lett.

2014, 48, 70–80.

9. Magnani, L. Abduction, Reason, and Science: Processes of Discovery and Explanation;

Springer Science and Business Media: Berlin, Germany, 2001.

10. Sindlar, M.; Dastani, M.; Meyer, J.-J. Programming Mental State Abduction. In Proceedings of the

10th International Conference on Autonomous Agents and Multiagent Systems, Ann Arbor, MI, USA,

2011; pp. 301–308.

11. Georgeff, M.; Pell, B.; Pollack, M.; Tambe, M.; Wooldridge, M. The Belief-Desire-Intention Model

of Agency. In Intelligent Agents V: Agents Theories, Architectures, and Languages; Springer:

Berlin, Germany, 1999; pp. 1–10.

12. Bonatti, P.; Calimeri, F.; Leone, N.; Ricca, F. Answer Set Programming. In A 25-Year Perspective

on Logic Programming; Springer: Berlin, Germany, 2010, pp. 159–182.

13. Sindlar, M.P.; Dastani, M.M.; Dignum, F.; Meyer, J.-J.C. Mental State Abduction of BDI-Based

Agents. In Declarative Agent Languages and Technologies VI; Springer: Berlin, Germany, 2009;

pp. 161–178.

14. Pereira, L.M. Elder Care via Intention Recognition and Evolution Prospection. In Applications of

Declarative Programming and Knowledge Management; Springer: Berlin, Germany, 2011;

pp. 170–187.

15. Meadows, B.L.; Langley, P.; Emery, M.J. Seeing Beyond Shadows: Incremental Abductive

Reasoning for Plan Understanding. In Proceedings of AAAI Workshop: Plan, Activity, and Intent

Recognition, Bellevue, WA, USA, 14–15 July 2013, p. 13.

16. Eiter, T.; Faber, W.; Fink, M.; Pfeifer, G.; Woltran, S. Complexity of model checking and bounded

predicate arities for non-ground answer set programming. KR, 2004, 04, 377–387.

17. Han, K.; Veloso, M. Automated Robot Behavior Recognition. Inter. Symp. Robot. Res. 2000, 9,

pp. 249–256.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6909096

Robotics 2015, 4 314

18. Kelley, R.; King, C.; Tavakkoli, A.; Nicolescu, M.; Nicolescu, M.; Bebis, G. An architecture for

understanding intent using a novel hidden markov formulation. Int. J. Humanoid Robot. 2008, 5,

203–224.

19. Kelley, R.; Tavakkoli, A.; King, C.; Nicolescu, M.; Nicolescu, M.; Bebis, G. Understanding Human

Intentions via Hidden Markov Models in Autonomous Mobile Robots. In Proceedings of the 3rd

ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, the Netherlands,

12–15 March 2008; pp. 367–374.

20. Wilson, A.D.; Bobick, A.F. Recognition and Interpretation of Parametric Gesture. In Proceedings

of the Sixth International Conference on Computer Vision, Washington, DC, USA, 1998;

pp. 329–336.

21. Brand, M.; Kettnaker, V. Discovery and segmentation of activities in video. IEEE Trans. Pattern

Anal. Mach. Intell. 2000, 22, 844–851.

22. Galata, A.; Johnson, N.; Hogg, D. Learning variable-length Markov models of behavior. Comput.

Vis. Image Underst. 2001, 81, 398–413.

23. Brand, M.; Oliver, N.; Pentland, A. Coupled Hidden Markov Models for Complex Action

Recognition. In Proceedings of the Computer Vision and Pattern Recognition, San Juan, Argentina,

17–19 June 1997; pp. 994–999.

24. Oliver, N.; Horvitz, E.; Garg, A. Layered Representations for Human Activity Recognition.

In Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, Redmond,

WA, USA, 2002; pp. 3–8.

25. Ivanov, Y.A.; Bobick, A.F. Recognition of visual activities and interactions by stochastic parsing.

IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 852–872.

26. Charniak, E.; Goldman, R.P. A Bayesian model of plan recognition. Artif. Intell. 1993, 64, 53–79.

27. Nazerfard, E.; Cook, D.J. Using Bayesian Networks for Daily Activity Prediction. In Proceedings

of AAAI Workshop: Plan, Activity, and Intent Recognition, Bellevue, WA, USA, 14–15 July 2013.

28. Madabhushi, A.; Aggarwal, J. A Bayesian Approach to Human Activity Recognition.

In Proceedings of the Second IEEE Workshop on Visual Surveillance, Fort Collins, CO, USA,

26 June 1999; pp. 25–32.

29. Hoey, J. Hierarchical Unsupervised Learning of Facial Expression Categories. In Proceedings

of the IEEE Workshop on Detection and Recognition of Events in Video, Vancouver, Canada,

8 July 2001; pp. 99–106.

30. Fernyhough, J.; Cohn, A.G.; Hogg, D. Building Qualitative Event Models Automatically from

Visual Input. In Proceedings of the Sixth International Conference on Computer Vision, Bombay,

India, 4–7 January 1998; pp. 350–355.

31. Intille, S.S.; Bobick, A.F. A Framework for Recognizing Multi-Agent Action from Visual

Evidence. In Proceedings of the Sixteenth National Conference on Artificial Intelligence and the

Eleventh Innovative applications of Artificial Intelligence Conference Innovative Applications of

Artificial Intelligence (AAAI/IAAI), Menlo Park, CA, USA, 18–22 July 1999; Volume 99,

pp. 518–525.

32. Forbes, J.; Huang, T.; Kanazawa, K.; Russell, S. The batmobile: Towards a Bayesian Automated

Taxi. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI),

Montreal, QC, Canada, 20–25 August 1995; pp. 1878–1885.

http://www.baidu.com/link?url=217CgjTn1LVEMdIQPIyr-CHGmpL91Rm5I2pJhfJFp_EOhapeynfSL0bNv56qJfLmay8-DyPFjxIzzpOlm0OkKWaY6Y6U0WVHG_FQGDsSAPa

Robotics 2015, 4 315

33. Cao, Y.; Barrett, D.; Barbu, A.; Narayanaswamy, S.; Yu, H.; Michaux, A.; Lin, Y.; Dickinson, S.;

Siskind, J.M.; Wang, S. Recognize Human Activities from Partially Observed Videos. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28

June 2013.

34. Koppula, H.S.; Saxena, A. Anticipating Human Activities Using Object Affordances for Reactive

Robotic Response. IEEE Trans. Pattern Anal. Mach. Intell. 2013, doi: 10.1109/TPAMI.

2015.2430335,

35. Kinect for Windows. Available online: http://www.microsoft.com/en-us/kinectforwindows/

(accessed on 25 March 2015).

36. Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-Time Foreground-Background

Segmentation Using Codebook Model. Real-Time Imaging 2005, 11, 172–185.

37. Harville, M. A Framework for High-Level Feedback to Adaptive, Per-Pixel, Mixture-of-Gaussian

Background Models. In Proceedings of the 7th European Conference on Computer Vision—ECCV,

Copenhagen, Denmark, 28–31 May 2002; pp. 543–560.

38. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.

39. Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the

IEEE International Conference on Computer Vision, Kerkyra, Greek, 20–27 September 1999;

pp. 1150–1157.

40. Bhattacharyya, A. On a measure of divergence between two multinomial populations.

Sankhyā: Indian J. Stat. 1946, 7, 401–406.

41. Bradski, G.R. Computer Vision Face Tracking for Use in a Perceptual User Interface.

In Proceedings of the Fourth IEEE Workshop on Applications of Computer Vision, Princeton, NJ,

USA, 19–21 October 1998.

42. Erol, K.; Hendler, J.A.; Nau, D.S. UMCP: A Sound and Complete Procedure for Hierarchical

Task-Network Planning. In Proceedings of the International Conference on AI Planning &

Scheduling (AIPS), Menlo Park, CA, USA, 13–15 June 1994; pp. 249–254.

43. Erol, K.; Hendler, J.; Nau, D.S. HTN Planning: Complexity and Expressivity. In Proceedings of the

AAAI, Seattle, WA, USA, 31 July–1 August 1994; pp. 1123–1128.

44. Nau, D.S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.W.; Wu, D.; Yaman, F. SHOP2: An HTN

planning system. J. Artif. Intell. Res. 2003, 20, 379–404.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

http://www.microsoft.com/en-us/kinectforwindows/

