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Abstract: Although the use of articulated robots and AGVs is common in many industrial sectors such
as automotive or aeronautics, the use of mobile manipulators is not widespread nowadays. Even so,
the majority of applications separate the navigation and manipulation tasks, avoiding simultaneous
movements of the platform and arm. The capability to use mobile manipulators to perform operations
on moving objects would open the door to new applications such as the riveting or screwing of parts
transported by conveyor belts or AGVs. This paper presents a novel position-based visual servoing
(PBVS) architecture for mobile manipulators for precise industrial operations on moving parts. The
proposed architecture includes a state machine to guide the process through the different phases of
the task to ensure its correct execution. The approach has been validated in an industrial environment
for screw-fastening operations, obtaining promising results and metrics.
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1. Introduction

The use of robots is widely extended in the industry nowadays, making use of artic-
ulated robot arms [1,2] for a huge range of applications. Additionally, AGVs [3,4] have
become popular for internal logistics during the last decades in different industries such
as automotive or manufacturing sectors. In recent years, the appearance of mobile manip-
ulators in the market has changed the perspective of users and developers, as this kind
of robot extends the manipulation capabilities of articulated industrial arms to the whole
workshop area. Even so, the current industrial applications with mobile manipulators
usually separate the navigation and manipulation phases due to technical simplification
as well as safety reasons [5,6]. For example, in many logistics applications, the platform
initially navigates to the pickup point and grasps the object once the platform is still, which
is a straightforward approach for a wide range of scenarios.

Nevertheless, the ability to simultaneously coordinate both platform and arm move-
ments during operation further exploits the capacities of mobile manipulators. The ca-
pability to synchronize movement and operation not only enhances their functionality
in stationary conditions but also enables operations in dynamic environments like the
manipulation of objects that are being transported either by conveyor belts or AGVs. This
feature is essential in many sectors, such as automotive or industrial manufacturing, where
parts are constantly moved between stations. Although recent advances allow synchronous
movement and manipulation in both static and dynamic environments, the ability to carry
out high-precision tasks such as riveting or screwing in movement raises a challenging topic
involving the coordination of robotic platform and arm movements while ensuring low
positioning errors. Therefore, a practical and reliable implementation of this kind of tech-
nology requires including mechanisms to adapt to objects that are moving at an unknown
velocity around the workshops, facilitating the fast deployment of mobile manipulators in
different operations.
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This paper proposes a novel position-based visual servoing (PBVS) architecture for
mobile manipulators focused on precise industrial operations on moving parts, using
a state machine to guide the process through its different phases. To ensure safe and
precise contact between the robot tool and the part, the architecture includes compliance to
maintain the stability of the task during this critical phase of the process. The architecture
has been tested on an automotive sector setup in screw-fastening operations, obtaining
promising results and metrics.

2. Related Work

Visual servoing [7–9] is a recurrent topic in robotics, as it provides the capability
to control a robot’s behavior based on visual feedback, adapting to the target’s motion.
Compared to a dynamic look-and-move approach, where robot movements or trajectories
are generated using the information of one or a few images, visual servoing enables a
continuous adaptation of the robot position required by industrial applications where the
targets are moving.

Several works applied the visual servoing paradigm in industrial environments. Lip-
piello et al. [10] presented a position-based visual servoing approach for a multiarm robotic
cell equipped with a hybrid eye-in-hand/eye-to-hand multicamera system which includes
mechanisms for fast and accurate estimation as well as occlusions handling. The work
includes two case studies, coordinated dual-arm movements and grasping tasks, for testing
its effectiveness. For example, Castelli et al. [11] propose a novel visual servoing system
based on machine learning for the automation of the winding of copper wire during the
production of electric motors. It includes a Gaussian mixture model (GMM) machine learn-
ing system, which guarantees an extremely fast response in a path-following application
simulating the real stator teeth of a generic electric motor. Additionally, Wu et al. [12] use a
position-based visual servoing approach for pick-and-place operations in the food industry,
which has been validated in a lab-scale experimental setup.

Focusing on precise industrial operations, Pitipong et al. [13] propose a visual servo-
ing strategy for determining and correcting the alignment of an automated robot screw-
fastening operation on a 4-DOF robot. Hao and Xu [14] also present an image-based
visual servoing algorithm for screw grasping and assembling, adding a robotic assembly
workflow to guide the process. Even so, sparse applications are found for applying visual
servoing in mobile manipulators for precise industrial tasks.

The addition of state machines to visual servoing is an interesting topic, as it supports
guiding the addressed task. Ruybal et al. [15] propose the use of a finite state machine to
increase the positional accuracy of a robotic arm under impedance control in peg-in-hole
insertion tasks. Aref et al. [16] also make use of a state machine to solve logical control
issues on a pallet-picking application using a forklift truck. Additionally, Fue et al. [17]
propose the use of finite-state machines and visual servoing in a cotton-harvesting platform.
The different works show how state machines can enhance visual servoing controllers in
complex tasks composed of different process steps, although its use is not very extended.

Finally, many works on visual servoing for mobile manipulators follow an image-
based approach with an eye-in-hand configuration. For example, Wang et al. [18] propose
an image-based visual servoing approach which is enhanced with a Q-learning controller
through a rule-based arbitrator. Belmonte et al. [19] present a direct image-based controller
taking into account robot dynamics during the tracking of images. Li et al. [20] make use
of an HVS control method combined with a Kalman Filter to grasp static objects, obtaining
a flexible and reliable grasping effect. Arora and Papachristos [21] tackle the problem
of the real-time tracking and grasping of a dynamic target by a mobile manipulation
robot, inspired by the principles of visual servoing and the paradigm of virtual force-
based formulation. Finally, Burgess-Limerick et al. [22] pose a generalized architecture for
reactive mobile manipulation for grasping objects with unpredictable motion, tackling both
scenarios of static and dynamic objects.
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The above-mentioned papers address the tracking [19] and grasping of static [18,20]
and dynamic objects [21,22] with mobile manipulators. Even so, further research is needed
to meet the requirements of industrial applications involving the manipulation of moving
objects. Operations such as assembling or screw fastening require high accuracy and
reliability, crucial aspects in assembly lines of automotive or manufacturing industries.

3. Proposed Approach

The paper proposes a visual servoing architecture for mobile manipulators, focusing
on the capability to perform precise operations on moving objects in industrial scenarios.
During the design of the architecture, several considerations related to the characteristics
of industrial scenarios are taken into account:

• The mobile manipulator should be able to approach the moving object and perform
different operations on the same parts (e.g., tighten five different bolts). An eye-to-
hand configuration is proposed with the camera attached to the mobile platform. This
decision is motivated by the fact that in real applications, it could be problematic to
find a suitable camera position that ensures the visibility of the part in a wide range
of tool positions. The eye-to-hand configuration simplifies the problem, making it
necessary to detect just one part instead of multiple small elements such as bolts
or holes.

• To generalize the approach and as it is intended for a wide range of parts, a position-
based visual servoing (PBVS) is proposed to avoid conditioning the detection process.

• Due to the precision required for tasks such as screwing or riveting, the architecture
includes a compliance layer to ensure that imprecisions do not damage tools or parts
during contact phases.

• The industrial operations tackled in this paper require a series of steps for completion
(e.g., an initial approach, perpendicular approximation to the bolt/hole, tool activation,
safe tool retracting, and moving to the next operation). Consequently, the architecture
should include mechanisms to guide the visual servoing process along the different
steps of the procedure, parametrizing the control parameters and poses based on the
current phase. The use of a state machine is proposed to this end.

Based on these premises, the paper proposes a visual servoing control architecture for
mobile manipulators, where the key element is the state machine that guides the whole
task, modifying the control parameters based on the current process phase. Additionally,
the architecture also includes compliance to ensure stability during the phases where the
robot tool and the part are in contact.

4. Notation and Reference Frames

This paper adopts specific notation and reference frames to describe the kinematics
involved. The following key terms and frames of reference are outlined:

− Reference frames a and b are represented as Fa and Fb, respectively.
− The translation vector of frame Fa relative to frame Fb is given by pba ∈ R3.
− The rotation of frame Fa relative to frame Fb is represented by a rotation matrix

Rba ∈ SO(3).
− Consequently, the transformation matrix that defines the rigid transformation of frame

Fa relative to frame Fb is denoted by Hba ∈ SE(3), incorporating both translation and
rotation components, and is expressed as

Hba =

[
Rba pba
0 1

]
. (1)

− A twist vector V =
[

ω ν
]T ∈ R6 represents a rigid body motion. It comprises

angular velocity ω ∈ R3 and linear velocity ν ∈ R3.
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− The Jacobian matrix J(θ) ∈ R6×n relates the joint velocities to the end-effector twist Ve,
where θ ∈ Rn represents the vector of joint positions, and n denotes the number of
joints of the robot arm.

Furthermore, a variety of coordinate system frames that correspond to the mobile
manipulator and the target object are depicted in Figure 1. Particularly, the following
frames are employed in the paper:

− Fb represents the mobile platform base frame, located at the center of the mobile
platform’s base.

− Fa stands for the arm’s base frame, mounted on top of the mobile platform.

− Fc corresponds to the camera frame.

− Fe designates the end-effector’s frame, positioned at the extremity of the tool.

− Fo refers to the object frame, corresponding to the object whose motion is tracked.

− Ft indicates the target operation pose, located on the moving object.

Figure 1. Mobile manipulator reference frames.

5. System Architecture

A visual servoing architecture is proposed for mobile manipulator control for in-
dustrial operations on moving objects with an eye-to-hand configuration. The approach
assumes the knowledge of the geometric information of the mobile manipulator. Specifi-
cally, homogeneous transformation matrices

Hba, (2)

Hbc, (3)

where Hba defines the transformation between the mobile platform base and the arm
and Hbc represents the transformation between the mobile platform base and the camera
mounted on the platform.
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Based on these premises, the architecture shown in Figure 2 is composed of seven
different modules. The next lines summarize the function of each of these components.

Figure 2. Schema of the mobile visual servoing architecture.

• The pose estimation module provides the transformation Hco of the object relative to
the camera frame based on the received image.

• The forward kinematics module provides the transformation Hbe between the mobile
platform base and the end effector of the tool based on the joint positions qa of
the manipulator.

• The high-level management of the whole process is performed by the process state
machine. Its main inputs are the transformation H∗

co, defining the target object position
in the camera frame, as well as a set of transformations H∗

bt defining the operation
poses in the object’s frame (e.g., screw positions on the part). Additionally, input poses
H⊛

be and H⊛
co define the final end effector and camera poses that the mobile platform

should reach when it moves away from the part. Based on this input and the current
state S of the state machine, the module manages the desired camera pose H∗

co, desired
end-effector pose H∗

be, and PID values Ka and Kb sent to the control law, alongside
the compliance values I sent to the impedance controller. Thus, the state machine can
manage the different control parameters through the complete task, tuning the values
to the requirements of each step.

• The control law module is in charge of generating the twist commands sent to the
mobile manipulator based on the measured errors. Specifically, it receives both the
end-effector error Ebe and camera error Eco, as well as the PID values Ka and Kb for the
arm and mobile platform, respectively. The module calculates the next twist vectors
Va and Vb for both the manipulator and mobile platform.

• Once the manipulator’s twist vector Va is calculated, the arm twist controller gener-
ates the next desired joint positions q∗a that satisfy the motion required by the twist
vector Va.

• Lastly, the joint positions q∗a are modified by the impedance controller using the compli-
ance values I, calculating the final joint positions qa.

• In parallel, the platform twist controller calculates the next mobile platform control
command qb based on the received Cartesian twist vector Vb.
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While the preceding lines briefly explain how the flow of the proposed architecture
works, the next sections provide further details about the process state machine, as well as
the different modules composing the mobile manipulator control.

6. Process State Machine

As stated in the previous section, the process state machine acts as a supervisor of
the whole operation and modifies different control parameters along the task. The main
motivation to include such an element is that industrial operations like screwing or riveting
are composed of many steps that require careful decision-making and management (e.g.,
approaching the operation area, approximating the task point perpendicularly, ensuring
contact during the operation, retracting the tool safely, and continuing to the next operation
poses). Therefore, a classical approach where a single target is provided to the control
system is not sufficient to cope with the complexity of real industrial operations. The
inclusion of a state machine tries to overcome this limitation, adding a high-level supervisor
that ensures that the whole operation is fulfilled stably and safely. Specifically, the proposed
state machine manages a total of eight states during the process, included in the operate
while moving sub-state machine, plus four more high-level states devoted to process stability.
The current process state S is defined as

S ∈ {s1, s2, . . . , s8}, (4)

where each state describes a step of the whole operation. The state machine transits between
these states when some requirements are fulfilled, mainly related to reaching some error
tolerances. For convenience, during the description of the module, some states are grouped
into a sub-state machine to facilitate its understanding.

Initially, the state machine receives several input parameters defining the key infor-
mation of the task. Precisely, there are four input parameters related to the task-specific
positioning strategy, parameters that remain static during the whole task. The principal
ones are the target pose between the camera and the object

H∗
co , (5)

and a set of poses H∗
T on the object frame describing the N positions the tool should reach

to fulfill the task, defined as

H∗
T =

{
H∗

ot1
, H∗

ot2
, . . . , H∗

otN

}
. (6)

Additionally, two more poses define a safe retracting maneuver of the robot once the
task is finished, moving away both the manipulator and mobile platform from the part
avoiding any undesired collision. Specifically, these poses are defined as

H⊛
co , (7)

H⊛
oe , (8)

where H⊛
co defines the final camera pose, and H⊛

oe determines the final end-effector pose in
the part’s frame.

Additionally, several control parameters are verified and modified during operation
by the state machine according to the current state. These parameters are mostly those
related to the control cycle and the low-level control of the system.

• In each control cycle, the input parameters H∗
co and H∗

T are compared with the current
camera pose Hco and end-effector pose Hbe to check if the error is within the tolerance,
so the process can advance to the next state. In particular, during the platform
approach, the error of the camera’s pose is verified to manage the transition from state
si as
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S =

{
si+1 if |pcc∗ | < ϵt ∧ |θcc∗ | ≤ ϵr

si otherwise
, (9)

where |pcc∗ | and |θcc∗ | denote the translation and rotation error of the camera pose
calculated as

Hcc∗ = H∗
co . H−1

co , (10)

|θcc∗ | = arccos
(

tr(Rcc∗)− 1
2

)
(11)

and ϵt and ϵr define the translation and rotation threshold.
Alternatively, during the phases where the manipulator moves around the operation
points, the transition state si is managed as

S =

{
si+1 if |pbe∗ | < ϵt ∧ |θbe∗ | ≤ ϵr

si otherwise
, (12)

where |pbe∗ | and |θbe∗ | denote the translation and rotation error of the end effector

Hbe∗ = H∗
be . H−1

be , (13)

|θbe∗ | = arccos
(

tr(Rbe∗)− 1
2

)
(14)

and ϵt and ϵr define the translation and rotation threshold.
• Based on the current process state, the module modifies the different control parame-

ters to ensure that the values are appropriate for the characteristics of each process
phase. In particular, the next parameter sets are managed:

– The target pose of the end effector H∗
be is modified during the different operation

phases for two main purposes. The first one is to iterate along the different target
poses in H∗

T as the task involves operating on several elements. The second one is
to add a safe approach and retract the pose before and after the operation; the
main motivation is to ensure that the tool enters perpendicularly to the operation
pose, avoiding any unsafe movement near the part.

– The PID parameters of the control law are also modified by the state machine. In
each cycle, the module provides a set of PID parameters for the manipulator as

Ka =

Kpa

Kia

Kda

, (15)

where Kpa , Kia , and Kda define the PID values for the manipulator and a set of
PID parameters for the mobile platform as

Kb =

Kpb

Kib
Kdb

, (16)

where Kpb , Kib , and Kdb
define the PID values for the mobile platform.

During the operation process, the PID parameters of the mobile platform are
boosted in the approach steps to speed up the process, denoted by Kb△ , while
the proportional part decreases during the operation phases to ensure precision,
represented by Kb▽ . Therefore, Kb is defined as

Kb ∈
{

Kb△ , Kb▽

}
. (17)
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The manipulator also includes these approach and operation parametrizations,
denoted by Ka△ and Ka▽ , as well as a zero vector, denoted as Ka∅, to avoid any
arm movement during some steps of the process. Thus, Ka is defined as

Ka ∈
{

Ka△ , Ka▽ , Ka∅
}

. (18)

– Finally, the state machine also modifies the impedance parameters I defining the
compliance of the manipulator. The impedance parameters are defined as

I = {K, D, M} , (19)

where K, D, and M describe diagonal matrices defining the stiffness, damping,
and mass values. In particular, this module manages two different compliant
profiles, a high-stiffness profile denoted by Is where the arm’s position is com-
pletely rigid, and a compliant profile denoted by Ic where the manipulator shows
compliant behavior in the X, Y, and Z axes. Thus, I is defined as

I ∈ {Is, Ic}. (20)

As a general rule, the high-stiffness profile Is is used when there is no possible
contact with the part, while the compliant profile Ic is used when the tool is in
contact with the part or is about to be. The decision to include the high-stiffness
profile is to avoid deviations from the nominal path during the initial approaches
due to imprecision in the force/torque sensors, which may lead to undesired
behaviors during contact between tool and part (e.g., error during insertion of
the tool on the part).

Summarizing, the process state machine modifies and sends these control parameters
to other modules of the architecture to guide the different phases of the operation.

6.1. State Machine

At the highest level, the state machine manages the system’s stability to ensure that
the process stops safely in case the target is lost for a long time, as shown in Figure 3.
Specifically, the process is managed through the following states.

Figure 3. Complete state machine.
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• Initial target search: The process starts with the mobile manipulator waiting for the
target object to be detected. If the target is detected, the process moves to the operate
while moving sub-state machine. Otherwise, if the target detection timeout is reached,
the process transits to the error state.

• Operate while moving: This sub-state machine contains the complete operation
sequence that is explained later in this section, states s1 to s8. In case the target is lost
during the process, the process moves to the searching target state. Additionally, if any
error is detected during the operation, the process reaches the error state. Otherwise,
once the task is completed, the successful operation state is reached.

• Searching target: Once the target is lost, this state stops any movement and tries to
search for the target again. If the target is found again within a time limit, the state
machine returns to the previous state in the operate while moving sub-state machine. If
the timeout is reached, the process transits to the error state.

• Error: In this state, the process is terminated in a controlled way, triggering any error
management before exiting the state machine.

• Successful operation: This state terminates the process.

The next paragraphs describe in depth the operate while moving sub-state machine
presented above.

6.2. Operate While Moving

The operate while moving sub-state machine, as mentioned, manages the actual opera-
tion while the object is being detected. The operation is managed through a series of states
that go from s1 to s8 as depicted in Figure 4.

Figure 4. Operate while moving sub-state machine.
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The complete task is divided into three different phases:

• s1—Initial platform approach: In this initial state s1, the mobile platform approaches
the target until it is near enough to start the manipulation task. For the control
parameters, the PID values for the mobile platform are boosted with values Kb△ while
the arm’s ones are set to zero value Ka∅ to avoid any manipulator movement. The
state transition is managed by checking that the camera is close to the target object’s
position using Equation (9). If the errors are below the threshold, the state transits to
state s2.

Once the mobile platform reaches the desired camera pose and follows the target part,
the state machine moves to the complete manipulation operation. As mentioned previously,
the operation is guided by the task poses H∗

T where the manipulator activates the tool. Even
so, to ensure the security of the operation an additional pose is introduced above each task
pose; see Figure 5, which allows to approach and retract safely. Therefore, the state machine
modifies the desired end-effector pose H∗

be to introduce the aforementioned maneuver.

Figure 5. Approach and retract maneuvers to operation poses.

Specifically, the next states guide the manipulation procedure through the whole
sequence:

• s2—Initial arm approach: In this initial approach state s2, the manipulator’s set-
point H∗

be is set to a pose that enables a safe maneuver towards the operation point,
calculated as

H∗
be = Hbc . Hco . H∗

oti
. Htp , (21)

where H∗
oti

defines the ith operation pose and Htp determines the transformation
between the nominal operation pose and the approach pose.
Regarding the PID values, the mobile platform is set to kb▽ operation values, while
the manipulator is boosted to Ka△ values to accelerate the approach. Additionally, the
manipulator is parametrized with Is to show a high-stiffness behavior that ensures that
the tool reaches the approach pose above the operation point, without any deviation
due to compliance. The state transition is managed by the end-effector error using
Equation (12).

• s3—Arm destination approach: In state s3, the manipulator moves towards the
operation point. The setpoint H∗

be is calculated as

H∗
be = Hbc . Hco . H∗

oti
, (22)

where H∗
oti

defines the ith operation pose.
Both PID values are set to values ka▽ and Kb▽ to prioritize stability over approach
speed. At the same time, the manipulator is parametrized with Ic to show compliant
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behavior to avoid any damage during contact. The state transition is managed by the
end-effector error using Equation (12).

• s4—Gripper activation: This state s5 manages the gripper activation. As this activation
can take some time depending on the type of tool used, it should be performed
asynchronously. Therefore, the control loop continues in this state until the activation
is finalized. The PID and compliance values are set to ka▽ , kb▽ , and Ic while the state
machine moves to state s5 when the gripper activation finishes.

• s5—Operation: The operation state s6 controls the operation time where the tool is
working on the industrial task for a defined time t. Again, the PID and compliance
values are set to ka▽ , kb▽ , and Ic while the state machine moves to state s6 after time t.

• s6—Arm retract: This last state s7 manages a safe retract maneuver, moving the
manipulator to the approach position. The manipulator’s setpoint H∗

be is calculated
as in Equation (22). Regarding the PID values, the mobile platform is set to kb▽
operation values while the manipulator is boosted with Ka△ values to speed up this
step. Finally, the manipulator is parametrized with compliant values Ic to ensure a
safe tool removal.
The state transition is calculated as in the previous approach maneuver using
Equation (12).

These previous steps are repeated for each pose in H∗
T . Afterwards, the process

concludes with the final retract maneuver that ensures a safe manipulator and mobile
platform movement away from the part. As a first step, the manipulator retracts and once
it is removed from the manipulation area, the platform abandons the part zone.

• s7—Final arm retract: This state s7 drives a safe retract maneuver, moving the manip-
ulator away from the part. The manipulator’s setpoint H∗

be is calculated as

H∗
be = Hbc . Hco . H⊛

oe , (23)

where H⊛
oe defines the retract pose of the end effector in the object’s frame.

The PID and compliance values are set to ka▽ , kb△ , and Is. The state transition is
calculated as in the previous approach maneuvers using Equation (12).

• s8—Final platform retract: Finally, state s8 moves the mobile platform from the object
area. The mobile platform setpoint H∗

co is set to

H∗
co = H⊛

co , (24)

where H⊛
co defines the final object pose in the camera frame.

The PID values of the mobile platform are boosted to kb△ while the manipulator values
are set to Ka∅ to deactivate the arm’s movements. The state transition is estimated by
verifying the object’s pose using Equation (9).

Based on this state machine, the module tunes and parametrizes the different poses
and values of the control law and impedance controller modules.

7. Mobile Manipulator Control

As presented in the previous section, the process state machine is responsible for
guiding the complete task and tuning the different control parameters along the whole
process. On a lower level, the modules composing the mobile platform control generate
the manipulator and mobile platform commands based on the current error. The next lines
describe the internal calculus of the different modules.

7.1. Control Law

The control law module calculates the twist vectors Va and Vb of both the robotic ma-
nipulator arm and mobile platform based on the received errors. As mentioned previously,
the process state machine is the high-level module that modifies and tunes the control
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parameters of the control law module, providing a dynamic behavior along the different
steps of the task.

Initially, the twist vector Vb of the mobile platform is calculated. For this, the error
Eco, represented on the camera’s frame, is transformed to be represented on the base
frame using

HbEo =

[
Rbc 0
0 1

]
. Eco , (25)

where Rbc defines the rotational part of the transformation between the robot base and
the camera.

This error matrix is converted into vector form LEo for convenience in further steps as

LEo =

[
ωEo

νEo

]
, (26)

where ωEo and νEo represent the angular and linear parts of the error, successively. For
the angular subvector ωEo , the rotation part of the error matrix HbEo is transformed into
angle-axis representation [23] as

θ = arccos
r11 + r22 + r33 − 1

2
, (27)

a1 =
r32 − r23

2 sin θ
, (28)

a2 =
r13 − r31

2 sin θ
(29)

a3 =
r21 − r12

2 sin θ
(30)

where rxy denotes the element on row x and column y in the rotation matrix RbEo . These
values are then used to define the concise rotation vector ωEo as

ωEo =

θa1
θa2
θa3

. (31)

The linear vector νEo can be directly extracted from the translational component pbEo

of HbEo as

νEo = pbEO . (32)

This error vector LEo is used to calculate the twist vector Vb of the mobile platform,
applying PID control [24] as

Vb = Kpb LEo + Kib

∫ t

0
LEo dt + Kdb

dLEo

dt
(33)

where Kpb , Kib , and Kdb
are diagonal matrices with the proportional, integral, and derivative

values of the mobile platform.
Once the twist vector Vb of the mobile platform is calculated, the arm’s twist Va is

computed subsequently. To avoid overcompensation associated with the combined motions
of both the platform and the arm, it is important to determine the impact that the platform’s
motion, represented by the twist vector Vb, exerts over the end-effector motion [25]. This
exerted motion is represented by the twist vector Vbe as

Vbe =

[
ωb

νb + r × ωb

]
, (34)
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where νb and ωb represent the translation and rotation part of the twist vector Vb, and r
defines the translation between the mobile platform base and end effector. This twist vector
Vbe is further used to compensate for the end-effector error, using

E′
be = Ebe − Vbe dt. (35)

This error E′
be is converted into its vector form LEe as presented previously in

Equations (26)–(31). As a final step, twist vector Va of the arm is calculated using, again,
PID control as

Va = Kpa LEe + Kia

∫ t

0
LEe dt + Kda

dLEe

dt
(36)

where Kpa , Kia , and Kda are diagonal matrices with the proportional, integral, and derivative
values for the robot arm.

These two twist vectors Va and Vb of both the arm and mobile platform are further
sent to the arm twist controller and platform twist controller for further management.

7.2. Arm Twist Controller and Compliance Controller

The arm twist controller and compliance controller are in charge of managing the arm
twist vector Va and moving the manipulator’s joints. Specifically, the first module computes
the next joint positions that ensure that the end effector moves at the desired velocity, while
the second one allows a compliant behavior of the manipulator in the contact operations
involved in the defined task.

The first step of the sequence is to convert the twist command Va into the desired joint
positions q∗a that ensure the desired velocity command. To this end, the arm twist controller
calculates the joint positions q∗a as

q∗a = qa + J+(qa) Va dt (37)

where qa is the current joint state and J+(qa) defines the pseudo-inverse of the Jacobian
matrix [26] of the manipulator, as the proposed approach is intended for manipulators up
to seven degrees of freedom.

In a second step, the compliance controller module [27,28] allows establishing a mass-
damper-spring relationship between the Cartesian position ∆x and the Cartesian force F.
To this end, the following formula is applied:

F = M∆ẍ + D∆ẋ + K∆x, (38)

where M, D, and K represent the virtual inertia, damping, and stiffness of the system,
respectively.

Based on the sensed force vector F, the ∆X defining the displacement in Cartesian
space is calculated as

∆X =
∆F

M∆t2 + D∆t + K
, (39)

where ∆F represents the difference between the desired contact force and the actual one.
This ∆X is added to the nominal joint positions q∗a to provide the compliant behavior

using
qa = q∗a + J+(q∗a) ∆X, (40)

where J+(q∗a) defines the pseudo-inverse of the Jacobian matrix of the manipulator in the
nominal joint positions q∗A. With this last step, the next joint position qa is calculated and
sent to the manipulator, adding the compliant behavior that allows safe contact between
the tool and part during the operation.
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7.3. Platform Twist Controller

This module converts the twist command Vb of the mobile platform into the low-
level commands qb of the platform. As the proposed approach is intended for different
platform types and geometries such as Ackermann steering [29] or omnidirectionality [30],
this section will not provide any specific equations about the different mobile platform
configurations.

8. Implementation

The proposed architecture is implemented for a screwing-while-moving operation, in
which the mobile manipulator must fasten several screws on a part that is subject to unpre-
dictable motion. Figure 6 shows the mobile manipulator employed in this implementation,
which includes the following elements.

Figure 6. Mobile manipulator used for the implementation of the mobile visual servoing architecture.

• An omnidirectional mobile platform of 1.686 × 1.016 × 933 mm with mechanum
wheels [31] able to move at a speed of up to 1.0 m/s. The platform includes two
manipulators in a dual-arm configuration, although a single arm is used for the
presented validation process.

• A Kuka LBR iiwa 7 [32] manipulator, an articulated robot arm of seven axes with
torque sensors equipped in each joint.

• An industrial IDS [33] UI-5240CP monochrome camera with a resolution of 1280 × 1024
and a frequency of up to 50 fps. A LED lighting system is also included to ensure the
illumination conditions and avoid detection errors due to changes in ambient light.

• For the screw-fastening task, the manipulator includes an OnRobot multifunctional
screwdriver [34]. This screwdriver incorporates torque control as well as intelligent
error detection for the management of the screwing process.

• An industrial PC is included on the mobile manipulator, which executes the different
software modules implemented on the paper.

From the software point of view, all the modules are developed using the ROS frame-
work [35]. Specifically, the presented architecture is composed of different ROS nodes
offering multiple actions and services implemented in C++. The next lines provide details
of several features of the software:

• The Kuka LBR iiwa manipulator control is implemented using the Direct Servo library.
The control loop of the arm includes both the arm twist controller, which runs on
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the industrial PC at a frequency of 250 Hz, and the impedance controller which is
implemented on the robot controller.

• To simplify the detection and allow a high-frequency pose estimation, an Aruco marker
detector library [36] is included. The detection provides a 6D pose at a frequency of
40 Hz based on the camera setup described previously.

• The control law is executed at a frequency of 40 Hz based on the input provided by the
marker detector. Therefore, the twist commands are generated at a frequency of 40 Hz,
although the low-level control of the manipulator manages the twist commands at
250 Hz, ensuring a smooth motion and compliance during the execution.

The presented architecture is implemented and further used for the validation process
as described in the next section.

9. Validation

To validate the proposed approach, the architecture is tested on an industrial setup,
where the mobile manipulator fastens the screws of a motor cover that is moving. Par-
ticularly, the task involves fastening four screws located on the upper part of the motor
cover. During the task, the platform follows the motion of the motor cover, while the arm
equipped with the screwdriver adheres to the bolts to carry out the fastening process as
shown in Figure 7. As mentioned previously, an Aruco marker is attached to the motor
frame to simplify the detection and allow a high-frequency pose estimation.

Figure 7. Mobile manipulator fastening screws of the moving motor cover.

To measure the performance of the architecture, the error of the camera Eco and end
effector Ebe is continuously monitored. Figure 8 shows the platform and arm error acquired
during a complete sequence of four screw-fastening processes. The platform error, depicted
in orange, falls in the initial platform approach phase and maintains stability throughout
the whole process around a value of 20 mm. In the case of the arm error, depicted in blue,
the graph exhibits three peaks in each screw related to the state transitions where the target
poses are modified (approach pose, screw tightening pose, and retract pose). In these
transitions, the error rises due to the change in the setpoint although it is quickly reduced
during the next cycles.
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Figure 8. Camera error Eco and end-effector error Ebe throughout a complete sequence of four
screw-fastening processes.

For a deeper insight into the process, Figure 9 illustrates the error data of the first screw
of the sequence, including the state value (in black) to highlight the transitions between
phases. Initially, the platform approaches the motor cover on state 1, reducing the platform
error until the transition threshold is reached. In state 2, the arm error initially exceeds
0.25 m; this error depends on the initial position of the arm, which can be far from the
first screw. During this phase, the arm rapidly adjusts to the new target (the first screw’s
approach pose), evidenced by the steep decrease in error and reflecting the responsiveness
of the arm. The screw approximation phase modifies again the setpoint to the screw pose,
increasing the error momentarily. The arm rapidly adjusts again to the new target and
maintains this low error during the operation phase, where the screw is fastened by the
screwdriver. This setpoint modification pattern is systematically repeated on subsequent
screw attempts, confirming the system’s ability to adapt quickly to new positional targets.

Figure 9. Camera error Eco and end-effector error Ebe during a single screw operation throughout the
initial approach, screw approximation, and operation states.

To further assess the performance of the system, the architecture is validated against
two different scenarios:

• Constant movement: In the first scenario, the motor cover is placed on a two-meter
conveyor belt, illustrated on the top row of the sequence of Figure 10. The conveyor
belt moves the motor cover in a straight line at a constant speed of 50 mm/s and both
direction and speed are not known by the robot beforehand. Through the experiments,
the motor cover and robot are placed in similar initial positions, with slight variations
in position.

• Irregular movement: In the second scenario, the motor cover is placed on top of a
table trolley that is irregularly pushed by a human as depicted on the bottom row
of the sequence of Figure 10, resulting in unpredictable and fluctuating movements.
During the tests, subjects try to maintain a speed equivalent to the 50 mm/s present
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in the conveyor belt. The combined effect of the human pushing and the instability of
the trolley mechanism ultimately results in a movement that roughly corresponds to
the target speed, yet with noticeable variations in velocity and acceleration.

Figure 10. Motor cover on a conveyor belt (top row of the sequence) and moved manually on a trolley
(bottom row of the sequence).

For each scenario, the screw-fastening sequence is repeated 10 times, resulting in
40 screws fastened in each scenario. The screw fastening is considered successful as long
as the screw’s bearing surface makes contact with the loading surface of the motor case.
On the contrary, when some bolt threads are still visible, it is considered an unsuccessful
screwing. The main failure reasons are the inability to reach the gripper activation state
caused by large tool positioning errors in the previous arm destination approach state, as well
as an unsuccessful coupling between the screwdriver and bolt head in the initial phase of
the gripper activation state due to positioning errors during this insertion. Although the
state machine can manage this state transition to gripper activation state, it is not able to
handle the coupling error, as there is not any reliable feedback from the screwdriver that
may trigger a new gripper activation attempt.

Initially, the time performance and success rate of the architecture are measured in
both scenarios. Table 1 summarizes the obtained results. The first column indicates the
movement type of the motor cover. The second and third columns provide information
about the mean time spent in the complete screwing maneuver in each bolt, as well as
the standard deviation. The fourth and fifth columns specify the mean duration and the
standard deviation of the screwing phase where the robot activates the screwdriver. Finally,
the last column details the success rate of the screw-fastening task for each movement type.

Table 1. Results obtained during the validation process.

Time/Screw Screwing

µ σ µ σ Success

Constant movement 9.45 s 2.07 s 5.28 s 1.88 s 92.5%
Irregular movement 11.55 s 2.51 s 7.15 s 2.59 s 67.5%

The results show a better performance of the system with a constant movement of
the target, reaching a success rate of 92.5%. Specifically, with a constant movement of the
target, the robot spends a mean time of 9.45 seconds per screw, including the approach
and retract maneuvers, where around five of the seconds are spent in the screw-fastening
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phase. In the case of irregular target movements, the success rate drops to 67.5%, spending
around 2 s more in the process due to the difficulties of reaching the destination poses. In
both scenarios, all the unsuccessful screwings are caused by an incorrect coupling between
the screwdriver and bolt heads in the gripper activation state.

Delving into the error during the screwing phase, Table 2 shows the performance of
the system while positioning the tool on the moving screw (gripper activation and operation
states). The second and third columns indicate the minimum and maximum translation
errors in positioning the tool on the target screwing pose, as well as the mean translation
error on the fourth one. The subsequent three columns illustrate the minimum, maximum,
and mean rotation errors of the screwing process.

Table 2. Errors measured during the screwing phase.

Translation Error Rotation Error
min max µ min max µ

Constant movement 0.11 mm 8.83 mm 1.57 mm 0.006◦ 1.76◦ 0.097◦

Irregular movement 0.11 mm 20.5 mm 3.82 mm 0.006◦ 2.91◦ 0.228◦

The obtained error measurements show the performance difference between both
movement types, especially in translation errors. During constant movement, the mean
translation error is around 1.57 mm, enough to ensure correct insertion of the screwing tool
in the bolts. In the case of irregular target movement, the mean error rises to 3.8 mm, which
causes an unsuccessful contact between the tool and bolt, which significantly reduces the
success rate. The abrupt velocity and acceleration changes on the irregular movement are
highlighted in the maximum translation error, where the value grows up to 20 mm.

Figure 11 further illustrates the difference in positioning error of the arm throughout
constant versus irregular motion. The smooth error curve of the constant motion setup
(blue line) points out stable tracking and efficient phase transitions. In contrast, fluctuations
in motion are manifested in the irregular motion setup (orange line), resulting in more
gradual error reduction, later phase transitions, and noticeable error peaks during the
last phases of the operation. These factors, as well as the reduced rate of success seen in
the irregular motion case, reflect the challenge that erratic motion entails for an effective
screwing operation when the target is moving irregularly.

Figure 11. Arm positioning error for the robotic arm, while tracking the object that followed either
constant (blue) or irregular movement (orange).

To sum up, there are two main conclusions extracted from the experiments carried
out to validate the presented architecture. On the one hand, the mobile visual servoing
algorithm can track and follow the motor cover, reaching an accuracy level sufficient to
perform the screw fastening with a constant motion pattern. On the other hand, irregular
movements increase significantly the tool positioning error, causing a substantial fall in the
success rate; an abrupt error rise during the activation of compliance, where the robot tries
to reach contact with the bolt, causes a large momentary deviation that finishes with the tool
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on a side of the bolt head without any option to recover from the error. Nevertheless, the
system shows good performance, being able to carry out a demanding task like screwing
in moving parts.

10. Conclusions and Future Work

This paper builds on solid and well-established theoretical, technological, and method-
ological foundations to develop a practical application of mobile manipulators for precise
industrial tasks involving motion. The contribution of this work is focused on its practical
implications for the development of industrial automated solutions for the assembly of
moving parts. The paper addresses relevant topics like task precision and stability using
mobile manipulators in dynamic environments, including features like compliance or the
use of state machines to guide the different steps of the operation. The practical utility
of this research has been validated through a screw-fastening operation conducted on a
moving assembly line.

Specifically, the presented paper proposes an architecture for mobile visual servoing
able to control both a mobile platform and a manipulator based on visual feedback, address-
ing specific problems of performing operations on moving parts in industrial environments.
The presented work proposes a state machine-driven control architecture able to guide
the complete industrial task by modifying the different parameters of the control modules.
Additionally, the architecture includes a compliance controller that complements the control
law to ensure safe contact between the tool and part for a successful operation.

The designed approach was implemented on a mobile manipulator composed of
a holonomic mobile platform and a Kuka LBR iiwa arm, equipped with an automatic
screwdriver and a 2D industrial vision system. This implementation was tested on a
screw-fastening operation on a moving engine cover, a demanding task due to the accuracy
required for its successful completion. The testing involved the bolt screwing while the
engine was transported on a conveyor belt, a traditional scenario where the part moves
linearly, as well as when it was transported manually on a trolley with random movements.
The architecture achieved a 92.5% success rate with a positioning error of 1.5 mm during the
tests on the conveyor belt, although the performance fell significantly in the tests involving
irregular movement, with a success rate of 67.5% and a positioning error of 3.8 mm. Even
so, the system showed promising performance in a demanding operation like the screw
fastening on moving parts.

As future steps, there are several open issues to address. Initially, the system was
tested using markers to simplify the target pose detection. The marker removal would be a
huge step towards the application of this kind of solution in industry, although the detection
and tracking precision could be an issue for the performance of the approach. Additionally,
the state machine is focused on operations involving the placement and activation of the
tool on the desired positions of the moving part, which covers a great amount of industrial
tasks. Even so, polishing or spraying applications follow a different strategy and require
other input data. Therefore, it would be interesting to test the architecture with multiple
state machines to validate it in various industrial applications, enhancing the impact of the
proposed approach. Finally, the decline in performance associated with irregular motion
is a critical issue that may be caused by several factors, such as latency, quality issues in
perception, or limitations in the control system’s responsiveness and predictive capabilities.
Besides the improvements in the perception systems to enhance image quality and pose
estimation, transitioning to more advanced control algorithms beyond the PID algorithm
can address the lack of responsiveness to irregular motion. Options include optimal or
adaptive control, or more sophisticated methods like model predictive control (MPC).
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