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Abstract: The cops-and-robber (CR) game has been used in mobile robotics as a discretized
model (played on a graph G) of pursuit/evasion problems. The “classic” CR version is
a perfect information game: the cops’ (pursuer’s) location is always known to the robber
(evader) and vice versa. Many variants of the classic game can be defined: the robber can
be invisible and also the robber can be either adversarial (tries to avoid capture) or drunk
(performs a random walk). Furthermore, the cops and robber can reside in either nodes
or edges of G. Several of these variants are relevant as models or robotic pursuit/evasion.
In this paper, we first define carefully several of the variants mentioned above and related
quantities such as the cop number and the capture time. Then we introduce and study
the cost of visibility (COV), a quantitative measure of the increase in difficulty (from the
cops’ point of view) when the robber is invisible. In addition to our theoretical results, we
present algorithms which can be used to compute capture times and COV of graphs which
are analytically intractable. Finally, we present the results of applying these algorithms to
the numerical computation of COV.
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1. Introduction

Pursuit/evasion (PE) and related problems (search, tracking, surveillance) have been the subject of
extensive research in the last fifty years and much of this research is connected to mobile robotics [1].
When the environment is represented by a graph (for instance, a floorplan can be modeled as a
graph, with nodes corresponding to rooms and edges corresponding to doors; similarly, a maze can be
represented by a graph with edges corresponding to tunnels and nodes corresponding to intersections),
the original PE problem is reduced to a graph game played between the pursuers and the evader.

In the current paper, inspired by Isler and Karnad’s recent work [2], we study the role of information
in cops-and-robber (CR) games, an important version of graph-based PE. By “information” we mean
specifically the players’ location. For example, we expect that when the cops know the robber’s location
they can do better than when the robber is “invisible”. Our goal is to make precise the term “better”.

Reviews of the graph theoretic CR literature appear in [3–5]. In the “classical” CR variant [6] it
is assumed that the cops always know the robber’s location and vice versa. The “invisible” variant, in
which the cops cannot see the robber (but the robber always sees the cops) has received less attention
in the graph theoretic literature; among the few papers which treat this case we mention [2,7–9] and
also [10] in which both cops and robber are invisible.

Both the visible and invisible CR variants are natural models for discretized robotic PE problems;
the connection has been noted and exploited relatively recently [2,8,11]. If it is further assumed that
the robber is not actively trying to avoid capture (the case of drunk robber) we obtain a one-player
graph game; this model has been used quite often in mobile robotics [12–16] and especially (when
assuming random robber movement) in publications such as [17–21], which utilize partially observable
Markov decision processes (POMDP, [22–24]). For a more general overview of pursuit/evasion and
search problems in robotics, the reader is referred to [1]; some of the works cited in this paper provide
a useful background to the current paper. Finally, several related works have also been published in the
Distributed Algorithms community [25–27].

This paper is structured as follows. In Section 2 we present preliminary material, notation and the
definition of the “classical” CR game; we also introduce several node and edge CR variants. In Section 3
we define rigorously the cop number and capture time for the classical CR game and the previously
introduced CR variants. In Section 4 we study the cost of visibility (COV). In Section 5 we present
algorithms which compute capture time and optimal strategies for several CR variants. In Section 6 we
further study COV using computational experiments. Finally, in Section 7 we summarize and present
our conclusions.

2. Preliminaries

2.1. Notation

1. We use the following notations for sets: N denotes {1, 2, . . .}; N0 denotes {0, 1, 2, . . .}; [K] denotes
{1, . . . , K}; A − B = {x : x ∈ A, x /∈ B}; |A| denotes the cardinality of A (i.e., the number of
its elements).
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2. A graph G = (V,E) consists of a node set V and an edge set E, where every e ∈ E has the
form e = {x, y} ⊆ V . In other words, we are concerned with finite, undirected, simple graphs;
in addition we will always assume that G is connected and that G contains n nodes: |V | = n.
Furthermore, we will assume, without loss of generality, that the node set is V = {1, 2, ..., n}.
We let V K = V × V × . . .× V︸ ︷︷ ︸

K times

. We also define V 2
D ⊆ V 2 by V 2

D = {(x, x) : x ∈ V } (it is the set

of “diagonal” node pairs).
3. A directed graph (digraph) G = (V,E) consists of a node set V and an edge set E, where every
e ∈ E has the form e = (x, y) ∈ V × V . In other words, the edges of a digraph are ordered pairs.

4. In graphs, the (open) neighborhood of some x ∈ V is N (x) = {y : {x, y} ∈ E}; in digraphs it is
N (x) = {y : (x, y) ∈ E}. In both cases, the closed neighborhood of x is N [x] = N (x) ∪ {x}.

5. Given a graph G = (V,E), its line graph L (G) = (V ′, E ′) is defined as follows: the node set
is V ′ = E, i.e., it has one node for every edge of G; the edge set is defined by having the nodes
{u, v} , {x, y} ∈ V ′ connected by an edge {{u, v} , {x, y}} if and only if |{u, v} ∩ {x, y}| = 1

(i.e., if the original edges of G are adjacent).
6. We will write f (n) = o (g (n)) if and only if limn→∞

f(n)
g(n)

= 0. Note that in this asymptotic
notation n denotes the parameter with respect to which asymptotics are considered. So in later
sections we will write o (n), o (M) etc.

2.2. The CR Game Family

The “classical” CR game can be described as follows. Player C controls K cops (with K ≥ 1) and
player R controls a single robber. Cops and robber are moved along the edges of a graph G = (V,E)

in discrete time steps t ∈ N0. At time t, the robber’s location is Yt ∈ V and the cops’ locations are
Xt = (X1

t , X
2
t , . . . , X

K
t ) ∈ V K (for t ∈ N0 and k ∈ [K]). The game is played in turns; in the 0-th turn

first C places the cops on nodes of the graph and then R places the robber; in the t-th turn, for t > 0, first
C moves the cops to Xt and then R moves the robber to Yt. Two types of moves are allowed: (a) sliding
along a single edge and (b) staying in place; in other words, for all t and k, either {Xk

t−1, X
k
t } ∈ E

or Xk
t−1 = Xk

t ; similarly, {Yt−1, Yt} ∈ E or Yt−1 = Yt. The cops win if they capture the robber, i.e.,
if there exist t ∈ N0 and k ∈ [K] such that Yt = Xk

t ; the robber wins if for all t ∈ N0 and k ∈ [K]

we have Yt 6= Xk
t . In what follows we will describe these eventualities by the following “shorthand

notation”: Yt ∈ Xt and Yt /∈ Xt (i.e., in this notation we consider Xt as a set of cop positions).
In the classical game both C and R are adversarial: C plays to effect capture and R plays to avoid it.

But there also exist “drunk robber” versions, in which the robber simply performs a random walk on G
such that, for all ∀u, v ∈ V we have

Pr (Y0 = u) =
1

n
and Pr (Yt+1 = u|Yt = v) =

{
1

|N(v)| if and only if u ∈ N(v)

0 otherwise
(1)

In this case we can say that no R player is present (or, following a common formulation, we can say
that the R player is “Nature”).
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If an R player exists, the cops’ locations are always known to him; on the other hand, the robber can
be either visible (his location is known to C) or invisible (his location is unknown). Hence we have four
different CR variants, as detailed in the following Table 1.

Table 1. Four variants of the CR game.

Adversarial Visible Robber av-CR
Adversarial Invisible Robber ai-CR
Drunk Visible Robber dv-CR
Drunk Invisible Robber di-CR

In all of the above CR variants both cops and robber move from node to node. This is a good model
for entities (e.g., robots) which move from room to room in an indoor environment. There also exist
cases (for example moving in a maze or a road network) where it makes more sense to assume that
both cops and robber move from edge to edge. We will call the classical version of the edge CR game
edge av-CR; it has attracted attention only recently [28]. Edge ai-CR, dv-CR and di-CR variants are also
possible, in analogy to the node versions listed in the Table. Each of these cases can be reduced to the
corresponding node variant, with the edge game taking place on the line graph L (G) of G.

3. Cop Number and Capture Time

Two graph parameters which can be obtained from the av-CR game are the cop number and the
capture time. In this section we will define these quantities in game theoretic terms (while this approach
is not common in the CR literature, we believe it offers certain advantages in clarity of presentation)
and also consider their extensions to other CR variants. Before examining each of these CR variants in
detail, let us mention a particular modification which we will apply to all of them. Namely, we assume
that (every variant of) the CR game is played for an infinite number of rounds. This is obviously the case
if the robber is never captured; but we also assume that, in case the robber is captured at some time t∗,
the game continues for t ∈ {t∗ + 1, t∗ + 2, . . .} with the following restriction: for all t ≥ t∗, we have
Yt = Xk∗

t (where k∗ is the number of cop who effected the capture). This modification facilitates the
game theoretic analysis presented in the sequel; intuitively, it implies that after capture, the k∗-th cop
forces the robber to “follow” him.

3.1. The Node av-CR Game

We will define cop number and capture time in game theoretic terms. To this end we must first define
histories and strategies.

A particular instance of the CR game can be fully described by the sequence of cops and robber
locations; these locations are fully determined by the C and R moves. So, if we let xt ∈ V K

(resp. yt ∈ V ) denote the nodes into which C (resp. R) places the cops (resp. the robber) at time t, then a
history is a sequence x0y0x1y1 . . . . Such a sequence can have finite or infinite length; we denote the set
of all finite length histories by H(K)

∗ ; note that there exists an infinite number of finite length sequences.
By convention H

(K)
∗ also includes the zero-length or null history, which is the empty sequence (this
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corresponds to the beginning of the game, when neither player has made a move, just before C places
the cops on G), denoted by λ. Finally, we denote the set of all infinite length histories by H(K)

∞ .
Since both cops and robber are visible and the players move sequentially, av-CR is a game of

perfect information; in such a game C loses nothing by limiting himself to pure (i.e., deterministic)
strategies [29]. A pure cop strategy is a function sC : H

(K)
∗ → V K ; a pure robber strategy is a function

sR : H
(K)
∗ → V . In both cases the idea is that, given a finite length history, the strategy produces the

next cop or robber move (note the dependence on K, the number of cops); for example, when the robber
strategy sR receives the input x0, it will produce the output y0 = sR (x0); when it receives x0y0x1, it
will produce y1 = sR (x0y0x1) and so on. We will denote the set of all legal cop strategies by S

(K)
C

and the set of all legal robber strategies by S
(K)
R ; a strategy is “legal” if it only provides moves which

respect the CR game rules. The set S̃(K)
C ⊆ S

(K)
C (resp. S̃(K)

R ⊆ S
(K)
R ) is the set of memoryless legal cop

(resp. robber) strategies, i.e., strategies which only depend only on the current cops and robber positions;
we will denote the memoryless strategies by Greek letters, e.g., σC , σR etc. In other words

σC ∈ S̃
(K)
C ⇒ [∀t : xt+1 = σC (x0y0 . . . .xtyt) = σC (xtyt)]

σR ∈ S̃
(K)
R ⇒ [∀t : yt+1 = σR (x0y0 . . . .xtytxt+1) = σR (ytxt+1)]

It seems intuitively obvious that both C and R lose nothing by playing with memoryless strategies
(i.e., computing their next moves based on the current position of the game, not on its entire history).
This is true but requires a proof. One approach to this proof is furnished in [30,31]. But we will
present another proof by recognizing that the CR game belongs to the extensively researched family of
reachability games [32,33].

A reachability game is played by two players (Player 0 and Player 1) on a digraph G =
(
V ,E

)
; each

node v ∈ V is a position and each edge is a move; i.e., the game moves from node to node (position)
along the edges of the digraph. The game is described by the tuple

(
V 0, V 1, E, F

)
, where V 0∪V 1 = V ,

V 0 ∩ V 1 = ∅ and F ⊆ V . For i ∈ {0, 1}, V i is the set of positions (nodes) from which the i-th Player
makes the next move; the game terminates with a win for Player 0 if and only if a move takes place into
a node v ∈ F (the target set of Player 0); if this never happens, Player 1 wins. Here is a more intuitive
description of the game: each move consists in sliding a token from one digraph node to another, along
an edge; the i-th player slides the token if and only if it is currently located on a node v ∈ V i (i ∈ {0, 1});
Player 0 wins if and only if the token goes into a node u ∈ F ; otherwise Player 1 wins. The following is
well known [32,33].

Theorem 1. Let
(
V 0, V 1, E, F

)
be a reachability game on the digraph D =

(
V ,E

)
. Then V can be

partitioned into two sets W 0 and W 1 such that (for i ∈ {0, 1}) player i has a memoryless strategy σi
which is winning whenever the game starts in u ∈ W i.

We can convert the av-CR game with K cops to an equivalent reachability game which is played on
the CR game digraph. In this digraph every node corresponds to a position of the original CR game;
a (directed) edge from node u to node v indicates that it is possible to get from position u to position v
in a single move. The CR game digraph has three types of nodes.

1. Nodes of the form u = (x, y, p) correspond to positions (in the original CR game) with the cops
located at x ∈ V K , the robber at y ∈ V and player p ∈ {C,R} being next to move.
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2. There is single node u = (λ, λ, C) which corresponds to the starting position of the game: neither
the cops nor the robber have been placed on G; it is C’s turn to move (recall that λ denotes the
empty sequence).

3. Finally, there exist n nodes of the form u = (x, λ,R): the cops have just been placed in the graph
(at positions x ∈ V K) but the robber has not been placed yet; it is R’s turn to move.

Let us now define

V
(K)

0 =
{
(x, y, C) : x ∈ V K ∪ {λ} , y ∈ V ∪ {λ}

}
V

(K)

1 =
{
(x, y, R) : x ∈ V K ∪ {λ} , y ∈ V ∪ {λ}

}
V

(K)
= V

(K)

0 ∪ V (K)

1

and let E
(K)

consist of all pairs (u, v) where u, v ∈ V
(K)

and the move from u to v is legal. Finally,
we recognize that C’s target set is

F
(K)

=
{
(x, y, p) : x ∈ V K , y ∈ (V ∩ x) , p ∈ {C,R}

}
i.e., the set of all positions in which the robber is in the same node as at least one cop.

With the above definitions, we have mapped the classical CR game (played with K cops on the
graph G) to the reachability game

(
V

(K)

0 , V
(K)

1 , E
(K)
, F

(K)
)

. By Theorem 1, Player i (with i ∈ {0, 1})

will have a winning set W
(K)

i ⊆ V
(K)

, i.e., a set with the following property: whenever the reachability
game starts at some u ∈ W (K)

i , then Player i has a winning strategy (it may be the case, for specific G
and K that either of W

(K)

0 , W
(K)

1 is empty). Recall that in our formulation of CR as a reachability game,
Player 0 is C. In reachability terms, the statement “C has a winning strategy in the classical CR game”
translates to “(λ, λ, C) ∈ W (K)

0 ” and, for a given graph G, the validity of this statement will in general
depend on K. It is clear that W

(K)

0 is increasing with K:

K1 ≤ K2 ⇒ W
(K1)

0 ⊆ W
(K2)

0 (2)

It is also also clear that

“ (λ, λ, C) ∈ W (|V |)
0 ” is true for every G = (V,E) (3)

because, if C has |V | cops, he can place one in every u ∈ V and win immediately. In fact, for K = |V |,
we have W

(|V |)
0 = V

(K)
, because from every position (x, y, p), C can move the cops so that one cop

resides in each u ∈ V , which guarantees immediate capture.
Based on Equations (2) and (3) we can define the cop number of G to be the minimum number of

cops that guarantee capture; more precisely we have the following definition (which is equivalent to the
“classical” definition of cop number [34]).

Definition 1. The cop number of G is

c (G) = min
{
K : (λ, λ, C) ∈ W (K)

0

}
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While a cop winning strategy sC guarantees that the token will go into (and remain in) F
(K)

, we still
do not know how long it will take for this to happen. However, it is easy to prove that, if K ≥ c(G) and
C uses a memoryless winning strategy, then no game position will be repeated until capture takes place.
Hence the following holds.

Theorem 2. For every G, let K ≥ c (G) and consider the CR game played on G with K cops. There
exists a a memoryless cop winning strategy σC and a number T (K;G) <∞ such that, for every robber
strategy sR, C wins in no more than T (K;G) rounds.

Let us now turn from winning to time optimal strategies. To define these, we first define the capture
time, which will serve as the CR payoff function.

Definition 2. Given a graph G, some K ∈ N and strategies sC ∈ S
(K)
C , sR ∈ S

(K)
R the av-CR capture

time is defined by

T (K) (sC , sR|G) = min
{
t : ∃k ∈ [K] such that Yt = Xk

t

}
(4)

in case capture never takes place, we let T (K) (sC , sR|G) =∞.

We will assume that R’s payoff is T (K) (sC , sR|G) and C’s payoff is −T (K) (sC , sR|G) (hence av-CR
is a two-person zero-sum game). Note that capture time (i) obviously depends on K and (ii) for a fixed
K is fully determined by the sC and sR strategies. Now, following standard game theoretic practice,
we define optimal strategies.

Definition 3. For every graph G and K ∈ N, the strategies s(K)
C ∈ S

(K)
C and s(K)

R ∈ S
(K)
R are a pair of

optimal strategies if and only if

sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

T (K) (sC , sR|G) = inf
sC∈S

(K)
C

sup
sR∈S

(K)
R

T (K) (sC , sR|G) (5)

The value of the av-CR game played withK cops is the common value of the two sides of Equation (5)
and we denote it T (K)

(
s
(K)
C , s

(K)
R |G

)
.

We emphasize that the validity of Equation (5) is not known a priori. C (resp. R) can
guarantee that he loses no more than inf

sC∈S
(K)
C

sup
sR∈S

(K)
R

T (K) (sC , sR|G) (resp. gains no less than

sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

T (K) (sC , sR|G)). We always have

sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

T (K) (sC , sR|G) ≤ inf
sC∈S

(K)
C

sup
sR∈S

(K)
R

T (K) (sC , sR|G) (6)

But, since av-CR is an infinite game (i.e., depending on sC and sR, it can last an infinite number of
turns) it is not clear that equality holds in Equation (6) and, even when it does, the existence of optimal
strategies

(
s
(K)
C , s

(K)
R

)
which achieve the value is not guaranteed.

In fact it can be proved that, forK ≥ c (G), av-CR has both a value and optimal strategies. The details
of this proof will be reported elsewhere, but the gist of the argument is the following. Since av-CR is
played with K ≥ c (G) cops, by Theorem 2, C has a memoryless strategy which guarantees the game



Robotics 2014, 4 378

will last no more than T (K;G) turns. Hence av-CR with K ≥ c (G) essentially is a finite zero-sum
two-player game; it is well known [35] that every such game has a value and optimal memoryless
strategies. In short, we have the following.

Theorem 3. Given any graph G and any K ≥ c (G), for the av-CR game there exists a pair(
σ
(K)
C , σ

(K)
R

)
∈ S̃

(K)
C × S̃

(K)
R of memoryless time optimal strategies such that

T (K)
(
σ
(K)
C , σ

(K)
R |G

)
= sup

sR∈S
(K)
R

inf
sC∈S

(K)
C

T (K) (sC , sR|G) = inf
sC∈S

(K)
C

sup
sR∈S

(K)
R

T (K) (sC , sR|G)

Hence we can define the capture time of a graph to be the value of av-CR when played on G with
K = c (G) cops.

Definition 4. The adversarial visible capture time of G is

ct (G) = sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

T (K) (sC , sR|G) = inf
sC∈S

(K)
C

sup
sR∈S

(K)
R

T (K) (sC , sR|G)

with K = c (G).

3.2. The Node dv-CR Game

In this game the robber is visible and performs a random walk on G (drunk robber) as indicated by
Equation (1). In the absence of cops, Yt is a Markov chain on V , with transition probability matrix P ,
where for every u, v ∈ {1, 2, ..., |V |} we have

Pu,v = Pr (Yt+1 = u|Yt = v)

In the presence of one or more cops, {Yt}∞t=0 is a Markov decision process (MDP) [36] with state
space V ∪ {n+ 1} (where n+ 1 is the capture state) and transition probability matrix P (Xt) (obtained
from P as shown in [37]); in other words, Xt is the control variable, selected by C.

Since no robber strategy is involved, the capture time on G only depends on the (K-cops strategy)
sC : namely:

T (K) (sC |G) = min
{
t : ∃k ∈ [K] such that Yt = Xk

t

}
(7)

which can also be written as

T (K) (sC |G) =
∞∑
t=0

1 (Yt /∈ Xt) (8)

where 1 (Yt /∈ Xt) equals 1 if Yt does not belong to Xt (taken as a set of cop positions) and 0 otherwise.
Since the robber performs a random walk on G, it follows that T (K) (sC |G) is a random variable, and C
wants to minimize its expected value:

E
(
T (K) (sC |G)

)
= E

(
∞∑
t=0

1 (Yt /∈ Xt)

)
(9)

The minimization of Equation (9) is a typical undiscounted, infinite horizon MDP problem. Using
standard MDP results [36] we see that (i) C loses nothing by determining X0, X1, . . . through a
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memoryless strategy σC (x, y) and (ii) for every K ≥ 1, E
(
T (K) (σC |G)

)
is well defined. Furthermore,

for every K ∈ N there exists an optimal strategy σ(K)
C which minimizes E

(
T (K) (σC |G)

)
; hence we

have the following.

Theorem 4. Given any graph G and K ∈ N, for the dv-CR game played on G with K cops there exists
a memoryless strategy σ(K)

C ∈ S̃
(K)
C such that

E
(
T (K)

(
σ
(K)
C |G

))
= inf

sC∈S
(K)
C

E
(
T (K) (sC |G)

)
Definition 5. The drunk visible capture time of G is

dct (G) = inf
sC∈S

(K)
C

E
(
T (K) (sC |G)

)
with K = c (G).

Note that, even though a single cop suffices to capture the drunk robber on any G, we have chosen to
define dct (G) to be the capture time for K = c (G) cops; we have done this to make (in Section 4) an
equitable comparison between ct (G) and dct (G).

3.3. The Node ai-CR Game

This is not a perfect information game, since C cannot see R’s moves. Hence C and R must
use mixed strategies sC , sR. A mixed strategy sC (resp. sR) specifies, for every t, a conditional
probability Pr (Xt|X0, Y0, . . . , Yt−2, Xt−1, Yt−1) (resp. Pr (Yt|X0, Y0, . . . , Yt−1, Xt)) according to
which C (resp. R) selects his t-th move. Let S

(K)

C (resp. S
(K)

R ) be the set of all mixed cop
(resp. robber) strategies. A strategy pair (sR, sC) ∈ S

(K)

C × S
(K)

R , specifies probabilities for all events
(X0 = x0, . . . , Xt = xt, Y0 = y0, . . . , Yt = yt) and these induce a probability measure which in turn
determines R’s expected gain (and C’s expected loss), namely E

(
T (K)

(
s
(K)
C , s

(K)
R |G

))
. Let us define

v(K) = sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

E
(
T (K) (sC , sR|G)

)
v(K) = inf

sC∈S
(K)
C

sup
sR∈S

(K)
R

E
(
T (K) (sC , sR|G)

)
Similarly to av-CR, C (resp. R) can guarantee an expected payoff no greater than v(K) (resp. no less

than v(K)). If v(K) = v(K), we denote the common value by v(K) and call it the value of the ai-CR
game (played on G, with K cops). A pair of strategies

(
s
(K)
C , s

(K)
R

)
is called optimal if and only if

E
(
T (K)

(
s
(K)
C , s

(K)
R |G

))
= v(K).

In [9] we have studied the ai-CR game and proved that it does indeed have a value and optimal
strategies. We give a summary of the relevant argument; proofs can be found in [9].

First, invisibility does not increase the cop number. In other words, there is a cop strategy
(involving c (G) cops) which guarantees bounded expected capture time for every robber strategy sR.
More precisely, we have proved the following.
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Theorem 5. On any graph G let s(K)
C denote the strategy in which K cops random-walk on G. Then

∀K ≥ c (G) : sup
sR∈S

(K)
R

E
(
T (K)

(
s
(K)
C , sR|G

))
<∞

Now consider the “m-truncated” ai-CR game which is played exactly as the “regular” ai-CR but
lasts at most m turns. Strategies sR ∈ S

(K)

R and sC ∈ S
(K)

C can be used in the m-truncated game: C
and R use them only until the m-th turn. Let R receive one payoff unit for every turn in which the
robber is not captured; denote the payoff of the m-truncated game (when strategies sC , sR are used) by
T

(K)
m (sC , sR|G). Clearly

∀m ∈ N, sR ∈ S
(K)

R , sC ∈ S
(K)

C : T (K)
m (sC , sR|G) ≤ T

(K)
m+1 (sC , sR|G) ≤ T (K) (sC , sR|G)

The expected payoff of the m-truncated game is E
(
T

(K)
m (sC , sR|G)

)
. Because it is a finite,

two-person, zero-sum game, the m-truncated game has a value and optimal strategies. Namely, the
value is

v(K,m) = sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

E
(
T (K)
m (sC , sR|G)

)
= inf

sC∈S
(K)
C

sup
sR∈S

(K)
R

E
(
T (K)
m (sC , sR|G)

)
and there exist optimal strategies s(K,m)

C ∈ S
(K)

C , s(K,m)
R ∈ S

(K)

R such that

E
(
T (K)
m

(
s
(K,m)
C , s

(K,m)
R |G

))
= v(K,m) <∞ (10)

In [9] we use the truncated games to prove that the “regular” ai-CR game has a value, an optimal C
strategy and ε-optimal R strategies. More precisely, we prove the following.

Theorem 6. Given any graph G and K ≥ c (G), the ai-CR game played on G with K cops has a value
v(K) which satisfies

lim
m→∞

v(K,m) = v(K) = v(K) = v(K)

Furthermore, there exists a strategy s(K)
C ∈ S

(K)

C such that

sup
sR∈S

(K)
R

E
(
T (K)

(
s
(K)
C , sR

))
= v(K) (11)

and for every ε > 0 there exists an mε and a strategy s(K,ε)R such that

∀m ≥ mε : v
(K) − ε ≤ sup

sC∈S
(K)
C

E
(
T (K)

(
sC , s

(K,ε)
R

)
|G
)
≤ v(K) (12)

Having established the existence of v(K) we have the following.

Definition 6. The adversarial invisible capture time of G is

cti (G) = v(K) = sup
sR∈S

(K)
R

inf
sC∈S

(K)
C

E
(
T (K) (sC , sR|G)

)
= inf

sC∈S
(K)
C

sup
sR∈S

(K)
R

E
(
T (K) (sC , sR|G)

)
with K = c (G).
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3.4. The Node di-CR Game

In this game Yt is unobservable and drunk; call this the “regular” di-CR game and also introduce the
m-truncated di-CR game. Both are one-player games or, equivalently, Yt is a partially observable MDP
(POMDP) [36]. The target function is

E
(
T (K) (sC |G)

)
= E

(
∞∑
t=0

1 (Yt /∈ Xt)

)
(13)

which is exactly the same as Equation (9) but now Yt is unobservable. Equation (13) can be
approximated by

E
(
T (K)
m (sC |G)

)
= E

(
m∑
t=0

1 (Yt /∈ Xt)

)
(14)

The expected values in Equations (13) and (14) are well defined for every sC . C must select a strategy
sC ∈ S

(K)

C which minimizes E
(
T (K) (sC |G)

)
. This is a typical infinite horizon, undiscounted POMDP

problem [36] for which the following holds.

Theorem 7. Given any graph G and K ∈ N, for the di-CR game played on G with K cops there exists
a strategy s(K)

C ∈ S
(K)

C such that

E
(
T (K)

(
s
(K)
C |G

))
= inf

sC∈S
(K)
C

E
(
T (K) (sC |G)

)
Hence we can introduce the following.

Definition 7. The drunk invisible capture time of G is

dcti (G) = inf
sC∈S

(K)
C

E
(
T (K) (sC |G)

)
with K = c (G).

3.5. The Edge CR Games

As already mentioned, every edge CR variant can be reduced to the corresponding node variant played
on L (G), the line graph of G. Hence all the results and definitions of Sections 3.1–3.4 hold for the edge
variants as well. In particular, we have an edge cop number c (G) = c (L (G)) and capture times

ct (G) = ct (L (G)) , dct (G) = dct (L (G)) , cti (G) = cti (L (G)) , dcti (G) = dcti (L (G))

In general, all of these “edge CR parameters” will differ from the corresponding “node CR parameters”.
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4. The Cost of Visibility

4.1. Cost of Visibility in the Node CR Games

As already remarked, we expect that ai-CR is more difficult (from C’s point of view) than av-CR
(the same holds for the drunk counterparts of this game). We quantify this statement by introducing the
cost of visibility (COV).

Definition 8. For every G, the adversarial cost of visibility is Ha(G) = cti(G)
ct(G)

and the drunk cost of

visibility is Hd(G) =
dcti(G)
dct(G)

.

Clearly, for every G we have Ha (G) ≥ 1 and Hd (G) ≥ 1 (i.e., it is at least as hard to capture an
invisible robber than a visible one). The following theorem shows that in fact both Ha (G) and Hd (G)

can become arbitrarily large. In proving the corresponding theorems, we will need the family of long
star graphs SN,M . For specific values of M and N , SN,M consists of N paths (we call these rays) each
having M nodes, joined at a central node, as shown in Figure 1.

Figure 1. (a): the star graph SN,1; (b): the long star graph SN,M .

(a) (b)

Theorem 8. For every N ∈ N we have Ha (SN,1) = N .

Proof. (i) Computing ct (SN,1). In av-CR, for every N ∈ N we have ct (SN,1) = 1: the cop starts at
X0 = 0, the robber starts at some Y0 = u 6= 0 and, at t = 1, he is captured by the cop moving into u;
i.e., ct (SN,1) ≤ 1; on the other hand, since there are at least two vertices (N ≥ 1), clearly ct (SN,1) ≥ 1.
(ii) Computing cti (SN,1). Let us now show that in ai-CR we have cti (SN,1) = N . C places the cop
at X0 = 0 and R places the robber at some Y0 = u 6= 0. We will obtain cti (SN,1) by bounding it from
above and below. For an upper bound, consider the following C strategy. Since C does not know the
robber’s location, he must check the leaf nodes one by one. So at every odd t he moves the cop into
some u ∈ {1, 2, . . . , N} and at every even t he returns to 0. Note that R cannot change the robber’s
original position; in order to do this, the robber must pass through 0 but then he will be captured by the
cop (who either is already in 0 or will be moved into it just after the robber’s move). Hence C can choose
the nodes he will check on odd turns with uniform probability and without repetitions. Equivalently,
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we can assume that the order in which nodes are chosen by C is selected uniformly at random from
the set of all permutations; further, we assume that R (who does not know this order) starts at some
Y0 = u ∈ {1, . . . , N}. Then we have

cti (SN,1) ≤
1

N
· 1 + 1

N
· 3 + . . .+

1

N
· (2N − 1) = N

For a lower bound, consider the following R strategy. The robber is initially placed at a random leaf
that is different than the one selected by C (if the cop did not start at the center). Knowing this, the best
C strategy is to check (in any order) all leaves without repetition. If the cop starts at the center, we get
exactly the same sum as for the upper bound. Otherwise, we have

cti (SN,1) ≥
1

N − 1
· 2 + 1

N − 1
· 4 + . . .+

1

N − 1
· (2N − 2) = N

(iii) Computing Ha (SN,1). Hence, for all N ∈ N we have Ha (SN,1) =
cti(SN,1)
ct(SN,1)

= N

Theorem 9. For every N ∈ N− {1} we have

Hd (SN,M) = (1 + o(1))
(2N − 1)(N − 1) + 1

N
≥ 2N − 3

where the asymptotics is with respect to M ; N is considered a fixed constant.

Proof. (i) Computing dct (SN,M). We will first show that, for any N ∈ N, we have dct (SN,M) =

(1 + o (1)) M
2

(recall that the parameter N is a fixed constant whereas M → ∞.) Suppose that the cop
starts on the i-th ray, at distance (1+ o(1))cM from the center (for some constant c ∈ [0, 1]). The robber
starts at a random vertex. It follows that for any j such that 1 ≤ j ≤ N , the robber starts on the j-th ray
with probability (1 + o(1))/N . It is a straightforward application of Chernoff bounds to show that with
probability 1 + o(1) the robber will not move by more than o(M) in the next O(MN) = O(M) steps,
which suffice to finish the game. This is so because, if X has a binomial distribution Bin(n, p), then
Pr(|X − np| ≥ εnp) ≤ 2 exp(−ε2np/3) for any ε ≤ 3/2. Now suppose the robber starts at distance
ω(M2/3) from the center. During N = O(M) steps the robber makes in expectation N/2 steps towards
the center, and N/2 steps towards the end of the ray. The probability to make during N steps more than
N/2 +M2/3 steps towards the center, say, is thus at most e−cM1/3 , and the same holds also by taking a
union bound over all O(M) steps. Hence, with probability at least 1− e−cM1/3 he will throughout O(M)

steps remain at distance O(M2/3) from his initial position. In short, the expected capture time is easy
to calculate.

• With probability (1 − c + o(1))/N , the robber starts on the same ray as the cop but farther away
from the center. Conditioning on this event, the expected capture time is M(1− c+ o(1))/2.
• With probability (c+ o(1))/N , the robber starts on the same ray as the cop but closer to the center.

Conditioning on this event, the expected capture time is M(c+ o(1))/2.
• With probability (N − 1 + o(1))/N , the robber starts on different ray than the cop. Conditioning

on this event, the expected capture time is (c+ o(1))M +M(1/2 + o(1)).
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It follows that the expected capture time is

(1 + o(1))M

(
1− c
N
· 1− c

2
+

c

N
· c
2
+
N − 1

N
· 2c+ 1

2

)
which is maximized for c = 0, giving dct (SN,M) = (1 + o (1)) M

2
.

(ii) Computing dcti (SN,M). The initial placement for the robber is the same as in the visible variant,
that is, the uniform distribution is used. However, since the robber is now invisible, C has to check all
rays. As before, by Chernoff bounds, with probability at least 1 − e−cM

1/3 (for some constant c > 0)
during O(M) steps the robber is always within distance O(M2/3) from its initial position. If the robber
starts at distance ω(M2/3) from the center, he will thus with probability at least 1−e−cM1/3 not change his
ray during O(M) steps. Otherwise, he might change from one ray to the other with bigger probability,
but note that this happens only with the probability of the robber starting at distance O(M2/3) from the
center, and thus with probability at most O(M−1/3). Keeping these remarks in mind, let us examine
“reasonable” C strategies. It turns out there exist three such.
(ii.1) Suppose C starts at the end of one ray (chosen arbitrarily), goes to the center, and then successively
checks the remaining rays without repetition, with probability at least 1 − O(M−1/3), the robber will
be caught. If the robber is caught (this implies that the robber did not switch rays), the capture time is
calculated as follows:

• With probability (1 + o(1))/N , the robber starts on the same ray as the cop. Conditioning on this
event, the expected capture time is (1 + o(1))M/2.
• With probability (1+o(1))/N , the robber starts on the j-th ray visited by the cop. Conditioning on

this event, the expected capture time is (1+ o(1))(M +2M(j− 2)+M/2). (M steps are required
to move from the end of the first ray to the center, 2M steps are ‘wasted’ to check j − 2 rays, and
M/2 steps are needed to catch the robber on the j-th ray, on expectation.)

Hence, conditioned under not switching rays, the expected capture time in this case is

(1 + o(1))
M

N

(
1

2
+

(
1 +

1

2

)
+

(
3 +

1

2

)
+ . . .+

(
1 + 2(N − 2) +

1

2

))
= (1 + o(1))

M

N

(
1

2
+

(
2 · 1− 1

2

)
+

(
2 · 2− 1

2

)
+ . . .+

(
2(N − 1)− 1

2

))
= (1 + o(1))

M

N

(
1

2
+

2N − 1

2
· (N − 1)

)
= (1 + o(1))

M

2
· (2N − 1)(N − 1) + 1

N
Otherwise, if the robber is not caught, C just randomly checks rays: starting from the center, C

chooses a random ray, goes until the end of the ray, returns to the center, and continues like this, until
the robber is caught. The expected capture time in this case is∑

j≥1

(
(1− 1

N
)j−1

1

N
(2(j − 1)M +M/2)

)
= O(MN) = O(M)

Since this happens with probability O(M−1/3), the contribution of the case where the robber switches
rays is o(M), and therefore for this strategy of C, the expected capture time is

(1 + o(1))
M

2
· (2N − 1)(N − 1) + 1

N
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(ii.2) Now suppose C starts at the center of the ray, rather than the end, and checks all rays from there.
By the same arguments as before, the capture time is

(1 + o(1))
M

N

(
1

2
+

(
2 +

1

2

)
+

(
4 +

1

2

)
+ . . .+

(
2 + 2(N − 2) +

1

2

))
which is worse than in the case when starting at the end of a ray.
(ii.3) Similarly, suppose the cop starts at distance cM from the center, for some c ∈ [0, 1]. If he first goes
to the center of the ray, and then checks all rays (suppose the one he came from is the last to be checked),
then the capture time is

(1 + o(1))
M

N

(
c2

2
+

(
c+

1

2

)
+

(
c+ 2 +

1

2

)
+ . . .+((

c+ 2(N − 2) +
1

2

)
+ (1− c)

(
2c+ 2(N − 1) +

1− c
2

))
which is minimized for c = 1. And if C goes first to the end of the ray, and then to the center, the capture
time is

(1 + o(1))
M

N

(
((1− c)2

2
+ c
(
2(1− c) + c

2

)
+

(
2(1− c) + c+

1

2

)
+ . . .+((

2(1− c) + c+ 2(N − 2) +
1

2

))
which for N ≥ 2 is also minimized for c = 1 (in fact, for N = 2 the numbers are equal).

In short, the smallest capture time is achieved when C starts at the end of some ray and therefore

dcti(SN,M) = (1 + o(1))
M

2
· (2N − 1)(N − 1) + 1

N

(iii) Computing Hd (SN,M). It follows that for all N ∈ N− {1} we have

Hd (SN,M) =
dcti (SN,M)

dct (SN,M)
= (1 + o(1))

(2N − 1)(N − 1) + 1

N
≥ 2N − 3

completing the proof.

4.2. Cost of Visibility in the Edge CR Games

The cost of visibility in the edge CR games is defined analogously to that of node games.

Definition 9. For every G, the edge adversarial cost of visibility is Ha(G) =
cti(G)

ct(G)
and the edge drunk

cost of visibility is defined as Hd(G) =
dcti(G)

dct(G)
.

Clearly, for every G we have Ha (G) ≥ 1 and Hd (G) ≥ 1. The following theorems show that
in fact both Ha (G) and Hd (G) can become arbitrarily large. To prove these theorems we will use
the previously introduced star graph SN,1 and its line graph which is the clique KN . These graphs are
illustrated in Figure 2 for N = 6.
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Figure 2. (a): the star graph S6,1 and (b): its line graph, the clique K6.

(a) (b)

Theorem 10. For every N ∈ N− {1} we have Ha (SN,1) = N − 1.

Proof. We have Ha(SN,1) =
cti(SN,1)

ct(SN,1)
= cti(KN )

ct(KN )
and, since N ≥ 2, clearly ct(KN) = 1. Let us now

compute cti(KN).
For an upper bound on cti(KN), C might just move to a random vertex. If the robber stays still or

if he moves to a vertex different from the one occupied by C, he will be caught in the next step with
probability 1/(N − 1), and thus an upper bound on the capture time is N − 1.

For a lower bound, suppose that the robber always moves to a randomly chosen vertex, different from
the one occupied by C, and including the one occupied by him now (that is, with probability 1/(N − 1)

he stands still, and after his turn, he is with probability 1/(N−1) at each vertex different from the vertex
occupied by C. Hence C is forced to move, and since he has no idea where to go, the best strategy is also
to move randomly, and the robber will be caught with probability 1/(N − 1), yielding a lower bound on
the capture time of N − 1. Therefore

cti (KN) = N − 1

Hence

Ha(SN,1) =
cti(SN,1)

ct(SN,1)
=
cti(KN)

ct(KN)
= N − 1

Theorem 11. For every N ∈ N− {1} we have Hd (SN,1 ) =
N(N−1)
2N−3 .

Proof. This is quite similar to the adversarial case. We have Hd(SN,1) =
dcti(SN,1)

dct(SN,1)
= dcti(KN )

dct(KN )
. Clearly

we have dct(KN) = 1 − 1/N (with probability 1/N the robber selects the same vertex to start with as
the cop and is caught before the game actually starts; otherwise is caught in the first round).

For dcti(KN), it is clear that the strategy of constantly moving is best for the cop, as in this case there
are two chances to catch the robber (either by moving towards him, or by afterwards the robber moving
onto the cop). It does not matter where he moves to as long as he keeps moving, and we may thus assume
that he starts at some vertex v and moves to some other vertex w in the first round, then comes back to v
and oscillates like that until the end of the game. When the cop moves to another vertex, the probability
that the robber is there is 1/(N−1). If he is still not caught, the robber moves to a random place, thereby
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selecting the vertex occupied by the cop with probability 1/(N − 1). Hence, the probability to catch the
robber in one step is 1

N−1 + (1 − 1
N−1)

1
N−1 = 2N−3

(N−1)2 . Thus, this time the capture time is a geometric

random variable with probability of success equal to 2N−3
(N−1)2 . We get dcti(KN) =

(N−1)2
2N−3 and so

Hd(SN,1) =
dcti(SN,1)

dct(SN,1)
=
dcti(KN)

dct(KN)
=

(N − 1)2/(2N − 3)

(N − 1)/N
=
N(N − 1)

2N − 3

which can become arbitrarily large by appropriate choice of N .

5. Algorithms for COV Computation

For graphs of relatively simple structure (e.g., paths, cycles, full trees, grids) capture times and optimal
strategies can be found by analytical arguments [9,37]. For more complicated graphs, an algorithmic
solution becomes necessary. In this section we present algorithms for the computation of capture time in
the previously introduced node CR variants. The same algorithms can be applied to the edge variants by
replacing G with L (G).

5.1. Algorithms for Visible Robbers

5.1.1. Algorithm for Adversarial Robber

The av-CR capture time ct(G) can be computed in polynomial time. In fact, stronger results have
been presented by Hahn and MacGillivray; in [31] they present an algorithm which, given K, computes
for every (x, y) ∈ V 2 the following:

1. C (x, y), the optimal game duration when the cop/robber configuration is (x, y) and it is C’s turn
to play;

2. R (x, y), the optimal game duration when the cop/robber configuration is (x, y) and it is R’s turn
to play.

Note that, when K < c(G), there exist (x, y) such that C (x, y) = R (x, y) = ∞; Hahn and
MacGillivray’s algorithm computes this correctly, as well.

The av-CR capture time can be computed by ct(G) = minx∈V maxy∈V C (x, y); the optimal search
strategies σ̂C , σ̂R can also be easily obtained from the optimality equations, as will be seen a little later.
We have presented in [37] an implementation of Hahn and MacGillivray’s algorithm, which we call
CAAR (Cops Against Adversarial Robber). Below we present this, as Algorithm 1, for the case of a
single cop (the generalization for more than one cop is straightforward).

The algorithm operates as follows. In lines 01-08 C(0) (x, y) and R(0) (x, y) are initialized to ∞,
except for “diagonal” positions (x, y) ∈ V 2

D (i.e., positions with x = y) for which we obviously have
C (x, x) = R (x, x) = 0. Then a loop is entered (lines 10-19) in which C(i) (x, y) is computed
(line 12) by letting the cop move to the position which achieves the smallest capture time (according
to the currently available estimate R(i−1) (x, y)); R(i) (x, y) is computed similarly in line 13, looking for
the largest capture time. This process is repeated until no further changes take place, at which point the
algorithm exits the loop and terminates. This algorithm is a game theoretic version of value iteration [36],
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which we see again in Section 5.2. It has been proved in [31] that, for any graph G and any K ∈ N,
CAAR always terminates and the finally obtained (C,R) pair satisfies the optimality equations

∀ (x, y) ∈ V 2
D : C (x, y) = 0; ∀ (x, y) ∈ V 2 − V 2

D : C (x, y) = 1 + min
x′∈N [x]

R (x′, y) (15)

∀ (x, y) ∈ V 2
D : R (x, y) = 0; ∀ (x, y) ∈ V 2 − V 2

D : R (x, y) = 1 + max
y′∈N [y]

C (x, y′) (16)

The optimal memoryless strategies σ(K)
C (x, y), σ(K)

R (x, y) can be computed for every position (x, y)

by letting σ(K)
C (x, y) (resp. σ(K)

R (x, y) ) be a node x′ ∈ N [x] (resp. y′ ∈ N [y]) which achieves the
minimum in Equation (15) (resp. maximum in Equation (16)). The capture time ct(G) is computed from

ct (G) = min
x∈V

max
y∈V

C (x, y)

Algorithm 1: Cops Against Adversarial Robber (CAAR)
Input: G = (V,E)

01 For All (x, y) ∈ V 2
D

02 C(0) (x, y) = 0

03 R(0) (x, y) = 0

04 EndFor

05 For All (x, y) ∈ V 2 − V 2
D

06 C(0) (x, y) =∞
07 R(0) (x, y) =∞
08 EndFor

09 i = 1

10 While 1 > 0

11 For All (x, y) ∈ V 2 − V 2
D

12 C(i) (x, y) = 1 + minx′∈N [x]R
(i−1) (x′, y)

13 R(i) (x, y) = 1 + maxy′∈N [y]C
(i) (x, y′)

14 EndFor

15 If C(i) = C(i−1) And R(i) = R(i−1)

16 Break

17 EndIf

18 i← i+ 1

19 EndWhile

20 C = C(i)

21 R = R(i)

Output: C, R

5.1.2. Algorithm for Drunk Robber

For any given K, value iteration can be used to determine both dct (G,K) and the optimal strategy
σ
(K)
C (x, y); one implementation is our CADR (Cops Against Drunk Robber) algorithm [37] which is
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a typical value-iteration [36] MDP algorithm; alternatively, CADR can be seen as an extension of the
CAAR idea to the dv-CR. Below we present this, as Algorithm 2, for the case of a single cop (the
generalization for more than one cops is straightforward).

Algorithm 2: Cops Against Drunk Robber (CADR)
Input: G = (V,E), ε
01 For All (x, y) ∈ V 2

D

02 C(0) (x, y) = 0

03 EndFor

04 For All (x, y) ∈ V − V 2
D

05 C(0) (x, y) =∞
06 EndFor

07 i = 1

08 While 1 > 0

09 For All (x, y) ∈ V − V 2
D

10 C(i) (x, y) = 1 + minx′∈N [x]

∑
y′∈V P ((x′, y)→ (x′, y′))C(i−1) (x′, y′)

11 EndFor

12 If max(x,y)∈V 2

∣∣C(i) (x, y)− C(i−1) (x, y)
∣∣ < ε

13 Break

14 EndIf

15 i← i+ 1

16 EndWhile

17 C = C(i)

Output: C

The algorithm operates as follows (again we use C (x, y) to denote the optimal expected game
duration when the game position is (x, y)). In lines 01-06 C(0) (x, y) is initialized to ∞, except
for “diagonal”positions (x, y) ∈ V 2

D. In the main loop (lines 08-16) C(i) (x, y) is computed (line
10) by letting the cop move to the position which achieves the smallest expected capture time
(P ((x′, y)→ (x′, y′)) in line 10 indicates the transition probability from(x′, y) to (x′, y′)). This
process is repeated until the maximum change

∣∣C(i) (x, y)− C(i−1) (x, y)
∣∣ is smaller than the termination

criterion ε, at which point the algorithm exits the loop and terminates. This is a typical value iteration
MDP algorithm [36]; the convergence of such algorithms has been studied by several authors, in various
degrees of generality [38–40]. A simple yet strong result, derived in [39], uses the concept of proper
strategy: a strategy is called proper if it yields finite expected capture time. It is proved in [39] that, if a
proper strategy exists for graph G, then CADR-like algorithms converge. In the case of dv-CR we know
that C has a proper strategy: it is the random walking strategy s(K)

C mentioned in Theorem 5. Hence
CADR converges and in the limit, C = limi→∞C

(i) satisfies the optimality equations

∀ (x, y) ∈ V 2
D : C (x, y) = 0; ∀ (x, y) ∈ V 2−V 2

D : C (x, y) = 1+ min
x′∈N [x]

∑
P
((
x′, y

)
→
(
x′, y′

))
C
(
x′, y′

)
(17)
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The optimal memoryless strategy σ
(K)
C (x, y) can be computed for every position (x, y) by letting

σ
(K)
C (x, y) be a node x′ ∈ N [x] (resp. y′ ∈ N [y]) which achieves the minimum in Equation (15)

(resp. maximum in Equation (16)). The capture time dct(G) is computed from

dct (G) = min
x∈V

C (x, y)

5.2. Algorithms for Invisible Robbers

5.2.1. Algorithms for Adversarial Robber

We have not been able to find an efficient algorithm for solving the ai-CR game. Several algorithms
for imperfect information stochastic games could be used to this end but we have found that they are
practical only for very small graphs. The problem is that for every game position (e.g., assuming one
robber and one cop, for a triple (x, y, p) indicating cop-position, robber-position and player to move)
a full two-player, one-turn sub-game must be solved; this must be done for 2 · |V |2 positions and for
sufficient iterations to achieve convergence. The computational load quickly becomes unmanageable.

5.2.2. Algorithm for Drunk Robber

In the case of the drunk invisible robber we are also using a game tree search algorithm with pruning,
for which some analytical justification can be provided. We call this the Pruned Cop Search (PCS)
algorithm. Before presenting the algorithm we will introduce some notation and then prove a simple fact
about expected capture time. We limit ourselves to the single cop case, since the extension to more cops
is straightforward.

We let x = x0x1x2 . . . be an infinite history of cop moves. Letting t being the current time
step, the probability vector p (t) contains the probabilities of the robber being in node v ∈ V or
in the capture state n + 1; more specifically: p (t) = [p1 (t) , . . . , pv (t) , . . . , pn (t) , pn+1 (t)] and
pv (t) = Pr (yt = v|x0x1 . . . xt). Hence p (t) depends (as expected) on the finite cop history x0x1 . . . xt.
The expected capture time is denoted by C (x) = E(T |x); the conditioning is on the infinite cop history.
The PCS algorithm works because E (T |x) can be approximated from a finite part of x, as explained
below. We have

C (x) = E (T |x) =
∞∑
t=0

t · Pr (T = t|x) =
∞∑
t=0

Pr (T > t|x) (18)

x in the conditioning is the infinite history x = x0x1x2 . . . . However, for every t we have

Pr (T > t|x) = 1− Pr (T ≤ t|x) = 1− Pr (T ≤ t|x0x1 . . . xt)

Let us define

C(t) (x0x1 . . . xt) =
t∑

τ=0

[1− Pr (T ≤ τ |x0x1 . . . xτ )] =
t∑

τ=0

[1− pn+1 (τ)]

where pn+1 (τ) is the probability that the robber is in the capture state n + 1 at time τ (the dependence
on x0x1 . . . xτ is suppressed, for simplicity of notation). Then for all t we have

C(t) (x0x1 . . . xt) = C(t−1) (x0x1 . . . xt−1) + (1− pn+1 (t)) (19)
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Update Equation (19) can be computed using only the previous cost C(t−1) (x0x1 . . . xτ−1) and the
(previously computed) probability vector p (t). While C(t) (x0 . . . xt) ≤ C (x), we hope that (at least for
the “good” histories) we have

lim
t→∞

C(t) (x0 . . . xt) = C (x) (20)

This approximation works well, with C(t) (x0 . . . xt) approaching its limiting value when t is in the
range 15 to 20.

Below we present this, as Algorithm 3, in pseudocode. We have introduced a structure S with fields
S.x, S.p, S.C = C (S.x). Also we denote concatenation by the & symbol, i.e., x0x1 . . . xt&v =

x0x1 . . . xtv.

Algorithm 3: Pruned Cop Search (PCS)
Input: G = (V,E), x0, Jmax, ε

01 t = 0

02 S.x = x0, S.p = Pr(y0|x0), S.C = 0

03 S = {S}
04 Cold

best = 0

05 While 1 > 0

06 S̃ = ∅
07 For All S ∈ S

08 x = S.x, p = S.p, C = S.C

09 For All v ∈ N [xt]

10 x′ = x&v

11 p′ = p · P (v)
12 C ′ = Cost(x′,p′, C)

13 S ′.x = x′, S ′.p = p′, S ′.C = C ′

14 S̃ = S̃ ∪ {S ′}
15 EndFor

16 EndFor

17 S = Prune(S̃, Jmax)

18 [xbest, Cbest] = Best(S)

19 If |Cbest − Cold
best| < ε

20 Break

21 Else

22 Cold
best = Cbest

23 t← t+ 1

24 EndIf

25 EndWhile

Output: xbest, Cbest = C (xbest).

The PCS algorithm operates as follows. At initialization (lines 01-04), we create a single S structure
(with S.x being the initial cop position, S.p the initial, uniform robber probability and S.C = 0) which
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we store in the set S. Then we enter the main loop (lines 05-25) where we pick each available cop
sequence x of length t (line 08). Then, in lines 09-15 we compute, for all legal extensions x′ = x&v

(where v ∈ N [xt]) of length t + 1 (line 10), the corresponding p′ (line 11) and C ′ (by the subroutine
Cost at line 12). We store these quantities in S ′ which is placed in the temporary storage set S̃

(lines 13-14). After exhausting all possible extensions of length t + 1, we prune the temporary set
S̃, retaining only the Jmax best cop sequences (this is done in line 17 by the subroutine Prune which
computes “best” in terms of smallest C (x)). Finally, the subroutine Best in line 18 computes the
overall smallest expected capture time Cbest = C (xbest). The procedure is repeated until the termination
criterion |Cbest − Cold

best| < ε is satisfied. As explained above, the criterion is expected to be always
eventually satisfied because of Equation (20).

6. Experimental Estimation of the Cost of Visibility

We now present numerical computations of the drunk cost of visibility for graphs which are not
amenable to analytical computation. We do not deal with the adversarial cost of visibility because, while
we can compute ct (G) with the CAAR algorithm, we do not have an efficient algorithm to compute
cti (G); hence we cannot perform experiments on Ha (G) = cti(G)

ct(G)
. The difficulty with cti (G) is that

ai-CR is a stochastic game of imperfect information; even for very small graphs, one cop and one robber,
ai-CR involves a state space with size far beyond the capabilities of currently available stochastic games
algorithms (see [41]). In Section 6.1 we deal with node games and in Section 6.2 with edge games.

6.1. Experiments with Node Games

Since Hd (G) = dcti(G)
dct(G)

, we use the CADR algorithm to compute dct (G) and the PCS algorithm to
compute dcti (G). We use graphs G obtained from indoor environments, which we represent by their
floorplans. In Figure 3 we present a floorplan and its graph representation. The graph is obtained by
decomposing the floorplan into convex cells, assigning each cell to a node and connecting nodes by
edges whenever the corresponding cells are connected by an open space.

Figure 3. A floorplan and the corresponding graph.
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We have written a script which, given some parameters, generates random floorplans and their graphs.
Every floorplan consists of a rectangle divided into orthogonal “rooms”. If each internal room were
connected to its four nearest neighbors we would get anM×N gridG′. However, we randomly generate
a spanning tree GT of G′ and initially introduce doors only between rooms which are connected in GT .
Our final graph G is obtained from GT by iterating over all missing edges and adding each one with
probability p0 ∈ [0, 1]. Hence each floorplan is characterized by three parameters: M , N and p0.

We use the following pairs of (M,N) values: (1,30), (2,15), (3,10), (4,7), (5,6). Four of these pairs
give a total of 30 nodes and the pair (M = 4, N = 7) gives n = 28 nodes; as M/N increases, we
progress from a path to a nearly square grid. For each (M,N) pair we use five p0 values: 0.00, 0.25,
0.50, 0.75, 1.00; note the progression from a tree (p0 = 0.00) to a full grid (p0 = 1.00). For each triple
(M,N, p0) we generate 50 floorplans, obtain their graphs and for each graph G we compute dct(G)
using CADR, dcti (G) using PCS and Hd (G) =

dcti(G)
dct(G)

; finally we average Hd (G) over the 50 graphs.
In Figure 4 we plot dct(G) as a function of the probability p0; each plotted curve corresponds to an
(M,N) pair. Similarly, in Figure 5 we plot dcti(G) and in Figure 6 we plot Hd(G).

Figure 4. dct(G) curves for floorplans with n = 30 or n = 28 cells. Each curve corresponds
to a fixed (M,N) pair. The horizontal axis corresponds to the edge insertion probability p0.

Figure 5. dcti(G) curves for floorplans with n = 30 or n = 28 cells. Each curve corresponds
to a fixed (M,N) pair. The horizontal axis corresponds to the edge insertion probability p0.
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Figure 6. Hd(G) curves for floorplans with n = 30 or n = 28 cells. Each curve corresponds
to a fixed (M,N) pair. The horizontal axis corresponds to the edge insertion probability p0.

We can see in Figures 4 and 5 that both dct (G) and dcti (G) are usually decreasing functions of the
M/N ratio. However the cost of visibility Hd (G) increases with M/N . This is due to the fact that,
when the M/N ratio is low, G is closer to a path and there is less difference in the search schedules and
capture times between dv-CR and di-CR. On the other hand, for high M/N ratio, G is closer to a grid,
with a significantly increased ratio of edges to nodes (as compared to the lowM/N , path-like instances).
This, combined with the loss of information (visibility), results in Hd(G) being an increasing function
of M/N . The increase of Hd (G) with p0 can be explained in the same way, since increasing p0 implies
more edges and this makes the cops’ task harder.

6.2. Experiments with Edge Games

Next we deal withHd (G) =
dcti(G)

dct(G)
. We use graphsG obtained from mazes such as the one illustrated

in Figure 7. Every corridor of the maze corresponds to an edge; corridor intersections correspond to
nodes. The resulting graph G is also depicted in Figure 7. From G we obtain the line graph L(G), to
which we apply CADR to compute dct (L(G)) = dct (G) and PCS to compute dcti (L(G)) = dcti (G).

Figure 7. A maze and the corresponding graph.
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We use graphs of the same type as the ones of Section 6.1 but we now focus on the edge-to-edge
movements of cops and robber. Hence from every G (obtained by a specific (M,N, p0) triple) we
produce the line graph L(G), for which we compute Hd(L(G)) using the CADR and PCS algorithms.
Once again we generate 50 graphs and present average dct(G), dcti (G) and Hd (G) results in
Figures 8–10. These figures are rather similar to Figures 4–6, except that the increase of Hd (G) as
a function of M/N is greater than that of Hd (G). This is due to the fact that L(G) has more nodes and
edges than G, hence the loss of visibility makes the edge game significantly harder than the node game.
There is one exception to the above remarks, namely the case (M,N) = (1, 30); in this case both G
and L(G) are paths and Hd (G) is essentially equal to Hd (G) (as can be seen by comparing Figures 6
and 10).

Figure 8. dct(G) curves for floorplans with n = 30 or n = 28 cells. Each curve corresponds
to a fixed (M,N) pair. The horizontal axis corresponds to the edge insertion probability p0.

Figure 9. dcti(G) curves for floorplans with n = 30 or n = 28 cells. Each curve corresponds
to a fixed (M,N) pair. The horizontal axis corresponds to the edge insertion probability p0.
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Figure 10. Hd (G) curves for floorplans with n = 30 or n = 28 cells. Each curve corresponds
to a fixed (M,N) pair. The horizontal axis corresponds to the edge insertion probability p0.

7. Conclusions

In this paper we have studied two versions of the cops and robber game: the one is played on the
nodes of a graph and the other played on the edges. For each version, we studied four variants, obtained
by changing the visibility and adversariality assumptions regarding the robber; hence we have a total of
eight CR games. For each of these we have defined rigorously the corresponding optimal capture time,
using game theoretic and probabilistic tools.

Then, for the node games we have introduced the adversarial cost of visibility H (G) = cti(G)
ct(G)

and the

drunk cost of visibility Hd (G) =
dcti(G)
dct(G)

. These ratios quantify the increase in difficulty of the CR game
when the cop is no longer aware of the robber’s position (this situation occurs often in mobile robotics).

We have defined analogous quantities (H (G) = cti(G)

ct(G)
, Hd (G) =

dcti(G)

dct(G)
) for the edge CR games.

We have studied analytically H (G) and Hd (G) and have established that both can get arbitrarily
large. We have established similar results for H (G) and Hd (G). In addition, we have studied Hd (G)

and Hd (G) by numerical experiments which support both the game theoretic results of the current paper
and the analytical computations of capture times presented in [9,37].
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