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Abstract: Performing some special tasks using electrooculography (EOG) in daily  

activities is being developed in various areas. In this paper, simple rotation matrixes were 

introduced to help the operator move a 2-DoF planar robot manipulator. The EOG sensor,  

NF 5201, has two output channels (Ch1 and Ch2), as well as one ground channel and one 

reference channel. The robot movement was the indicator that this system could follow 

gaze motion based on EOG. Operators gazed into five training target points each in the 

horizontal and vertical line as the preliminary experiments, which were based on 

directions, distances and the areas of gaze motions. This was done to get the relationships 

between EOG and gaze motion distance for four directions, which were up, down, right 

and left. The maximum angle for the horizontal was 46°, while it was 38° for the vertical. 

Rotation matrixes for the horizontal and vertical signals were combined, so as to diagonally 

track objects. To verify, the errors between actual and desired target positions were 

calculated using the Euclidian distance. This test section had 20 random target points. The 

result indicated that this system could track an object with average angle errors of 3.31° in 

the x-axis and 3.58° in the y-axis. 
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1. Introduction 

Nowadays, in daily activity, people are used to working with computers or machines to improve 

their quality of work. However, for some paralysis patients, armless persons [1], older adults [2] and 

locked-in syndrome patients, they face some barriers in controlling devices, because of their 

limitations. To solve this problem, people have tried to discover alternative ways to transmit and 

receive signals between humans and machines [3]. 

One of the methods to handle this problem is through bio-signal technology for communication. 

There are many kinds of bio-signals, such as electromyography (EMG) [4], electroencephalographic 

(EEG) [5] and electrooculography (EOG) [6]. This study used the EOG signal to connect human  

and machine. 

EOG is recorded as a weak electric potential existing around the eye. This signal comes from  

eye activities, caused by the difference of the potential between cornea and retina, since cornea has a 

more positive polarity than retina [7]. The advantage of EOG is the linearity between its potential and  

the gaze distance. Nevertheless, the range of linear area in the horizontal (±45°) was usually wider than 

vertical linearity (±30°) [8]. Three basic parts in the human-machine interface using EOG were EOG 

amplifying and acquisition, EOG pattern recognition and the control command. Beside the linearity, 

compared to EEG, EOG was easy to detect, and the amplitude is relatively high [9]. 

Many methods were generated by researchers to detect and recognize eye movement based on  

the EOG signal to control some applications. Carlos G Pinhero et al. in his review [3] provided some 

examples of EOG function, such as an alphanumeric/symbol/number writing system, cursor control 

and generating Morse code. Controlling robot movement using EOG had been reported by [10]. 

Human and computer interface systems accessed by EOG were proposed to control functions in  

a monitor. In [11], EOG was classified by a fuzzy algorithm into four basic directions (right, left, up  

and down). Operators could use this system to activate some functions, such as a game, TV, an eye 

test, and others. Although the condition of the operators also influenced the EOG signal, such as 

nervousness, blinking, exaggerated gestures and speech, this research verified that the horizontal 

movement had a wider range than vertical movement. 

While, in [12,13], an artificial neural network using training samples had the ability to learn a 

nonlinear characteristic and to build a model of it, this advantage was used to develop a prosthetic eye 

moving with a natural action [14]. A neural network was also used to classify EOG from people with 

good or bad health conditions [15]. 

The threshold method also effectively distinguished EOG based on gaze motion distances.  

This method, reported by [16,17], successfully divided gaze motion into four thresholds, each in 

vertical and horizontal movement. Then, these were all associated with the velocities of the robot 

manipulator for each direction (right, left, up and down). The robot velocity was controlled by EOG 

with four different levels of speed using the four thresholds. The operator would blink to mark targets 

if the robot passed them. 

EOG signals were easily interrupted by some interferences in real circumstance, and the waveforms 

belonging to the different trials and subjects were also changed. Many studies tried to solve this  

problem; one of them [18] used the combination of spectral entropy, the LPCC coefficient and  
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dynamic time warping (DTW). This method was also used to recognize seven actions of gaze  

motion (looking up, down, left and right; blinking twice, three times and four times). 

Using EOG for assistive technology was also proposed. In [19], a wheelchair was successfully 

controlled by EOG. In the linear region, the EOG potential varied between 50 and 3500 μV. Operators 

could use four commands to control the robot. The commands were to move forward, backward,  

turn right and turn left. In a similar function [1], EOG was also useful in assisting the discrimination 

between three different distances between operators and objects. The operators also found that there 

was no difference between the signal when the operators sat down or stood up. In another study [2], an  

eye-gaze input system became the favorite for adults compared to young people. They felt that the 

EOG signal was easier to generate than moving their hands to operate a computer, due to declined 

motor functions. 

The EOG signal used in this study was not only developed to control a two-degrees of freedom 

(DoF) planar robot manipulator’s direction, but also its position. Operators looked at targets on a 

monitor; then, this robot moved to points in the real world belonging to the EOG potential. Therefore, 

there were conversions from gaze motion to the pixel coordinate, followed by the conversion from the 

pixel coordinate to the joint angle. 

This research has developed a communication interface between human and robot using the EOG 

signal. Rotation matrixes are proposed in this research to improve the performance of the gaze motion 

tracking system using EOG in diagonal movements. The EOG signal controlled the analog movements 

of a robot manipulator in a two-dimensional area. This signal generated by eye movements was 

converted to the pixel coordinates on a monitor display. The gaze distance of the pixel was used to 

calculate the target positions. The positions in the pixel are converted to the robot coordinates to 

calculate the end-effector position of the robot. Using inverse kinematics, the angles of two joints  

were determined. 

2. Electrooculography 

This study combines a bio-signal and a control system to move a flexible robot manipulator by 

using gaze motion. Therefore, in its simplest form, the input of the system is a bio-signal and the 

output is an end-effector movement. The bio-signal sensor was produced by NF Instrument and has an 

amplifier, a processor and four electrodes, as shown in Figure 1. These electrodes consist of two 

positive channels (Ch1 and Ch2), a ground electrode and a reference electrode or minus channel. 

In previous research [20], the processor had embedded filters inside. The filters were a 60-Hz  

low-pass filter, a 1.6-Hz high-pass filter and 60-Hz hum filter. Figure 2 shows the signals before and 

after being filtered. The characteristics to differentiate the up gaze motion and blink signal were also 

introduced. The ratio between the maximum and absolute minimum value of EOG from Ch1 was used 

to ignore blink signals. This ratio for the blink signal is always greater than one. On the other hand, the 

ratio for the up gaze motion is smaller than one. Figure 3 shows the signals for the blinking and up 

gaze motion. 
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Figure 1. The NF Instrument as the electrooculography (EOG) sensor. 

 

Figure 2. Example of the EOG signal: (a) before being filtered; (b) after being filtered. 

 

 

Figure 3. The EOG signal for the blinking and up gaze motion. 
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EOG is a weak signal that naturally occurs because of the potential difference between the cornea  

and retina. This distinction arises due to eye activities, as well as gaze motions [21] and blinks [22]. 

The EOG signal can be used in a dark environment, as long as there is eye activity distinguishing the 

electric potential between the two poles. 

EOG is also a susceptible signal that is easily influenced by certain factors. Electrode positions are  

very important in this case, as well as the operator condition and the environment in which the research 

is being carried out [20,23]. Furthermore, unnecessary facial movements have impacts on the EOG 

value and pattern [24]. Figure 4 illustrates the polarity of human eyes and the positions of electrodes. 

There are two patterns of EOG signals from the NF Instrument. These are a negative signal (−) and 

a positive signal (+), as shown in Figure 5. Two thresholds were used to detect when a gaze motion 

occurred: a negative signal passed the negative threshold (th −) and a positive signal passed the 

positive threshold (th +). It was simple to detect gaze motions in four basic directions (right, left,  

up and down) using the signal pattern combinations from Ch1 and Ch2. As shown in Table 1, there are 

four signal combinations from Ch1 and Ch2 to detect four directions. One is a left gaze motion  

if Ch1 has a negative signal and Ch2 has a positive signal. A contrary condition happens with the right 

gaze motion. In the same way, the up gaze motion and down gaze motion can be distinguished.  

These combinations will be explored later to detect the target points. 

Figure 4. Polarity of eye and the electrode positions. 

 

Figure 5. Two patterns of EOG signal using the NF Instrument. 
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Table 1. Signal combinations for basic directions. 

Channel 
Gaze Direction 

Left Right Up Down 

Ch1 (−) (+) (−) (+) 

Ch2 (+) (−) (−) (+) 

3. Design of a Two-DoF Robot Manipulator 

Operators drove the robot end-effector to some positions that they desired using gaze motion. 

Therefore, the working area of the robot was designed to cover the target area. To assess the accuracy 

of the system, some targets were spread on a monitor display. The target positions were called actual 

positions, and the positions generated from the EOG were called desired positions. The size of the 

monitor was 34 cm (horizontal) × 27 cm (vertical) or 1020 pixels × 720 pixels. Figure 6 shows the 

location of the target area based on the robot workspace. 

Figure 6. Target area and robot workspace. 

 

A two-DoF planar robot manipulator was already designed to cover this area. This robot had two 

joints and two links. The length of each links was 30 cm. The first joint had a 0° to 180° rotation angle 

and the second joint a rotation angle of 0° to 120°. Considering the torque of the end effector, the  

HSR-5980SG motor, which had 24 kg/cm of torque and a weight of 70 g, was chosen as the first joint 

and the HS-5085MG motor as the second joint had 3.6 kg/cm of torque and a weight of 21.9 g. The 

joints were controlled by an Arduino microcontroller and connected by serial communication to an 

EOG computer. 

The output from the EOG was the pixel coordinates (u, v) of the gaze motion. Then, these pixels 

were converted into (Px, Py) in robot coordinates. Every pixel in u and v could be calculated as cm by 

using Equations (1) and (2). Offset coordinates also occurred, since the center of the target area is not 

exactly the same as the robot-based coordinates. The effects of the offset in the horizontal direction 

were 23 cm and 27 cm in the vertical direction. 

Xcm/pixel = 34 cm/1020 pixel
 

(1) 
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ycm/pixel = 27 cm/720 pixel 
 

(2) 

The end-effector of the robot moved to the target position (Px, Py). Px was the end-effector position 

in the x-axis, and Py was the end-effector position in the y-axis. The correlation between the  

end-effector position (Px, Py) and the joint angles (α and β) was determined by inverse kinematics. 

Joint 1 rotated with the α angle, and Joint 2 rotated with the β angle. The link lengths were Link1 and 

Link2, which were equal, so that they were named as “Links”. Consequently, the angles of Joint 1 and 

Joint 2 for the end-effector position (Px, Py) are given by Equations (3–10), for which, sin α and sin β 

were calculated by the trigonometry property, 
2sin 1 cos    . Figure 7 shows the robot and its  

joint coordinates. 

Figure 7. End-effector position, P = (Px, Py). 

 

Link1 Link2 Link1 cos Link2 cos( )Px _ x _ x        (3) 

Link1 Link2 Link1 sin Link2 sin( )Py _y _y        (4) 
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 
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 

 (8) 

 atan2 cos sin,     (9) 

 atan2 cos sin,     (10) 

4. Methodology 

After discussing the EOG sensor and the robot manipulator, this section explains the experiment 

setup, which includes the position of the operators and the positions of the targets for training. First,  

the similarity of EOG signals in four areas each for horizontal and vertical gaze motions was checked 

for each operator. Then, a preliminary experiment was done to get the relationship between the vertical 

gaze motion and the EOG signal from Ch1, as well the relationship between the horizontal gaze 

motion and the EOG signal from Ch2. This step gave the linear equations of EOG. The products of 

these equations were the pixel positions of the targets. Based on the signal combinations, these 

equations were improved by rotation matrixes, so that the system was well operated, not only in 

horizontal or vertical direction, but also in the diagonal gaze motion for a free gaze motion distance. 

Finally, three healthy operators tried to operate the robot using their EOG signal. Figure 8 briefly 

shows the main process for achieving the goal. 

Figure 8. The main process of the research. 
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There were ten training targets in total, 40 cm in front of the operators, which were five training 

targets in the horizontal line and five training targets in the vertical line, as shown in Figure 9a,b. The 

training targets were used to determine the linear relationships between the EOG and the gaze motion. 

The training targets were numbered from 1 to 5. Target Number 3 was exactly located in the middle of 

display. This point was a reference point for the head position. This position was fixed to reduce the 

noise from the head movement. The normal distance between the operator and the target area is 40 cm, 

as shown in Figure 9b. 

Figure 9. A monitor in front of operator as the target location. (a) Target points for 

training. (b) The normal distance between eyes and the target. 

 

Linear Relationship between EOG and Gaze Motion 

The training experiments depended on directions, distances and areas. The directions were up, 

down, right and left. There were four gaze distances, each in the horizontal and vertical directions. The 

distances were grouped into 1-point, 2-point, 3-point and 4-point gaze motions. In the vertical case, the 

shortest distance was 180 pixels, whereas the longest distance was 720 pixels. On the other hand, the 

shortest distance in the horizontal direction was 255 pixels, and the longest distance was 1020 pixels, 

as shown in Table 2. In this experiment, the area for horizontal movement was approximately ±46°, 

and the area for the vertical movement was approximately 38°. 

Table 2. The distance for four types of movement distances. 

Direction 
Gaze Distance 

1-Point 2-Point 3-Point 4-Point 

Vertical 180 pixels/9° 360 pixels/19° 540 pixels/28° 720 pixels/38° 

Horizontal 255 pixels/12° 510 pixels/23° 765 pixels/35° 1020 pixels/46° 

The gaze distances had some different working areas: 1-point movement had four areas; 2-point 

movement had three areas; 3-point movement had two areas; and 4-point movement had only one area. 
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Area 1 for the 1-point gaze distance was 1–2, which refers to the gaze motions from training Target 1 

to training Target 2 or vice versa. Table 3 summarizes the working area types. 

The feature of the EOG that was used in this research was the absolute integral of EOG  

(int_EOGChi,i=1,2), formulated by Equations (11) and (12). This variable was needed to establish the 

relationships between EOG and gaze distance (pixel). It was counted first when there was a signal 

bigger than the positive threshold (th +) or smaller than the negative threshold (th −), until the full 

wave was formed. The integral value from Ch1 belonged to up or down gaze motions, and Ch2 was 

concerned with the right or left gaze motions. 

Table 3. Types of working areas. 

Gaze Distance 
Area Pixel Distance (u,v) 

1 2 3 4 Horizontal Vertical 

1-point 1–2 2–3 3–4 4–5 (255, 0) (0, 180) 

2-point 1–3 2–4 3–5  (510, 0) (0, 360) 

3-point 1–4 2–5   (765, 0) (0, 540) 

4-point 1–5    (1020, 0) (0, 720) 

The Ch1 signal was only associated with vertical gaze motion, and the signal from Ch2 was for the 

horizontal gaze motion. Operators performed all possibilities for the movements belonging to the 

training targets. Figure 10a–d shows the average of the absolute integral of EOG signals for up, down, 

right and left gaze motions. 

1 1 1int_ (t) (t)Ch Ch ChEOG EOG dt EOG dt

 

 

 
   (11) 

 

 

2 2 2int_ (t) (t)

: (t)

: (t)

1,2

 





 

 

  

  



 





Ch Ch Ch

Chi

Chi

EOG EOG dt EOG dt

t EOG th

t EOG th

i

 (12) 

Before making a conclusion about the linear relationship between gaze motion and the EOG, 

checking the signal difference for all areas, especially in 1-point movement, was necessary. This step 

was just to make sure that the EOG signals in the same gaze motion distances had equal values for 

those areas, so that all of the areas could be used to examine the linear relationship with the gaze 

motion distance. 

An ANOVA was used to compare the signals in four areas for the 1-point gaze motion distance. 

The level of confidence was 95% or α = 0.05, and the null hypothesis was that there was no difference 

between the EOG signals from Area 1, Area 2, Area 3 and Area 4 or that the EOG signal from Area 1 

was equal to Area 2, Area 3 and Area 4. There were three operators, and they looked 20 times to  

1-point right and 20 times to 1-point left in each area in the horizontal case, as well as to up and down 

for the vertical test. 
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Table 4 shows that all of the values of F_crit were smaller than F. That means that there was no 

difference between the EOG signal among the four areas as long as the gaze motion distances were the 

same. Therefore, if an operator looked to any target points in all possible areas, the values of the EOG 

were not different as long as the gaze distances were same. This evidence showed that the EOG signal 

from these operators could be used for further experiments. 

Figure 10. Target points for training and normal distance between eyes and target. 
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Figure 10. Cont.  

 

Table 4. ANOVA for the EOG signal for vertical and horizontal gaze motions among four 

areas in the 1-point gaze motion distance.  

V
er

ti
ca

l Operator 
Up Down 

F p-value F_crit F p-value F_crit 

Operator 1 0.112 0.952 3.239 1.935 0.165 3.239 

Operator 2 0.675 0.577 3.072 0.720 0.554 3.239 

Operator 3 1.364 0.274 2.947 2.79 0.063 3.028 

H
o
ri

zo
n

ta
l Operator 

Right Left 

F p-value F_crit F p-value F_crit 

Operator 1 1.013 0.412 3.239 1.720 0.216 3.490 

Operator 2 1.783 0.174 2.960 1.032 0.397 3.028 

Operator 3 2.483 0.0888 3.0725 1.834 0.172 3.072 

After examining the similarity of the signal in all areas, the linear relationship between gaze motion 

and distance was determined. Although there was no difference between signals in the same distance,  

the EOG values among the operators were varied. Therefore, the normalization of integral EOG  

( , 1,2_ Chi iNorm EOG  ), as shown by Equation (13), was used in this system. It could be calculated by 

dividing the absolute integral of the EOG signal (
, 1,2int_ Chi iEOG 

) by the average of the maximum 

integral EOG ( , 1,2_ int_ Chi iMaximum EOG  ). Table 5 provides the average maximum of the integral 

EOG for right, left, up and down from three operators. Finally, the linear relationship between the 

normalized EOG and the pixel are shown by Equations (14–17). The constant variables of those 

equations (A, B, C, D, E, F, G, H, F and G) are provided in Table 6. 

, 1,2

, 1,2

, 1,2

int_
_

_ int_

Chi i

Chi i

Chi i

EOG
Norm EOG

Maximum EOG







  (13) 

2v_ _  Chup A Norm EOG B  (14) 

2_ _  Chv down C Norm EOG D  (15) 
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1_ _  Chu right E Norm EOG F  (16) 

1_ _  Chu left F Norm EOG G  (17) 

Table 5. 
, 1,2

_ int_
i i

chMaximum EOG  from three operators. 

Gaze Direction , 1,2
_ int_

i i
chMaximum EOG  

Operator 1 Operator 2 Operator 3 

Up 2,462 2,417 2,288 

Down 2,237 2,368 2,368 

Right 2,207 2,044 2,393 

Left 2,151 1,986 2,402 

Table 6. Constant variables from three operators to complete Equations (10–13). 

Operator 

Vertical (Ch1) Horizontal (Ch2) 

Up Down Right Left 

A B C D E F G H 

1 976 −299 −876 199 1,092 −108 −1,091 104 

2 938 −309 −816 175 1,124 −185 −1,142 207 

3 956 −292 −878 204 1,241 −121 −1,113 101 

5. Rotation Matrix 

The rotation matrix had an important role in this study, since it corrected linear pixel differences 

between desired targets and actual gaze motions. Some tests were needed to get the rotation  

matrixes. These tests were almost the same as the experiments, which obtained the four linear 

equations. The experiments were done in one day, and the operators gazed 20 times at the training 

targets for every single session. A session depended on the directions, areas and distances. The 

difference was if, in the previous experiment, Ch1 was just involved in the vertical gaze motion and 

Ch2 was only used for the horizontal gaze motion, now both of them worked together for all gaze 

motions. Therefore, in the case that the operators gazed at a point, the system must consider the signal 

combinations as mentioned early in the Electrooculography section. 

There were still some undetermined signals when the operators looked at a point. There was  

a signal from Ch1 that indicated down movement when the operators actually only performed a left 

gaze motion. Ch1 produced a negative EOG signal that indicated an up gaze motion when the 

operators only gazed to the right. In the vertical case, the undetermined signals came from Ch2. The 

offset position in the vertical axis for right and left gaze motion, as well the offset position in the 

horizontal axis for up and down movement were called errors. 
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Figure 11. Illustration of the error pixels in the four basic gaze motion directions. 

 

The errors produced slopes between the four lines (up, down, right and left) and the axis, as shown 

in Figure 11. Table 7 shows the values of α1, α2, α3 and α4 from three operators. Those values  

varied by subject. Rotating the four lines (up, down, right and left) in a counter-clockwise direction 

using Equation (18) was investigated in this research. The goal was to bring the up and down line 

exactly on the v-axis, as well as the left and right line on the u-axis. These methods  

are illustrated by Figure 12. 

Table 7. The angles of rotation matrixes for the up, down, right and left gaze motions. 

Operator α1 α2 α3 α4 

1 41.48° 42.25° 18.48° 18.89° 

2 42.25° 46.99° 19.12° 18.19° 

3 52.78° 51.57° 31.16° 33.16° 

i i

i i

cos sin u
i 1,2,3,4

sin cos v

u '

v '


 
    
    

    

 

 
 (18) 

u Pixel in u before rotation,v Pixel in v before rotation

u ' Pixel in u after rotation,v ' Pixel in v after rotation

 

 
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Figure 12. The positions of pixels. (a) Before rotation process. (b) After the rotation process. 

 

Table 8 shows some examples of average data for gaze motions from the (0, 0) pixel to the four 

desired positions. For the right or left gaze motion, there were some errors, especially on the v-axis, 

because of the signal coming from Ch1. These errors were successfully reduced by rotation matrixes 

from −147 pixels to 30 pixels on the right gaze motion and 255 pixels to −27 pixels on the left gaze 

motion. On the other hand, the errors for vertical gaze motions coming from Ch2 on the u-axis were 

reduced from 207 pixels to 43 pixel in the up gaze motion and from −180 pixels to −35 pixels in the 

down gaze motion. After the rotation process, the errors were approximately ±25 pixels (u) and  

±30 pixels (v) for horizontal gaze motion. For the vertical gaze, the errors were approximately  

±40 pixels (u) and ±30 pixels (v). Comparing this error to the total pixels in the horizontal  

(1020 pixels) and the vertical (720 pixels) directions, the errors were around 3% for the u-axis and 4% 

for the v-axis. 

Table 8. Pixel positions before and after rotation for some gaze motions from the (0, 0) 

pixel to the desired pixels. 

 
Signal Desired Pixel 

Actual Pixel 

before Rotation 

Actual Pixel  

after Rotation 

Ch1Norm _ EOG  Ch2Norm _ EOG  ud vd u v u’ v’ 

Right 0.42 0.52 510° 0° 461° −147° 483° 30° 

Left 0.59 0.53 −510° 0° −476° 255° −530° −27° 

Up 0.73 0.36 0° 360° 207° 332° 43° 389° 

Down 0.69 0.26 0° −360° −180° −296° −35° −340° 

6. Results and Discussion 

A sequence of tests was already done after all parts of the rotation matrix were established. That  

means that the EOG part, the robot and the gaze motion distance algorithm were connected well. 

Figure 13a shows the display on the monitor when the testing process was being started. There was a 
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piece of the robot manipulator in front of the screen, which was Link2. The blue dot was the initial eye 

position, and the red dot was the target point. Operators started their gaze motion from the blue dot, 

then moved to the red dot. This movement was tracked by the robot, as shown by Figure 13b. At this 

time, the target point in the Figure 13a became the eye position or blue dot. The red line connecting the 

two points illustrates the pathway of the end-effector. In this case, there were no error pixels, either on  

the u-axis or the v-axis. 

Figure 13. The display for testing the tracking of a 2D analog object using EOG. (a) Initial 

position for the end-effector of robot and the position of target. (b) The end-effector 

follows the gaze motion. 

 

(a) 

 

(b) 

Another example of tracking points is shown in Figure 14. There were two sequences of gaze 

motions in this example. The first gaze was diagonal in the left-up direction, and the second gaze 

motion was diagonal in the right-up direction. After the second gaze motion, the actual eye position 

(blue dot) was not exactly at the same position as the target point (red dot). This difference was called 
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the Error _Distance . The error pixel in horizontal is calculated by Equation (19) and the error pixel in 

vertical was shown by Equation (20), The Error _Distance  was the Euclidian distance between the 

desired pixel position and the actual pixel position. It is calculated by Equation (21). 

Figure 14. The error pixel between the desired pixel position and the actual pixel position  

(1 = Error_Distance, 2 = u_Error, 3 = v_Error, 4 = desired position, 5 = actual position). 

 

u _ error ud u '   (19) 

v _ error vd v '   (20) 

 
2 2Error _Distance  u _ error v _ error   (21) 

A sequence of experiments was done by three operators. Three operators gazed in total 20 times to  

track 20 random points. Based on (1), every pixel in the horizontal direction was equal to 0.0333 cm, 

since the length of the monitor was 34 cm or 1020 pixels. Calculated by Equation (2), every pixel in 

the vertical direction was equal to 0.0375 cm, because the monitor height was 27 cm or 720 pixels. The 

is given in pixels and cm, as shown by Table 9. As long as the distance between 

operators and the display was 40 cm, the angle errors, as shown in Figure 15, were also available for 

horizontal and vertical gaze motion. The errors in degrees are given in Table 10. 

Figure 15. The error gaze motion in degrees. 

 

Error _Distance
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Table 9. Average error (mean ± standard deviation) from three operators in pixels and cm.  

 Operator    
P

ix
el

 1 54 ± 19 51 ± 14 76 ± 17 

2 48 ± 17 44 ± 23 69 ± 19 

3 50 ± 18 48 ± 21 70 ± 17 

cm
 1 1.80 ± 0.65 1.94 ± 0.53 2.71 ± 0.60 

2 1.60 ± 0.57 1.67 ± 0.88 2.44 ± 0.69 

3 1.67 ± 0.61 1.68 ± 0.79 2.48 ± 0.64 

Table 10. Average error (mean ± standard deviation) from three operators in degrees.. 

Operator 
Degree 

  

1 2.57° ± 0.94° 2.77° ± 0.76° 

2 2.30° ± 0.89° 2.39° ± 1.25° 

3 2.40° ± 0.87° 2.40° ± 1.14° 

At a glance, the average error in the u-axis was almost the same as that in the y-axis. The average 

error in the u-axis was 50 pixels ± 18 pixels, and the average error in the v-axis was  

47 pixels ± 20 pixels. However, there was a conversion coordinate from pixel (u, v) to robot 

coordinates (x, y) in cm. In the robot coordinates, the average maximum error pixels in the x-axis were 

2.31 cm and 2.50 cm in the y-axis. The maximum error distances from Operators 1, 2 and 3 were  

3.31 cm, 3.14 cm and 3.13 cm. Overall, the maximum average error distance was around 3.20 cm. 

Table 9 gives the data for the average error in degrees. The average angle error in the horizontal 

direction was around 2.42° ± 0.87° and 2.52° ± 1.50° in the vertical direction. These results show that 

the linear EOG equations in the horizontal direction have a slightly better performance than  

the vertical direction. Horizontal gaze motion has a higher accuracy than vertical gaze motion. 

Horizontal gaze motion is slightly more stable than vertical gaze motion based on the standard 

deviation value. 

This system successfully gives an alternative method of a tracking system using EOG. In [17],  

ten random targets were tracked by three operators and the operator’s blinked their eye when the robot 

reached a target. Using rotation matrixes, the robot directly moved to the target when a gaze action  

was performed. This ability can avoid errors that occur due to the process of blinking detection. The 

maximum error using rotation matrixes was approximately 3.1 cm. This system was also more stable 

based on the standard deviation. 

7. Conclusions 

This test was performed with a fixed head position with a maximum angle to the horizontal axis of 

46° and a maximum gaze motion in the vertical axis of 38°. An EOG system that was used to drive the 

two-DoF planar robot manipulator for the analog tracking of an object was developed not only for 

direction but also for distance. The direction was not only the vertical and horizontal axes, but also the 

diagonal gaze motion. There were five targets, each in a horizontal line and a vertical line, to check the 

similarity of the EOG in each axis. The results showed that there were no differences among the EOG 

x _ error y _ error Error _Distance

x _ error y _ error
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potential values, as long as the gaze motions were performed in the same axis and at an  

equal distance. 

To reduce pixel error, the rotation matrix was attached to the process based on the four basic 

directions. This system was tested by three operators on 20 random points. The test shows that this 

system successfully tracked objects indicated by the monitor display and the robot movement. The 

level of accuracy in the u-axis is slightly better than the v-axis, since the maximum angle error in the 

u-axis was 3.31° and that in the v-axis was 3.58°. This system, with good accuracy, is acceptable to be 

further developed. By attaching a gripper at the end-effector, the developed EOG-based robot control 

system could help disabled people handle materials, such as a glass, books, or to point to an object that 

they want to access. 

Although this system could track freely moving objects with a good level of accuracy, there  

are still many challenges to improve it. One of them is its robustness, because EOG values are varied 

not only across different people, but also, each individual can produce a different EOG signal for  

the same gaze motion distance at two different times. These situations need to be standardized in order 

to develop EOG for more general applications. 
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