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Abstract: We present a new vision based cooperative pose estimation scheme for systems
of mobile robots equipped with RGB-D cameras. We first model a multi-robot system as
an edge-weighted graph. Then, based on this model, and by using the real-time color and
depth data, the robots with shared field-of-views estimate their relative poses in pairwise.
The system does not need the existence of a single common view shared by all robots, and
it works in 3D scenes without any specific calibration pattern or landmark. The proposed
scheme distributes working loads evenly in the system, hence it is scalable and the computing
power of the participating robots is efficiently used. The performance and robustness were
analyzed both on synthetic and experimental data in different environments over a range of
system configurations with varying number of robots and poses.

Keywords: pose estimation; RGB-D camera; self-calibration; cooperative localization;
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1. Introduction

Multi-Robot Systems (MRSs), which were first proposed in early 1980s, are becoming increasingly
popular mobile sensor platforms to measure and estimate quantities of interest at spatially
distributed locations. Compared to a single-robot operation, MRSs have the advantages on faster task
completion, more extensive coverage, increased reliability to sensor failures, and higher estimation
accuracy through sensor fusion. MRSs have been widely used in a variety of tasks such as data
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collection [1], surveillance [2–4], target tracking [5–7], formation tracking and control [8–10], and visual
SLAM [11–13].

Precise knowledge on locations and orientations (poses) of the robots is a prerequisite for the
successful accomplishment of the collaborative tasks. One approach to localize the robots is to equip
them with Global Positioning System (GPS) receivers and use the GPS system. However, GPS signals
are not available indoors and they cannot directly provide the orientation information. An alternative
approach is cooperative localization in which robots work together and use the robot-to-robot
measurements to construct a map of their network. Cooperative localization operates in two broad stages:
The initialization process, which involves relative pose estimation (RPE), provides initial location and
orientation estimates of the robots. Then the refinement process updates the initial estimates iteratively
to enhance the accuracy.

In this study, we focus on the initialization process of the cooperative localization in MRSs.
The MRSs of interest here are equipped with cameras or visual sensors. In this kind of MRSs, robots’
locations and orientations can be estimated through careful calibration of the rigid body transform
operations between the cameras mounted on the robots. Generally there are two kinds of vision-based
approaches to achieve this goal: (1) manual calibration; or (2) self-calibration. Manual calibration
approaches require a special calibration pattern to be visible in all images [14] or the precise pose
information of calibration patterns/objects have to be known [15]. Some easily detectable single
features which require human interaction, such as moving a LED in a dark room, can also be used
to manually calibrate multiple cameras [16–18]. Manual calibration methods, even though provide good
results, require special equipment or time consuming manual measurements. Self-calibration algorithms
simultaneously process several images captured by different cameras and find the correspondences across
images. Correspondences are established through extracting 2D features from images automatically and
matching them between different images. Then, based on the established correspondences, cameras’
relative poses can be estimated from the essential matrix. Besides the algorithm which uses static
features [19–22], Aslan et al. [23] detect people walking in the room and use the point on the top of
each person’s head as the calibration feature. The accuracy of the self-calibration highly depends on the
reliability of the relative pose estimates. This problem was first discussed in [24] with the concept of the
vision graph. Kurillo et al. [25], Cheng et al. [26], and Vergés-Llahí et al. [27] later used and refined it
for this purpose as well. It is becoming a useful general tool for describing the directionality of networked
visual sensors. It has been more recently addressed by Bajramovic et al. [28–30]. They proposed a graph
based calibration method which measures the uncertainty of the relative pose estimation between each
camera pair. All of the self-calibration algorithms measure the epipolar structure of the system and
suffer from scale ambiguity. If there is not any object or pattern with known geometry in the scene, the
orientations and locations between robots are determined up to a scale.

In this paper, we consider the initialization process for localization in a multi-robot system withN ≥ 3

robots operating in GPS-denied indoor environments (see Figure 1). A RGB-D camera, which provides
both color images and per-pixel depth information, is mounted at the top of each robot. A central node
with high performance processor is also implemented in the system which can operate computationally
expensive computer vision algorithms. We present a novel self-calibration algorithm to determine the
locations and orientations of the robots in this RGB-D camera equipped multi-robot system. The propose
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scheme can be arranged over an indoor scenarios without imposed constraints for all robots to share a
common field-of-view (FoV). Our approaches assume that at least any two given robots have overlapping
FoVs and that the cameras on robots have been internally calibrated prior to deployment. Our proposed
algorithms consist of the following steps: (1) each robot extracts color features locally and sends the
descriptors of these features to the central node; (2) the central node performs feature matching to
determine neighboring robots and generates an Initial Pose Matrix (IPM); (3) the central node constructs
a robot dependency graph and selects a number of relative poses to connect robots as a calibration tree;
(4) after the central node broadcasts the information of the calibration tree, robots work collaboratively
to determine the relative poses according to the calibration tree; (5) the determined relative poses are
then transmitted to the central node to compute the poses of all the robots in the system. We formulate
the selection of relative poses as a shortest path problem, which consists of finding shortest path from a
vertex to the other vertices in an edge-weighted graph. The graph represents FoVs of robots as vertices
and overlapping FoVs as edges respectively.

Figure 1. An indoor mapping and exploration scenario showing the Monash University’s
RGB-D equipped experimental mobile robots “eyeBugs”. A typical application would be
mapping indoors after a disaster such as Fukushima nuclear reactor accident. As shown in
the diagram, there are numerous challenges that need to be addressed. In this paper, our
focus is initialization problem in cooperative localization.

The main contributions of this paper are:

• Construction of a robot dependency graph based on the overlapping ratio between
neighboring robots.
• Development of a procedure to determine the relative pose of multiple RGB-D camera

equipped robots.
• By contrast to the conventional approaches that only utilize color information, our approach takes

the advantages of the combination of RGB and depth information.
• The locations and orientations of robots are determined up to the real world scale directly without

involving scale ambiguity problem.
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• Extensive experiments using synthetic and real world data were conducted to evaluate the
performance of our algorithms in various environments.

The rest of the paper is organized as follows. In Section II, the characteristics of the RGB-D camera
and the multi-robot system used in this paper are introduced. In Section III, we formulate the robot
localization problem and propose our solutions. In Section IV, we present the experiments and results,
and our concluding remarks can be found in Section V.

2. A Multi-Robot System Using RGB-D Cameras As Visual Sensors

2.1. eyeBug: A Robot Equipped with RGB-D Camera

At the Wireless Sensor and Robot Networks Laboratory (WSRNLab) [31] we have created
a multi-robot system consisting of experimental mobile robots called eyeBugs (Figure 2) for
computer vision, formation control, visual sensing research activities. A single-board computer,
BeagleBoard-xM [32] is the main computational resource of an eyeBug. Each BeagleBoard-xM has
an ARM37x 1 GHz processor, a USB hub, and an HDMI video output. Communication service
between robots is provided through WiFi links. We run an ARM processor optimized GNU/Linux
operating system (Ubuntu Version 11.10) [33]. OpenKinect [34], OpenCV [35] and libCVD [36]
libraries were installed to capture and process image information. Microsoft Kinect, which produces
color and disparity-based depth images, is mounted vertically at the center of the top plate of each
robot. The default RGB video stream provided by Kinect uses 8 bits for each color at VGA resolution
(640 × 480 pixels, 24 bits/pixel). The depth video stream is also in VGA resolution.

Figure 2. eyeBug-the robot developed for the Monash WSRNLab’s [31] experimental
multi-robot platform. The RGB-D data generated by the Kinect RGB-D sensor is processed
on BeagleBoard-xM running GNU/Linux operating system.

2.2. Characteristics of RGB-D Camera

Kinect has an infrared (IR) projector-camera-pair and a RGB camera. The depth sensing of Kinect is
based on a fixed structured light source positioned at a known baseline from the IR camera. The depth
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information is measured through a triangulation process which is based on the detection of transverse
shifts of local dot patterns in the IR speckle with respect to its reference patterns at a known distance
to the device [37]. This process runs repeatedly on all regions in the IR speckle and generates a
disparity-based depth image. It should be noted that the depth signal inevitably degrades when multiple
RGB-D cameras are pointing at the same scene. It is because the camera projects a structured light
dot pattern onto the scene continuously without modulation and devices interfere with one another [38].
This interference can be eliminated by a “Shake ‘n’ Sense” approach [38].

The normalized disparity values returned by the Kinect are inversely proportional to their depth [39].
Furthermore, [40,41] show that there is a non-linear relationship between the normalized disparity values
and their depth value in Euclidean space. Therefore, it is more suitable to represent the data in inverse
depth coordinates. Consider the vector pe = [x y z 1]T which represents a real world point in Euclidean
space by using homogeneous coordinates. The relation between a real world point in inverse depth
coordinates and its corresponding pixel in the depth image can be established as follows,

pe ≡
1

z

[
x y z 1

]T
≡
[
u v 1 q

]T
≡
[
i−ic
fx

j−jc
fy

1 1
z

]T
(1)

where (i, j) denotes the pixel coordinates of this real world point projection in the depth image, and z is
the corresponding depth value returned by the camera.

3. Self-Calibration Cooperative Pose Estimation

3.1. Overview

Given N(N ≥ 3) robots equipped with intrinsically calibrated RGB-D cameras, the goal is to
automatically determine the initial pose of each robot in a common coordinate system using only
the color and depth data. A central node with a high performance processor is also included in the
system which runs the computationally expensive algorithms. The function of this node is explained in
Section 3.3.

When two robots a and b have sufficiently overlapping FoVs, the relative pose between two robots
can be represented by a transformation matrix, Mab, in SE(3) as follow,

Mab =

[
R t

0 0 0 1

]
(2)

where R is a 3× 3 rotation matrix and t is a 3× 1 translation vector. Mab denotes relative pose of robot
b with respect to robot a and is the rigid transformation from the coordinate system of robot b to that of
robot a. If there is a robot c and the relative pose between robots c and b is Mbc, then the relative pose
between robots a and c can be derived via composition as,

Mac = MbcMab (3)

This transformation provides a mapping from the coordinate system of c to that of b, then from that of
b to that of a. Robot b is the intermediate node in this process. This operation is transitive, therefore one
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robot’s pose relative to another can be determined indirectly over an arbitrary number of intermediate
poses if they exist.

Thus, the system’s topology can be built up from the pairwise relative poses between robots that
have common FoVs. In order to achieve this, we first need to determine the robots with sufficiently
overlapping FoVs. Secondly, robots are grouped in pairs to determine rough estimations of the relative
poses, and a number of relative poses are selected based on the reliability of the pose information. In the
final step, we calibrate the overall system based on the selected pairwise relative poses. A general
description of the scheme we propose is shown in Figure 3. Each step is described in details in the
following sections. The list of symbols used through the paper is given in Table 1.

Figure 3. Operational overview of the proposed self-calibration scheme for cooperative
pose estimation.

Table 1. Mathematical Notation.

Notation Description

Za Depth image captured by robot a.
pe Vector representing a real world point in Euclidean space.

(ic,a, jc,a) Principal point coordinates of the pinhole camera model.
(fx,a, fy,a) Focal length of the camera in horizontal and vertical axes.

Mab Transformation matrix describing the relative pose between robots a and b.
pl
a Sampled points on the depth image captured by robot a.

pl∗
b Corresponding points of pl

a on the depth image captured by robot b.
Na Number of sampled points on Za.
Pa Set of sample points on Za.
P ∗b Set of corresponding points of Pa on Za.
~nl∗,b Surface normal at point pl∗

b .
wl,a Weight parameter for correspondence established between pl

a and pl∗
b .

E Update transformation matrix in each iteration.
αj An element of a 6D motion vector.
Gj 6D motion generator matrices.

3.2. Assumptions

We make the following assumptions about the multi-robot system:

• Intrinsic parameters of the RGB-D camera on each robot are calibrated prior to deployment,
• At least two robots in the system have overlapping FoVs;
• The scene is static and the robots do not move during the localization process, and
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• The robots can form an ad-hoc network and directly communicate with each other.

3.3. Neighbor Detection and Initial Relative Pose Estimation

We define robots with overlapping FoVs as neighbors. One robot’s neighbors can be detected through
searching for image pairs sharing a common FoVs. This search can be viewed as a matching of point
correspondences that considers the local environment of each feature point set. There are three steps in
neighbor detection process: feature detection, feature description, and feature matching. The first two
steps are performed on each robot locally. Taking processing speed and accuracy into consideration,
we implement FAST [42,43] for feature detection and ORG [44] for feature description on each robot.
Instead of transmitting the complete images, each robot sends the feature descriptions to the central
node to minimize the transmission load. The corresponding depth information of each feature is also
transmitted in conjunction with the feature descriptors.

Associating the feature descriptors with their corresponding depth values, central node can generate
feature points in 3D. Central node performs feature matching between every two sets of the feature
descriptors. In order to increase the matching reliability and robustness against outliers, we adopt
both the symmetrical matching scheme and the geometric constraint to refine the matched points.
In the symmetrical matching scheme, the correspondences between two sets of feature descriptors are
established bidirectionally. One group of correspondences is generated from matching the first feature
set to the second feature set. The other group is produced from matching the second feature set to the
first feature set. For a pair of matched features to be accepted, two features must be the best matching
candidate of each other in both directions.

Then, we use RANSAC to find a coarse registration, M∗
ij , between every two matched feature sets.

The error metric used to find the best alignment is

M∗
ij = argmax

Mij

(
n∑

l=1

|Mijp
l
i − pl

j|2
)

(4)

Here, pl
i and pl

j contain the depth information of two matched feature points as described in
Equation (1). Each term in the summation indicates the squared distance between the transformed pose
of a feature point pl

i in robot i’s feature set and the matched feature point pl
j in the robot j’s feature

set. Between every two matched feature sets, the central node samples a number of matched feature
point pairs and determine the transformation matrix repeated. The determined transformation in each
iteration is evaluated based on the number of inliers in the remaining 3D feature points. Ultimately, only
the matched feature points which agree with the optimal transformation matrix are kept as the good
matches. The determined coarse registration between every two matched feature sets are stored as the
initial relative poses. Initial relative poses are not accurate which require further refinements.

After operating the above process on every two feature sets, an Initial Pose Matrix (IPM) can be
constructed. As shown in Table 2, each element, M∗

ij , represents the initial relative pose between robot
i and robot j. The diagonal elements represent the relative pose with itself, thus they are negligible.
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Table 2. Initial Pose Matrix (IPM) and Uncertainty Matrix (UM) of a multi-robot system
with four robots.

FMM

No. 1 2 3 4

1 × M∗12 M∗13 M∗14
2 M∗21 × M∗23 M∗24
3 M∗31 M∗32 × M∗34
4 M∗41 M∗42 M∗43 ×

UM

No. 1 2 3 4

1 × w12 w13 w14

2 w21 × w23 w24

3 w31 w32 × w34

4 w41 w42 w43 ×

3.4. Selection of Relative Pose

After determining the neighboring robots and initial relative poses, we will show the problem on
estimating all robots’ poses can be transformed to the all-pair shortest path problem.

The relative pose between two neighboring robots can be estimated by RPE algorithm. In order
to calibrate the whole system, we require to select a number of relative poses to link all robots
together. Since different overlapping areas in FoVs lead to various uncertainty values in the RPE.
This process should choose the relative poses with the minimum overall uncertainty between two robots.
Furthermore, it is known that the accuracy of the estimation of the relative pose between two robots may
significantly degrade when an increasing number of intermediate nodes are added into the computations.
This is mainly due to uncertainty accumulated in each time RPE algorithm operates between two robots.
In order to ensure each robot has the reliable knowledge of the other robots’ locations and orientations,
we require to select the relative poses which introduce the smallest overall amount of uncertainty value
to calibration the system.

3.4.1. Robot Dependency Graph Construction

To efficiently consider all possible combinations of robot poses, we suggest the usage of the graph
structure robot dependency graph. Robot dependency graph consists of a set of vertices representing each
view of the scene observed by a robot. The weight on each edge indicates to the degree of uncertainty of
the pair of views being connected. Thus, estimating all robots’ poses can be transformed to finding the
shortest path between every two vertices in the robot dependency graph.

In order to determine the weight on each edge, we need to first derive the uncertainty degree of relative
pose estimation between every two neighbors. The relative pose between two neighboring robots can be
estimated through aligning the 3D point clouds extracted from the depth images captured by different
robots. The motion between two depth images can be estimated by various approaches, such as ICP
variants [45–47], feature-based registrations [48,49], and combinational methods [50,51]. We choose to
use our previous proposed algorithm [47] among the existing approaches, since it reports more accurate
and robust results in environments with various amount of occlusions than the state-of-the-art works.
The performance of the RPE algorithms depends on the overlapping area between two FoVs. In the
same circumstance, a larger overlapping area leads to a more accurate estimate. The overlapping area
between two neighbors can be estimated by initial relative pose determined in Section 3.3.
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Let Mab denote the relative pose between robots a and b. The pixels of the depth image captured by
robot a can establish a relation with their projections on the depth image captured by robot b as[

ub vb 1 qb

]T
= Mab

[
ua va 1 qa

]T
(5)[

ib−ic,b
fx,b

jb−jc,b
fy,b

1 1
zb

]T
= Mab

[
ia−ic,a
fx,a

ja−jc,a
fy,a

1 1
za

]T
(6)

Here, (ia, ja) and (ib, jb) are the pixel coordinates on different depth images, (ic,a,jc,a) and (ic,b,jc,b)
are the principal points of cameras on two robots, (fx,a,fy,a) and (fx,b,fy,b) are the focal lengths, and
za and zb are the depth values of the same real world point’s projections in different depth images.
Applying Equation (6) on the depth image observed by robot a, we can generate a synthetic view which is
virtually taken at robot b’s viewpoint. The overlapping area between two robots’ FoVs can be determined
through comparing the real and synthetic depth images. We define the overlapping ratio between two
neighbors as the proportion of overlapping area in the observed image. However, in this approach the
central node requires the knowledge of complete depth image of robot a. If all the robots have to transmit
their observed depth images to the central node, the considerable transmission load will be generated.
In order to efficiently estimate the overlapping ratio, robot a can only send the values and coordinates
of four pixels in its observed depth image. These four pixels are the nearest pixels with valid depth
values to the four corners (top left, top right, bottom left, and bottom right) of a image. After applying
Equation (6) on these four pixels, the quadrangle constructed by the reprojections of these four pixels
indicates the region observed by robot a in robot b’s view. Though the points in the scene lay on different
planes and have various range values, this approach can still provide a rough estimate of the overlapping
ratio. An example is shown in Figure 4.

Figure 4. Overlapping area estimation. (a) Depth image captured by robot a, 4 corner
pixels are highlighted in red; (b) Depth image captured by robot b; (c) Depth image virtually
captured at robot b’s position. It is generated from (a); (d) The rough estimate of overlapping
area in robot b’s view. White region indicates overlapping region.
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We conducted numerical simulations on the RPE algorithm [47] to explore the relation between the
overlapping ratio and the uncertainty in estimation. The equation

wij =


1 if φij ≥ 0.7

1.5 if 0.7 > φij ≥ 0.6

2.4 if 0.6 > φij ≥ 0.5

∞ if 0.5 > φij

(7)

is adopted to quantize the overlapping ratio and uncertainty degree. Here, φij represents the overlap ratio
between two robots i and j, and wij indicates the uncertainty degree in RPE between two neighboring
robots. A larger wij indicates a larger uncertainty value in the RPE. Based on IPM and criteria in
Equation (7), the Uncertainty Matrix (UM) can be generated.

According to the UM, we can generate the robot dependency graph, G = (V,A). There is an
edge between any two neighboring robots iff the overlapping ratio is within the range in Equation (7).
The weight of the edge linking robots i and j is wij , which indicates the uncertainty degree. A lower
wij indicate a smaller uncertainty value in relative pose estimation. Then, the problem of relative pose
selection is transformed to the all-pairs shortest path problem in the robot dependency graph, which
minimizes the uncertainty in the RPE between every two robots.

The shortest path between every two vertices can be determined using Floyd–Warshall algorithm.
The central node first generates Dist as a |V | × |V | array of minimum distance and initializes Dist
according to UM. Then, Floyd–Warshall algorithm is used to determine the shortest paths between every
pair of robots and update Dist. Then, the central node needs to select one robot as the primary robot
and make all the other robots calibrate their poses according to the primary robot’s coordinate system.
In order to minimize the uncertainty, the central node selects the robot which has the smallest overall
weight on the shortest paths to all the other robots as the primary robot. At last, the robots can be
connected as a calibration tree with the primary robot as the root. In this method, the RPE algorithm
only requires to operate |V | − 1 times to connect all the robots. The time complexity of the overall
scheme is O(V ). Thus, this scheme is scalable to initialize multi-robot systems with a large number
of robots.

3.5. Distributed Relative Pose Estimation Algorithm

Though the initial relative poses on the edges of the calibration tree have already be obtained
in neighbor detection process, these estimations are too inaccurate to calibrate the overall system.
Therefore, after the calibration tree is built, the central node will broadcast the information of the
calibration tree and the related initial relative poses to all the robots. Then our earlier work [47]
implemented on every robot will operate to refine the initial relative poses. In our earlier work [47],
an Iterative Closest Points (ICP) variant was proposed to estimate the relative pose between two RGB-D
camera equipped robots. Different from the methods for conventional RGB camera which use feature
correspondences to determine the rotation and translation up to a scale, this distributed, peer-to-peer
algorithm determines the relative pose in consistent real world scale through explicit registration of
surface geometries extracted from two depth images. The registration problem is approached by
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iteratively minimizing a cost function in which error metrics are defined based on the bidirectional
point-to-plane geometrical relationship.

Za and Zb are two depth images captured by robots a and b. The correspondences between
N = Na +Nb pairs of points extracted from Za and Zb are established. We can then estimate the
transformation matrix Mab by minimizing the bidirectional point-to-plane error metric, C, expressed
in normal least squares form as follows,

C =
Na∑
l=1

[
wl,a(Mabp

l
a − pl∗

b ) · ~nl∗,b

]2
+

Nb∑
k=1

[
wk,b(Mab

−1pk∗

a − pk
b ) · ~nk,b

]2
(8)

where pl
a and pk

b are the sampled points in depth frames Za and Zb, pl∗
b and pk∗

a are their corresponding
points on the other depth image respectively. The variables wl,a and wk,b are weight parameters for
correspondences established in opposite directions between pairs. The variables wl,a and wk,b are weight
parameters for correspondences established in opposite directions between pairs. Also, ~nl∗,b and ~nk,b are
the surface normals at the corresponding points pl∗

b and pk
b in real world coordinates, and

~nl∗,b =
[
αl∗,b βl∗,b γl∗,b 0

]T
(9)

~nk,b =
[
αk,b βk,b γk,b 0

]T
(10)

The cost function presented in Equation (8) consists of two parts:

1. the sum of squared distances in the forward direction from depth images Za to Zb, and
2. the sum of square distances in the backward direction from Zb to Za.

Algorithm 1 Relative pose refinement procedure
1: Capture a depth image, Za, on robot a, and capture a depth image, Zb, on robot b.
2: Initialize the transformation matrix, Mab, by the initial relative pose.
3: procedure REPEAT UNTIL CONVERGENCE
4: Update depth frame Za according to transformation matrix.
5: Randomly sample Na points from Za to form set Pa,

Pa = {pk
a ∈ Za, k = 1, . . . , Na},

6: Randomly sample Nb points from Zb to form set Pb,
Pb = {pk

b ∈ Zb, k = 1, . . . , Nb}.
7: Find the corresponding point set, P ∗

b , of Pa in Zb,
P ∗
b = {pk∗

b ∈ Zb, k = 1, . . . , Na};
Find the corresponding point set, P ∗

a , of Pb in Za,
P ∗
a = {pk∗

a ∈ Za, k = 1, . . . , Nb}.
. The correspondences are established using the project and walk method with a neighborhood size of 3x3 based

on the nearest neighbor criteria
8: Apply the weight function bidirectionally,

Pa 7→ P ∗
b , Pb 7→ P ∗

a

9: Compute and update transformation matrix based on current bidirectionally weighted correspondences
10: end procedure

We can then estimate Mab by re-weighting the least squares operation in an ICP framework. Details of
the criteria for selecting the weight function can be found in [47,52]. An overview of the entire process
is presented in Algorithm 1. In the first iteration, Mab is initialized by the initial relative pose determined
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in neighbor detection process. Afterwards, in this coarse-to-fine algorithm, each iteration generates an
update E to the robot’s pose which modifies the transformation matrix Mab. E takes the same form as
Mab which may be parameterized by a 6-dimensional motion vector having the elements α1, α2, . . . , α6

via the exponential map and their corresponding group generator matrices G1,G1, . . . ,G6 as

E = exp

(
6∑

j=1

αjGj

)
(11)

where

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


Here G1, G2 and G3 are the generators of translations in x, y and z directions, while G4, G5 and G6

are rotations about x, y and z axes respectively.
Afterwards, the task becomes finding the α1, . . . , α6 that describe the relative pose.

Through determining the partial derivatives of ub, vb and qb with respect to the unknown elements of
the motion vector α1, . . . , α6, the Jacobian matrix for each established corresponding point pair can be
obtained from

J =

qa 0 −uaqa −uava 1 + u2a −va
0 qa −vaqa −1− v2a vaua ua

0 0 −q2a −vaqa uaqa 0

 (12)

The six-dimensional motion vector, which minimizes Equation (8), is then determined iteratively by
the least squares solution

B = (KTWK)−1KTWY (13)

in which W is a diagonal matrix weighting the bidirectional point-to-plane correspondences. B, Y, and
K are matrices

B =



α1

α2

α3

α4

α5

α6


,Y =



−(p1
a − p1∗

b ) · ~n1∗,b
...

−(pNa
a − p

N∗
a

b ) · ~nN∗
a ,b

−(p1∗
a − p1

b) · ~n1,b
...

−(pN∗
b

a − pNk
b ) · ~nNb,b


(14)
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K =
[
~n′1∗,bJ1 ... ~n

′
N∗

a ,b
JNa ~n

′
1,bJ1∗ ... ~n

′
Nb,b

JN∗
b

]T
(15)

Here, ~n′l,b =
[
αl,b βl,b γl,b

]T
is the surface normal expressed in a slightly different form than the

one shown in Equations (9) and (10). To detect the convergence of our algorithm, we use the thresholds
for the ICP framework presented in [46]. Once the algorithm converges, the registration is considered as
completed and the Mab is refined based on the initial relative pose.

In reality each robot only has its own captured depth image. In order to efficiently accomplish the
centralized working principle of the algorithm described above, we distribute the tasks to two robots.
Instead of transmitting a complete depth image from one robot to another, each robot only transmits
a number of sampled points on its captured depth image to the other robot. The distributed process is
illustrated in Figure 5.

iteration
1

iteration
2

Figure 5. Distributing the tasks to two robots.

At each iteration, after robot b receives the sampled point set, Pa, from robot a, robot b will find
the corresponding point set, P ∗b , on its captured depth frame Zb. The first component in Equation (8)
will be derived. The information representing the first component will be sent along with the sampled
point set, Pb, from robot b to robot a. At robot a, Pb’s corresponding point set, P ∗a , will be determined.
And the second component in Equation (8) will be derived. Thereby, robot awill acquire the information
of both first and second component in Equation (8), and the motion parameters can be determined.
These procedures will be performed in each iteration. The transformation matrix describing the relative
pose between two robots will be obtained by robot a until the algorithm converges. More details and
performance evaluations of this approach can be found in [47].

The relative poses that construct the calibration tree are transmitted to the central node after being
determined by robots. Then all robots’ locations and orientations can be calibrated according to primary
robot’s coordinate system. A simple example of the working process is shown below.
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Figure 6 depicts a calibration tree for initializing a multi-robot system with 4 robots. Robots operate
RPE algorithm to derive the relative poses Mab, Mac, and Mcd according to the tree. By using these three
pose matrices, the relative pose between every two robots in the network can be derived. For instance,
robot d’s location and orientation in robot b’s coordinate system can be derived as

Mbd = MadMba = McdMacM
−1
ab (16)

a
b c

d
Figure 6. Example of a calibration tree.

4. Experimental Results and Discussion

In order to quantitatively evaluate the performance of the proposed method, we conducted a series
of experiments both in simulation and with our custom built multi-robot system. Section 4.1 describes
the localization experiments that were carried out with our experimental multi-robot system in indoor
environments. Section 4.2 presents the results of a set of simulations that were designed to further
evaluate the behavior of the method.

4.1. Indoor Experiments

We used the color and depth images captured by our experimental multi-robot system consisting of
seven RGB-D camera equipped robots. The images were taken from various locations in and around
WSRNLab facility. Color images of collected five scenes are shown in Figure 7. As the robots are
deployed on the same plane in this set of experiments, the ground truth locations and orientations can be
easily measured manually. The estimated robots’ poses are shown in Figure 8, in which the estimated
poses are depicted in red circles and the ground truth are represented in blue stars. We derived the
average absolute errors accordingly and presented in Table 3. The calibration trees of 5 scenes are
illustrated in Figure 9. We can see the pose estimations of Scene 1 have the smallest absolute error,
while the estimates in Scene 5 have the largest absolute error. We also measure the average relative error
for localization. The relative errors are computed based on the absolute errors and systems’ dimensions.
It is clear that the pose estimation results in Scene 4 and Scene 5 are the most and least accurate among
five scenes respectively. Through analyzing the robots’ sensing ranges in different scenes, we find that
sensing range is a main factor that affects the performance of our proposed scheme. As reported in [39],
the errors in the depth measurements of Kinect increase quadratically from a few millimeters at 0.5 m
distance to about 4 cm at the maximum range of the sensor. The inaccurate depth information obtained by
the Kinect on each robot influences the performance of the distributed relative pose estimation algorithm,
thereby decreasing the accuracy of the overall scheme. Due to this limitation of the RGB-D camera, the
robots’ sensing ranges should be controlled between around 0.5 m to 3.5 m.
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Figure 7. Color images captured by the multi-robot system in 5 scenes.
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Figure 8. Estimated and ground truth robots’ poses. Estimated locations are depicted in
red circles and the ground truth are represented in blue stars. The line segments on different
markers indicate orientations. (a) Scene 1; (b) Scene 2; (c) Scene 3; (d) Scene 4; (e) Scene 5.
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Figure 9. Calibration trees of indoor experiments.

Table 3. Average error between the estimated poses and the ground truth.

Data Set Sensing Range Average Absolute Error Localization Average Relative Error
Max (m) Average (m) Location (mm) Orientation (◦)

1 1.92 1.47 10.0 1.6 2.26%
2 6.23 1.72 14.8 2.3 1.36%
3 3.95 1.86 25.1 2.7 1.39%
4 1.79 1.41 12.6 2.1 1.12%
5 6.02 4.14 64.7 6.2 3.81%

4.2. Simulation Experiments

A series of simulation experiments were conducted to investigate the accuracy and bandwidth
consumption of the proposed scheme implemented on systems that were larger and have more
complicated topologies than the ones we could construct with our available hardware. When robots
are deployed on different planes, the ground truth poses can hardly be measured precisely by the manual
methods. Therefore, in this set of simulations we applied 3D image warping technique [53] on the
color and corresponding depth images captured in Scene 4 to generate synthetic image sets with known
transformation matrices. Image sets are generated for systems consisting of 10, 15 , 20, 25, 30, 35,
and 40 robots. In this process, we make sure that each robot has sufficiently overlapping FoV with at
least one another robot and can be connected in calibration tree. The results presented in Figure 10 are
averaged over 10 runs of the simulations with vertical bars indicating the variance.

Figure 10a,b, indicate the absolute errors in both location and orientation increase as the number
of robots in the system grows. It is because when the number of robots raises, the calibration tree
becomes larger and the primary robot requires more intermediate nodes to establish the connection with
another robot in the system. Though this effect accumulates small errors, the average absolute errors are
still quite small and the average relative error is within 1.3%. The average bandwidth consumption of
each robot is presented in Figure 10c. As expected, the bandwidth usage per robot remains consistent
approximately in relation to the number of robots in the system. There are two processes in our proposed
scheme require communication between robots: (1) Neighbor detection; and (2) distributed relative pose
estimation. As the number of times that distributed relative pose estimation runs increase linearly with
number of robots, the each robot’s transmission load in this process will not be influenced by the number
of robots in the system. The only variable that affects the transmission load is the number of the feature
points in the neighbor detection process. However, the number of feature points, which depends on the
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structure of the captured scene, is irrelative with the number of robots. Therefore, the evenly distributed
communication load throughout the system indicates the good scalability of our proposed scheme.
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Figure 10. Simulation results. (a) Average absolute error in location estimation with
increasing number of robots in the system; (b) Average absolute error in estimated
orientation with increasing number of robots in the system; (c) Bandwidth consumption
per robot with increasing number of robots in the system.

5. Conclusions

This paper describes the first approach which uses color and depth information to initialize robots’
poses in a RGB-D camera equipped multi-robot system. Our scheme first detects each robot’s neighbors
using robust feature matching. Then the overlapping area between FoVs of neighboring robots are
determined to establish the robot dependency graph. A calibration tree is generated through finding the
shortest path between the primary robot to all the other robots in the system. At last, a distributed relative
pose estimation algorithm is performed to precisely compute relative pose between every two connected
robots in the calibration tree. Extensive real world experiments and synthetic dataset simulations have
been conducted. The results show that our scheme is robust and accurate in various environments and
densities of robots. Importantly, the proposed scheme operates distributively and allows the robots to
use the limited wireless bandwidth more efficiently. This calibration algorithm, which provides initial
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location and orientation information, has great potentials to be used in a wide range of applications, such
as visual SLAM and 3D reconstruction.

In future, we plan to present a distributed solution to enhance the performance of the current
semi-centralized framework. In order to achieve this goal, we require to upgrade the hardware of eyeBug.
Therefore, eyeBug obtains better computational ability and can operate more complicated computer
vision algorithms. Further, we would like to develop an efficient algorithm which can keep updating
robots’ relative poses in real time. This algorithm can be built on our framework to realize the refinement
process in cooperative localization.
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draft of the manuscript. Y. Ahmet Şekercioğlu proposed the idea about using depth data in conjunction
with color information, created the robot system, provided the experimental facilities and valuable input
to the manuscript. Tom Drummond contributed the mathematical deduction and formulas in distributed
relative pose estimation algorithm.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Oyekan, J.; Hu, H. Ant Robotic Swarm for Visualizing Invisible Hazardous Substances. Robotics
2013, 2, 1–18.

2. Parker, L.E. Distributed Algorithms for Multi-Robot Observation of Multiple Moving Targets.
Auton. Robots 2002, 12, 231–255.

3. Delle Fave, F.; Canu, S.; Iocchi, L.; Nardi, D.; Ziparo, V. Multi-Objective Multi-Robot
Surveillance. In Proceedings of the 4th International Conference on Autonomous Robots and
Agents, Wellington, New Zealand, 10–12 February 2009; pp. 68–73.

4. Karakaya, M.; Qi, H. Collaborative Localization in Visual Sensor Networks. ACM Trans.
Sens. Netw. 2014, 10, 18:1–18:24.

5. Stroupe, A.W.; Martin, M.C.; Balch, T. Distributed Sensor Fusion for Object Position Estimation
by Multi-Robot Systems. In Proceedings of the IEEE International Conference on Robotics and
Automation, Seoul, Korea, 21-26 May 2001; Volume 2, pp. 1092–1098.

6. Soto, C.; Song, B.; Roy-Chowdhury, A.K. Distributed Multi-Target Tracking in a Self-Configuring
Camera Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1486–1493.

7. Xu, Y.; Qi, H. Mobile Agent Migration Modeling and Design for Target Tracking in Wireless
Sensor Networks. Ad Hoc Netw. 2008, 6, 1–16.

8. Dong, W. Tracking Control of Multiple-Wheeled Mobile Robots With Limited Information of a
Desired Trajectory. IEEE Trans. Robot. 2012, 28, 262–268.



Robotics 2015, 4 20

9. Dong, W.; Chen, C.; Xing, Y. Distributed estimation-based tracking control of multiple uncertain
non-linear systems. Int. J. Syst. Sci. 2014, 45, 2088–2099.

10. Dong, W.; Djapic, V. Leader-following control of multiple nonholonomic systems over directed
communication graphs. Int. J. Syst. Sci. 2014, doi: 10.1080/00207721.2014.955553.

11. Samperio, R.; Hu, H. Real-Time Landmark Modelling for Visual-Guided Walking Robots. Int. J.
Comput. Appl. Technol. 2011, 41, 253–261.

12. Gil, A.; Reinoso, Ó.; Ballesta, M.; Juliá, M. Multi-Robot Visual SLAM Using a Rao-Blackwellized
Particle Filter. Robot. Auton. Syst. 2010, 58, 68–80.

13. Chow, J.C.; Lichti, D.D.; Hol, J.D.; Bellusci, G.; Luinge, H. IMU and Multiple RGB-D
Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning. Robotics 2014,
3, 247–280.

14. Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal.
Mach. Intell. 2000, 22, 1330–1334.

15. Kitahara, I.; Saito, H.; Akimichi, S.; Ono, T.; Ohta, Y.; Kanade, T. Large-scale virtualized reality. In
Proceedings of the International Conference on Computer Vision and Pattern Recognition, Kauai,
HI, USA, 8–14 December 2001.

16. Chen, X.; Davis, J.; Slusallek, P. Wide Area Camera Calibration Using Virtual Calibration Objects.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head,
SC, USA, 13–15 June 2000.; Volume 2, pp. 520–527.

17. Svoboda, T.; Hug, H.; Gool, L.J.V. ViRoom-Low Cost Synchronized Multicamera System and Its
Self-calibration. In Proceedings of the 24th DAGM Symposium on Pattern Recognition, Zurich,
Switzerland, 16–18 September 2002; pp. 515–522.

18. Svoboda, T.; Martinec, D.; Pajdla, T. A Convenient Multi-Camera Self-Calibration for Virtual
Environments. Teleoperators Virtual Environ. 2005, 14, 407–422.

19. Hörster, E.; Lienhart, R. Calibrating and Optimizing Poses of Visual Sensors in Distributed
Platforms. Multimed. Syst. 2006, 12, 195–210.

20. Läbe, T.; Förstner, W. Automatic Relative Orientation of Images. In Proceedings of the 5th
Turkish-German Joint Geodetic Days, Berlin, Germany, 28–31 March 2006; Volume 29, p. 31.

21. Rodehorst, V.; Heinrichs, M.; Hellwich, O. Evaluation of Relative Pose Estimation Methods for
Multi-Camera Setups. Int. Arch. Photogram. Remote Sens. 2008, pp. 135–140.

22. Jaspers, H.; Schauerte, B.; Fink, G.A. Sift-Based Camera Localization Using Reference Objects
for Application in Multi-camera Environments and Robotics. In Proceedings of the International
Conference on Pattern Recognition Applications and Methods, vilamoura, portugal, 6–8 February
2012; pp. 330–336.

23. Aslan, C.T.; Bernardin, K.; Stiefelhagen, R.; others. Automatic Calibration of Camera Networks
Based on Local Motion Features. In Proceedings of the Workshop on Multi-Camera and
Multi-Modal Sensor Fusion Algorithms and Applications, Marseille, France, October 2008.

24. Devarajan, D.; Radke, R.J. Distributed Metric Calibration of Large Camera Networks.
In Proceedings of the First Workshop on Broadband Advanced Sensor Networks (BASENETS),
San Jose, CA, USA, 25 October 2004; Volume 3, pp. 5–24.



Robotics 2015, 4 21

25. Kurillo, G.; Li, Z.; Bajcsy, R. Wide-Area External Multi-Camera Calibration Using Vision Graphs
and Virtual Calibration Object. In Proceedings of the Second ACM/IEEE International Conference
on Distributed Smart Cameras, Stanford, CA, USA, 7–11 September 2008; pp. 1–9.

26. Cheng, Z.; Devarajan, D.; Radke, R.J. Determining Vision Graphs for Distributed Camera
Networks Using Feature Digests. EURASIP J. Appl. Signal Process. 2007, 2007, 220–220.

27. Vergés-Llahı, J.; Moldovan, D.; Wada, T. A New Reliability Measure for Essential Matrices
Suitable in Multiple View Calibration. In Proceedings of the International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal, Portugal,
22–25 January 2008; pp. 114–121.

28. Bajramovic, F.; Denzler, J. Global Uncertainty-based Selection of Relative Poses for Multi Camera
Calibration. In Proceedings of the British Machine Vision Conference, 1–4 September 2008, Leeds,
UK; pp. 1–10.

29. Bajramovic, F.; Brückner, M.; Denzler, J. An Efficient Shortest Triangle Paths Algorithm Applied
to Multi-Camera Self-Calibration. J. Math. Imaging Vis. 2012, 43, 89–102.

30. Brückner, M.; Bajramovic, F.; Denzler, J. Intrinsic and Extrinsic Active Self-Calibration of
Multi-Camera Systems. Mach. Vis. Appl. 2014, 25, 389–403.

31. Wireless Sensor and Robot Networks Laboratory (WSRNLab). Available online:
http://wsrnlab.ecse.monash.edu.au (accessed on 1 December 2014).

32. Beagleboard-xM System Reference Manual. Available online: http://beagleboard.org/static/
(accessed on 1 December 2014).

33. Ubuntu Server for ARM Processor Family. Available online: http://www.ubuntu.com/
download/server/arm (accessed on 1 December 2014).

34. OpenKinect Library. Available online: http://openkinect.org (accessed on 1 December 2014).
35. OpenCV: Open Source Computer Vision Library. Available online: http://opencv.org (accessed on

1 December 2014).
36. libCVD-Computer Vision Library. Available online: http://www.edwardrosten.com/cvd/ (accessed

on 1 December 2014).
37. Arieli, Y.; Freedman, B.; Machline, M.; Shpunt, A. Depth Mapping Using Projected Patterns.

U.S. Patent 8,150,142, 2012.
38. Butler, D.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Hodges, S.; Kim, D. Shake’n’Sense: Reducing

Interference for Overlapping Structured Light Depth Cameras. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, Austin, Texas, 5–10 May 2012;
pp. 1933–1936.

39. Khoshelham, K. Accuracy Analysis of Kinect Depth Data. In Proceedings of the ISPRS Workshop
Laser Scanning, Calgary, Canada, 29–31 August 2011; Volume 38, p. W12.

40. Stowers, J.; Hayes, M.; Bainbridge-Smith, A. Altitude Control of a Quadrotor Helicopter Using
Depth Map from Microsoft Kinect Sensor. In Proceedings of the 2011 IEEE International
Conference on Mechatronics, Istanbul, Turkey, 13–15 April 2011; pp. 358–362.

41. Khoshelham, K.; Elberink, S.O. Accuracy and Resolution of Kinect Depth Data for Indoor
Mapping Applications. Sensors 2012, 12, 1437–1454.



Robotics 2015, 4 22

42. Rosten, E.; Drummond, T. Machine Learning for High-Speed Corner Detection. In Computer
Vision–ECCV 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 430–443.

43. Rosten, E.; Porter, R.; Drummond, T. Faster and Better: A Machine Learning Approach to Corner
Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119.

44. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF.
In Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain,
6–13 November 2011; pp. 2564–2571.

45. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.;
Freeman, D.; Davison, A.; Fitzgibbon, A. Kinectfusion: Real-Time 3D Reconstruction and
Interaction Using a Moving Depth Camera. In Proceedings of the UIST, Santa Barbara, CA, USA,
16–19 October 2011; pp. 559–568.

46. Lui, W.; Tang, T.; Drummond, T.; Li, W.H. Robust Egomotion Estimation Using ICP in Inverse
Depth Coordinates. In Proceedings of the 2012 IEEE International Conference on Robotics and
Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 1671–1678.
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