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Abstract: Addressing a collision-aware multi-robot mission planning problem, which involves
task allocation and path-finding, poses a significant difficulty due to the necessity for real-time
computational efficiency, scalability, and the ability to manage both static and dynamic obstacles
and tasks within a complex environment. This paper introduces a parallel real-time algorithm
aimed at overcoming these challenges. The proposed algorithm employs an approximation-based
partitioning mechanism to partition the entire unassigned task set into several subsets. This approach
decomposes the original problem into a series of single-robot mission planning problems. To validate
the effectiveness of the proposed method, both numerical and hardware experiments are conducted,
involving dynamic obstacles and tasks. Additionally, comparisons in terms of optimality and
scalability against an existing method are provided, showcasing its superior performance across both
metrics. Furthermore, a computational burden analysis is conducted to demonstrate the consistency
of our method with the observations derived from these comparisons. Finally, the optimality gap
between the proposed method and the global optima in small-size problems is demonstrated.

Keywords: multi-robot systems; mission planning; task allocation

1. Introduction

Autonomous unmanned aerial vehicles (UAVs) and unmanned ground vehicles
(UGVs) can replace humans for dangerous tasks such as surveillance and search-and-rescue.
Recently, some receding-horizon motion planning methods [1–4] guide an autonomous
robot to explore and go to a destination in a complex environment. These methods typi-
cally require a planning hierarchy. On top of this hierarchy, a path planner such as [5–9]
generates a sequence of sparse way-points based on the perception of the environment.
A group of autonomous robots has more capabilities than a single robot in applications
such as surveillance, information sensing, navigation, and search-and-rescue. Suppose
collision-free, non-conflict sparse paths for the robot team can be generated and adapted
at run-time. In that case, the team can explore a complex environment and perform
complicated missions efficiently.

In this paper, a task is defined as a location of interest that one robot must visit. Given
a set of robots and tasks, a collision-aware multi-robot mission planning (MRMP) problem
is defined twofold, i.e., finding optimal and conflict-free task allocations for robots and then
generating collision-free paths such that robots can visit these task positions. The former is
categorized as a multi-agent task allocation (MATA) problem, and the latter is defined as a
multi-agent path-finding (MAPF) problem. The optimal objective of MAPF is typically to
minimize the total traveling distance. For a multi-robot system, real-time mission planning
in a cluttered environment is necessary when deploying autonomous robots in a complex
environment, especially when obstacles and tasks are dynamic. A hardware example and a
simulation example of MRMP problems are shown in Figure 1 and Figure 2, respectively.
This paper considers MRMP problems defined as ST-SR-TA (Single-Task Robots, Single-
Robot Tasks, Time-Extended Assignment) problems [10]. Here, tasks are assumed to be
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homogeneous and independent of each other, i.e., no temporal logic requirements; robots
are assumed to be homogeneous regarding mission functionality. Since this problem is
proven to be NP-hard [10], there is a trade-off for MRMP problems between real-time
performance and optimality. Furthermore, the scalability of an underlying algorithm, in
terms of the number of robots and tasks, is crucial in multi-robot systems.

Figure 1. A screenshot of an experiment on multi-robot mission planning with a dynamic obstacle.
Orange cones represent tasks and black areas indicate no-fly zones. A manually controlled quadrotor
with red shading represents a dynamic obstacle with infinite height. Two quadrotors with blue/green
boxes are the ego robots and transparency indicates time. Details are described in Section 4.1. The
complete video can be found as Video S1 in Supplementary Materials.

(a) An example problem (b) Task segmentation and
cluster assignment

(c) Mission planning result

Figure 2. An example for MRMP with 8 robots and 40 tasks. (a) shows the problem in a 50× 50 grid
map with 150 obstacles, where the blue dots and red crosses indicate the positions of robots and tasks,
respectively; (b) shows the task segmentation and cluster assignment result, where those tasks in the
same color are within the same cluster; the purple stars indicate the positions of cluster centroids and
an edge between a robot and a cluster centroid represents assignment; (c) shows the task allocation
orders and collision-free paths, where the dashed lines in green indicate the paths. The computation
time is 44.6 ms.
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1.1. Related Work

The literature on MRMP problems can be divided into two categories, i.e., solving
MATA and MAPF problems sequentially or in an integrated way.

The methods related to MATA can be mainly categorized as auction-based and
searching-based methods. Auction-based approaches are derived from a concept in fi-
nance where each agent aims to maximize their reward by giving higher bids. The process
must consider maximizing a global reward and include conflict resolution. Ref. [11] uti-
lizes auction-based protocols to bid task assignments. CBBA (Consensus-Based Bundle
Algorithm) [12] employs a decentralized consensus procedure for task conflict resolu-
tion and then generates task allocation for agents. IACA (Iterated Auction Consensus
Algorithm) [13] proposes a similar iterative but resilient auction process and can remove
malicious bids during the auction. Ref. [14] proposed an auction-based algorithm to deal
with task allocation problems with time window constraints. Ref. [15] utilizes Behavior
Tree to coordinate a sequence of actions among agents with the auction process. Ref. [16]
produces task sequences with minimum communications by combining the greedy algo-
rithm and the auction process. Although the auction-based approaches are decentralized,
the process of auction and conflict resolution can be time-consuming, especially when the
problem size is large. In addition, the auction heuristic barely includes environmental
information, e.g., the impact of obstacles on the cost/reward. Thus, the auction result is not
necessarily optimal when obstacles are present and may even lead to a bad solution.

Search-based methods rely on a fixed structure of information, e.g., the number of
assigned tasks for each agent is known and fixed. Ref. [17] proposes a decentralized genetic
algorithm (GA) to search a task sequence parallelly. Ref. [18] proposes a graph-based search
method to allocate tasks to agents given a finite linear temporal logic objective, where
the allocation order is partially known. Ref. [19] builds an Optimized Directed Roadmap
Graph (ODRM) by sampling first and then navigates agents on this graph. Although
searching for paths on an ODRM is faster than on the most common occupancy grid map,
generating and updating such a graph at run-time can be time-consuming in a cluttered
and dynamic environment.

Additionally, researchers have explored other methodologies for solving MATA prob-
lems in recent years. Ref. [20] investigates a heterogeneous MATA problem, where the
objective is to minimize the maximum travel cost for any agents. Ref. [21] proposes a
deep reinforcement learning algorithm that utilizes policy gradient updates to determine
the optimal allocation schedule for each robot. Ref. [22] approaches MATA as a potential
game, using this framework to reach a mutually agreeable task assignment by identifying a
Nash equilibrium among the agents. Ref. [23] formulates MATA as a cooperative game,
leveraging the Shapley value to compute the average marginal contribution of each robot.
By ranking and clustering robots and tasks based on their Shapley value, the initial problem
can be partitioned into smaller, more manageable sub-problems.

Since most of the recent literature focuses on the integration of MATA and MAPF
problems, this paper omits the literature on MAPF problems. As for the literature on solving
MATA and MAPF problems sequentially, it is mainly categorized into auction-based and
search-based methods. Based on CBBA, Ref. [24] first generates task sequences without any
obstacle information and then utilizes Dijkstra’s algorithm [5] to find collision-free paths
given the sequences. Ref. [25] proposes a two-stage GA-based approach where each agent
first determines its task sequence using a genetic algorithm and then negotiates with other
agents to exchange tasks if that reduces the cost. Then, collision-free paths are generated
similarly to the method in [24].

There are also some special cases of MRMP problems that have raised significant
interest, such as multi-robot pickup and delivery [26], and vehicle routing problems. Some
special specifications are adopted for these problems. For example, the task set for each
agent is prescribed; each agent can only be assigned one task; the initial positions for agents
are the same; etc. This paper considers a general MRMP problem without these special
specifications.
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There is also some literature on the integrated MRMP methods. Ref. [27] focuses on
simultaneous task allocation and planning for a complex goal that consists of temporal logic
sub-tasks. Ref. [27] emphasizes the capability of a heterogeneous robot team to perform a
complex goal, whereas the MRMP problem in this paper focuses on homogeneous agents
and tasks. Ref. [28], as a fully centralized optimization-based method, first obtains a single
tour that connects all the tasks without any obstacle information by solving a traveling
salesman problem; then, it uses a heuristic policy to partition the tour to generate a task
allocation sequence for each agent; finally, it generates collision-free paths. Although Ref.
[28] deals with the same problem as this paper, its computation time is stably around 55 s,
with 5–20 agents and 10–50 tasks on a map with random obstacles. Its success rate varies
from 0.35 to 1.0, depending on the number of agents.

From the methodology perspective, there are primarily three types of methods for
MRMP problems with homogeneous robots/tasks and no temporal logic constraints, i.e.,
decentralized auction-based, distributed GA-based (genetic algorithm), and centralized
optimization-based methods. Decentralized auction-based methods, as mentioned above,
suffer from inefficient auction and negotiation processes and a lack of obstacle information
during the auction process. Distributed GA-based methods might have good real-time
performance for small-size problems but they notably depend on the selection of GA
parameters. Also, many methods assume the number of assigned tasks for each robot is
known and fixed, whereas this paper does not. As for optimization-based methods, they
barely utilize obstacle information in the first place and not in a distributed manner, i.e.,
directly solving the entire allocation problem.

1.2. Contributions, Organization, and Notations

This paper proposes a real-time parallel multi-robot mission planning algorithm,
named RPM, for homogeneous robots and tasks. RPM first utilizes obstacle information
as heuristics to approximate the cost of an ordered task allocation and path sequence by a
metric from an unordered task set. With this approximation, RPM can partition the entire
problem into several parallel sub-problems and distribute them to each robot. Then, each
robot finds an optimal task allocation and path sequence for each sub-problem. Due to
the approximation and the parallel manner, RPM makes a balance between computational
performance and scalability. The main contributions are as follows:

1. A parallel real-time algorithm, RPM;
2. Capability of handling dynamic obstacles and tasks in a cluttered environment at

run-time;
3. Good scalability in terms of the number of robots and tasks, and relatively good

optimality;
4. Computational burden analysis for RPM.

The rest of this paper is organized as follows: Section 2 defines the multi-robot mission
planning problem and formulates it as an intractable optimization problem. Section 3
introduces the proposed algorithm, RPM, in three phases. Section 4 shows several exper-
iments with static/dynamic obstacles and tasks, conducts the scalability and optimality
comparisons with an existing algorithm, analyzes the computational burden for RPM, and
shows the optimality gap among different algorithms in small-size problems. Section 5
concludes the paper and discusses future improvements and challenges.

Notations. For a point p ∈ R, {p} ⊂ R denotes a set containing that point as its only
element. Set subtraction is A \ B = {x ∈ A | x /∈ B}. Z denotes the integer set. Z+ denotes
the positive integer set. The cardinality of a set A is denoted as |A|.
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2. Problem Formulation

The configuration space, X ⊆ Rn, is the set of all positions reachable by a robot. Denote
a robot position set X = {p1, · · · , pna

} of na robots and pi ∈ X as the position of robot i.
Denote a task positions set T = {t1, · · · , tnt} of nt tasks and ti ∈ X as the position of task i.
Define the robot and tasks index sets I ≜ {1, · · · , na} and J ≜ {1, · · · , nt}, respectively.
Suppose that a robot completes a task when the distance between two entities is less than a
prescribed non-negative constant ϵ, i.e., ||pi− t j||2 ≤ ϵ, ϵ ≥ 0. Denote an obstacle positions
set as O = {o1, · · · , ono} of no obstacles, where oi ∈ X is the position of obstacle i. Denote

Pi ≜ (p0
i , p1

i , · · · , p
np,i−1
i ) ⊂ X as an ordered sequence of positions associated with robot i

which denotes a path starting from p0
i and ending at p

np,i−1
i , where np,i ≜ |Pi| denotes the

number of positions in Pi.
Inspired by [12], the collision-aware MATA problem is written as the following integer

programming:

min
x, r1, · · · , rna

∑na
i=1 ∑nt

j=1 cij(xi, ri,O)xij (1a)

s.t. ∑nt
j=1 xij ≤ nt, ∀i ∈ I , (1b)

∑na
i=1 xij = 1, ∀j ∈ J , (1c)

∑na
i=1 ∑nt

j=1 xij = nt, (1d)

xij ∈ {0, 1}, ∀(i, j) ∈ I × J , (1e)

where xij = 1 if task j is assigned to robot i and 0 otherwise; xi ∈ {0, 1}nt is the task

assignment vector for robot i; xij is the j-th element of xi; x =
[
x′1 · · · x′na

]′ ∈ {0, 1}ntna .
The vector ri ∈ {J ∪ {∅}}na denotes an ordered sequence of tasks, i.e., the task allocation
order, for robot i; its k-th element is j ∈ J if task j is the k-th task of robot i’s assignment;
ri = ∅ if robot i has no assignment. The collision-aware cost of task j being assigned to
robot i followed by an order ri is defined by cij(xi, ri,O) ≥ 0. In the context of mission
planning, this cost typically represents traveling distance, fuel consumption, etc. Constraint
(1b) indicates that each robot can at most be assigned nt tasks; (1c) requires that each task
must be assigned to only one robot; (1d) enforces that every task must be assigned.

Given a particular assignment x, the task allocation order ri for each robot i is not
unique. Therefore, an implicit mapping from x to the task allocation order set R ≜
{r1, · · · , rna} needs to be determined. How to find the mapping from x toR is also a part
of the problem (1).

Given an order setR and the current positions of robots X , the collision-aware MAPF
problem is written as follows:

min
P1, · · · ,Pna

∑na
i=1 ℓi(Pi) (2a)

s.t. p0
i = pi, ∀i ∈ I , (2b)

R is determined by (1), (2c)

Pi satisfies the order ri, ∀i ∈ I , (2d)

Pi ∩O = ∅, ∀i ∈ I , (2e)

where ℓi(Pi) = ∑
|Pi |−2
j=0 ||pj+1

i − pj
i ||2 is the traveling distance of path Pi. This paper

assumes that Pi ∩O = ∅ if and only if ||pj
i − ok||2 ≥ δ > 0 ∀pj

i ∈ Pi and ∀ok ∈ O.
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Based on (1) and (2), the collision-aware MRMP problem in this paper is formulated
as follows:

min
x,R,P

∑na
i=1 ∑nt

j=1 cij(xi, ri,O)xij (3a)

s.t. ∑nt
j=1 xij ≤ nt, ∀i ∈ I , (3b)

∑na
i=1 xij = 1, ∀j ∈ J , (3c)

∑na
i=1 ∑nt

j=1 xij = nt, (3d)

xij ∈ {0, 1}, ∀(i, j) ∈ I × J , (3e)

P ≜ {P1, · · · ,Pna} is determined by (2), (3f)

R is determined by (1), (3g)

where ∑nt
j=1 cij(xi, ri,O)xij evaluates robot i’s collision-aware traveling distance given a

particular assignment and allocation order.
Solving the task assignment x, the allocation orderR, and the collision-free pathP alto-

gether is challenging because x,R, and P are coupled together in (1)–(3). Furthermore, the
collision-aware MRMP problem (3) is not even tractable since it is proven to be NP-hard [10].
This paper attempts to obtain a sub-optimal solution to the collision-aware MRMP problem
scalably and in real-time, especially when the environment is unconstructed and cluttered,
and the obstacles and tasks are potentially dynamic.

3. Algorithm

This paper proposes a real-time parallel algorithm RPM to obtain a sub-optimal
solution to (3) in a scalable way. Instead of considering the exact coupled cost cij(xi, ri,O),
RPM utilizes task-based heuristics to approximate the cost of an ordered path by an
unordered task set. With this approximation, RPM can partition the entire task set into
several subsets and assign each task subset to one robot given the unordered heuristics.
Then, each robot only needs to solve a sub-problem, i.e., a single-robot mission planning
problem. Specifically, RPM consists of three phases: (1) Task Segmentation: partitioning
the entire task set into several subsets; (2) Cluster Assignment: assigning each robot a task
subset; (3) Single-Robot Mission Planning: finding an optimal task allocation order and
collision-free path for each robot.

3.1. Task Segmentation

The entire task set T is partitioned into na clusters {T1, · · · , Tna}, where each cluster
possibly includes many tasks. Note that Ti has not been assigned to any robots yet. The
tasks within a cluster have a minimal distance to the centroid of this cluster. An iterative
k-means clustering algorithm [29] is used here, which minimizes the summation of the
within-cluster sum of squares (WCSS), i.e.,

min
T1, · · · , Tna

∑na
i=1 ∑t∈Ti

||t− ci||22 (4a)

s.t. T = ∪na
i=1Ti, (4b)

Ti ∩ Tj = ∅, ∀i ̸= j, (4c)

ci = (Σt∈Ti t)/|Ti|, ∀i, (4d)

where Ti = {t j | ∀j ∈ Ic,i} and Ic,i is the task index set that is associated with the tasks
within cluster Ti; ci ∈ Rn is the centroid of tasks within Ti. Denote C ≜ {c1, · · · , ck}.

As described in (3), the objective is to minimize the total traveling distance. However,
the cost of each robot visiting a known task set is unknown before a task allocation order is
determined. Hence, for each task subset Ti, an ordered sequence’s length is approximated
by an unordered set’s WCSS, i.e., ∑t∈Ti

||t− ci||22, since the tasks within Ti have a smaller
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WCSS associated with ci than cj ∀j ̸= i. The task segmentation problem (4) can be solved
iteratively and the details are in Algorithm 1. An example is shown in Figure 2.

Algorithm 1: Task Segmentation
Input: T , N ∈ Z+

1 Initialize {T1, · · · , Tna}, {Ic,1, · · · , Ic,na}, C by k-means++ [30], iter = 0
2 while iter < N do
3 for task ti = t1 to tnt do
4 idx← the index of ti’s nearest centroid
5 Ic,idx.append(i)

6 for j = 1 to na do
7 cj ←mean of all tasks within cluster j

8 iter ← iter + 1

9 for i = 1 to na do Ti ← {t j | ∀j ∈ Ic,i}
10 return {T1, · · · , Tna}, {Ic,1, · · · , Ic,na}, C

3.2. Cluster Assignment

Since the entire task set is partitioned into several subsets, the assignment of each
subset needs to be determined, which is formulated as an integer linear programming (5).
yij = 1 if robot i is assigned with cluster j and 0 otherwise. wij ≜ ||pi − cj||22 + ∑t∈Tj

||t−
cj||22 defines the cost of cluster j being assigned to robot i, where the first term evaluates
how far robot i is from cluster j and the second term estimates the cost of robot i visiting all
the tasks within cluster j.

min
y ∑i∈I ∑j∈Ic,j

wijyij (5a)

s.t. ∑i∈I yij = 1, ∀j ∈ Ic,j, (5b)

∑j∈Ic,j
yij ≤ 1, ∀i ∈ I , (5c)

∑i∈I ∑j∈Ic,j
yij = na, (5d)

yij = {0, 1}, ∀(i, j) ∈ I × Ic,j. (5e)

Constraint (5b) ensures that each cluster must be assigned with one robot; (5c) guar-
antees that each robot can be at most assigned to one cluster; (5d) enforces no unassigned
cluster being left. Constraint (5c) is compatible with a situation where the number of agents
is greater than the number of nonempty clusters. This situation can happen at run-time
when some tasks are completed. Note that when the number of clusters is not equal to na,
the constraints (5c)–(5d) need to be revised accordingly. The cluster assignment problem
(5) can be solved by some constrained integer linear programming solvers such as SCIP
[31] and OR-Tools [32]. Denote T̂i as the task cluster assigned to robot i. Details about the
cluster assignment are shown in Algorithm 2. An example is shown in Figure 2.

Algorithm 2: Cluster Assignment

Input: {T1, · · · , Tna}, X , C
1 for robot i = 1 to na do
2 for cluster j = 1 to na do
3 wij ← ||pi − cj||22 + ∑t∈Tj

||t− cj||22

4 y∗ ← Solve (5) by a numerical solver
5 {T̂1, · · · , T̂na} ← parse_result({T1, · · · , Tk}, y∗)
6 return {T̂1, · · · , T̂na}
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3.3. Single-Robot Mission Planning

After each robot is assigned a task cluster, the task allocation orders and the collision-
free paths need to be determined. This problem can be distributed to na robots parallelly
and robot i solves its sub-problem by formulating it as a traveling salesperson problem
(TSP), where the nodes are the robot itself and its assigned tasks. A path-finding algorithm
generates collision-free paths for every pair of nodes and the length of these paths is the
traveling cost from one node to another. Lazy Theta* [9] is used here due to fewer line-
of-sight checks. This problem can be modeled as an integer linear program (6) with a
Miller–Tucker–Zemlin (MTZ) formulation [33],

min
z, u ∑nm

i=1 ∑nm
j=1 dijzij (6a)

s.t. zij ∈ {0, 1}, ∀i, j = 1, · · · , nm, (6b)

ui ∈ Z, ∀i = 2, · · · , nm, (6c)

ui − uj + nmzij ≤ nm − 1, 2 ≤ i ̸= j ≤ nm, (6d)

1 ≤ ui ≤ nm − 1, (6e)

∑nm
i=1 zij = 1, ∀j = 2, · · · , nm, (6f)

∑nm
j=1 zij = 1, ∀i = 1, · · · , nm, (6g)

∑nm
i=1 zi1 = 0, (6h)

where nm ≜ |T̂i|+ 1 denotes the number of nodes; node 1 always indicates the robot’s
current position; zij = 1 if the robot goes from node i to node j, z ∈ {0, 1}n2

m ; u ∈ Znm−1 is a
dummy variable to indicate tour ordering such that ui < uj implies node i is visited before
node j; dij is the cost of the robot traveling from node i to node j, which is the length of the
underlying collision-free path.

Constraints (6c)–(6e) guarantee only one tour covering all nodes [33]. Constraints
(6f)–(6g) ensure that each node is visited from another node and from each node there is a
departure to another node. Constraint (6h) indicates that the robot does not go back to its
initial position after visiting all the tasks. (6h) can be changed if the robot needs to go back
to a base. To ensure that there is no collision between robots, each robot considers the other
robots as obstacles. Details are shown in Algorithm 3. An example is shown in Figure 2.

Algorithm 3: Parallel Multi-Robot Mission Planning

Input: {T̂1, · · · , T̂na},X ,O
1 // na robots parallelly execute the content in parfor
2 parfor robot i = 1 to na do
3 Initialize Plib as empty
4 for start, goal in (T̂i ∪ {pi}) do
5 Onow ← O ∪X \ {pi}
6 Pstart,goal ← path_finding(start, goal,Onow)
7 Plib.append(Pstart,goal)

8 for node i = 1 to 1 + |T̂i| do
9 for node j = 1 to 1 + |T̂i| do

10 Pi,j ←load_path(Plib, i, j)
11 dij ←compute_cost(Pi,j)

12 z∗, u∗ ← solve (6) by a numerical solver
13 Pi, ri ← parse_path(Plib, z∗, u∗)

14 return {P1, · · · ,Pna}, {r1, · · · , rna}
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3.4. RPM at Run-Time

This subsection illustrates how RPM operates at run-time. First, RPM utilizes k-
means++ [30] to initialize the cluster centroids. During the mission, the centroids from
the previous iteration are the initial centroids for the next iteration. As some tasks are
completed, the number of nonempty clusters nc might be less than na. If nc < na, one
needs to remove the empty clusters and revise constraint (5d) as ∑i∈I ∑j∈Ic,j

yij = nc. Note
that all the constraints are compatible with the case where nc < na. If there exist dynamic
obstacles and tasks, RPM updates their information (positions) at each iteration. More
details are shown in Algorithm 4.

Algorithm 4: RPM at Run-time

1 Initialize C by k-means++ [30]
2 while T ̸= ∅ do
3 T ← update task set
4 X ← update robot position
5 O ← update obstacle
6 {T1, · · · , Tk}, C ← Algorithm 1 with previous C
7 remove empty task cluster
8 {T̂1, · · · , T̂na} ← Algorithm 2
9 {P1, · · · ,Pna}, {r1, · · · , rna} ← Algorithm 3

10 robots move one step along {P1, · · · ,Pna}
11 time moves one step forward
12 t j ← current assigned task of robot i, ∀i ∈ I
13 delete task t j if ||pi − t j||2 ≤ ϵ, ∀i ∈ I

4. Comparisons and Experiments

This section presents several experiments with static/dynamic obstacles/tasks and
conducts scalability and optimality comparisons between RPM and a decentralized
method [24]. From here on, CBBA is interchangeable with the method in [24] because
it consists of CBBA and posterior path-finding. In addition, this section analyzes the
computational burden for RPM and presents the optimality gap in small-size problems.

RPM is written in C++ and compiled as a Python library to be invoked. The integer
programs in Algorithms 2 and 3 are solved by OR-Tools [32]. The C++ implementation
utilizes multithreading as parallelization, i.e., the parfor in Line 2, Algorithm 3. First, a main
thread, i.e., the central robot, runs Algorithms 1 and 2. Then, the results of Algorithm 2
are distributed to multiple robots/threads, where each thread runs Algorithm 3 parallelly
for each robot. All the results are obtained by a computer with a 2.8 GHz Intel Core i7-
7700HQ CPU and 16 GB memory. This implementation does not require a GPU but one
can accelerate it with a GPU if needed.

4.1. Experiments

The test area is 6 m × 5.6 m and the grid map size is 120 × 112. RPM executes
real-time mission planning for two Parrot Mambo quadrotors. In the experiments, each
quadrotor follows the discrete paths returned from RPM. Then a low-level trajectory
tracking controller (https://github.com/zehuilu/Mambo-Tracking-Interface (accessed on
25 February 2024)) broadcasts the desired control commands given the desired paths to each
Mambo individually. Some details are explained in Figure 1. In the case of a dynamic task, a
cone moves from one side to another side and RPM updates its planning result accordingly.
Footage for these experiments is included in Video S1 of Supplementary Materials.

4.2. Comparison with Increased Number of Robots

Sections 4.2 and 4.3 show scalability comparisons between RPM and [24]. The grid
map is 50× 50. Given a particular number of robots na and tasks nt, there are 100 different

https://github.com/zehuilu/Mambo-Tracking-Interface
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scenarios where the positions of robots and tasks are generated randomly. For each scenario,
there are 200 randomly generated obstacles; each method runs 20 times, and the average
computation time and total distance are collected.

Although [24] utilizes Dijkstra’s algorithm [5] as the path-finder, this paper replaces
Dijkstra’s algorithm with Lazy Theta* [9] as the path-finder of [24] to present a fair compar-
ison, regarding the computation. In other words, this paper eliminates the performance
difference between the two path-finders although Lazy Theta* is faster, occupies less
memory, and generates shorter paths due to any-angle movement.

In Figure 3a,b, the computation time of [24] is increased exponentially and is up to
over 4.5 s when there are 20 robots and 60 tasks, whereas the computation time of RPM
is increased linearly, in the order of milliseconds. The fully centralized method [28] has a
similar scenario with a 32 × 32 map and random obstacles. According to Figure 3 of [28], it
takes about 55 s to generate sequences for 5–20 robots and 10–50 tasks. This paper omits the
comparison with [28] because [28] is not a real-time algorithm. The CBBA’s computation
time is increased exponentially because all robots need to take auctions iteratively and
repeat for every task. The negotiation process for each task is more time-consuming and
less efficient when na is larger, whereas, for RPM, the increased na only raises the burden
of Algorithms 1 and 2 slightly. The most computationally heavy part of RPM is finding
the collision-free path between every pair of nodes in each sub-problem, i.e., Line 4–Line
7 of Algorithm 3. Since Algorithm 3 is distributed over robots, the increased na does not
raise the computational load significantly. Section 4.4 analyzes the computational burden
of RPM and shows consistency with the comparisons.

(a) Computation time [ms] of the two methods (b) Computation time [ms] of RPM

(c) Total distance of the two methods

Figure 3. The computation time and total distance results of two methods, RPM and [24], with an
increased number of robots. The number of unassigned tasks is nt = 3na. N = 300.

As for optimality (total distance), RPM outperforms [24] because RPM utilizes the
global information of tasks and robots in Algorithms 1 and 2, while [24] performs an auction
for one task at a time. Thus, the fully decentralized auction process does not utilize global
information, resulting in less optimality. Moreover, the bid price in [24] is the Euclidean
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distance between robot and task, and [24] only generates collision-free paths after the
task order is determined. In a cluttered environment, the Euclidean distance is not the
actual cost. For completeness, Section 4.4 further analyzes and compares the computational
burden if [24] utilizes collision-aware cost as the bid price.

On the other hand, as the number of robots increases, the optimality difference between
the two methods is roughly the same. This observation is caused by the constant ratio
between the numbers of unassigned tasks and robots. When this ratio is kept constant, for
CBBA, the amount of negotiation between every two robots for every task is roughly the
same as the number of robots increases.

4.3. Comparison with Increased Number of Tasks

In Figure 4a,b, CBBA’s computation time is increased exponentially and is about 0.75 s
for 60 tasks and 3 robots, whereas the computation time of RPM is increased almost linearly.
The increasing rate of CBBA’s computation time in Figure 4a is much less than Figure 3a
because there is less negotiation among robots and thus the auction for each task needs
fewer iterations when na is smaller.

The increasing rate of RPM’s computation time in Figure 4b is greater than Figure 3b
because the linearly increased nt leads to the computational burden increasing quadratically (see
Section 4.4). Nevertheless, the magnitude of computation time is still relatively small because
each robot only needs to deal with a task subset due to Algorithm 1. The detailed analysis is
shown in Section 4.4. Figure 4c shows that RPM outperforms CBBA regarding optimality. These
comparisons show that, by using some global information in a parallel manner, RPM achieves
better performance than a decentralized method and a centralized method.

(a) Computation time [ms] of the two meth-
ods

(b) Computation time [ms] of RPM

(c) Total distance of the two methods

Figure 4. The computation time and total distance results of two methods, RPM and [24], with an
increased number of tasks. The number of robots is fixed at 3. N = 300.

The optimality gap between the two methods in Figure 4c increases as the number
of tasks increases since the total traveling distance by CBBA is increased. This is because
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the ratio between the number of unassigned tasks and robots is increasing, which leads to
more negotiation between every two robots for every task.

4.4. Computational Burden Analysis

RPM approximates the traveling cost from one node to another by the length of the
underlying collision-free path. An intuitive way to improve the optimality of CBBA is
to utilize the lengths of collision-free paths as bid prices. This subsection analyzes the
computational burden of RPM and this approach.

To find all possible paths, each robot connects to all the tasks and every two tasks
connect. Thus, the total number of paths N̂p for CBBA is

N̂p = nt P2 + na · nt = nt(nt + na − 1), (7)

where nt P2 = nt !
(nt−2)! is the number of permutations for selecting two elements from a total

of nt elements.
As for RPM, the upper bound Np for the number of paths to be found for each robot

is nt, i.e.,
Np ≜ sup max(|T̂1|, · · · , |T̂na |) = nt. (8)

Denote ceil(·) : R 7→ Z as the ceiling function, and ceil(x) as the least integer greater
than or equal to x. Since the entire task set is partitioned into na subsets and the path-finding
for each robot is parallel, the lower bound Np is

Np ≜ inf max(|T̂1|, · · · , |T̂na |) ≜ nc = ceil(nt/na). (9)

Hence, the maximum number of paths Np for RPM is

nc + nc P2 ≤ Np ≤ nt + nt P2 ⇒ (
nt

na
)

2
⪅ Np ≤ n2

t . (10)

Combining with (7) yields

1 < 1 +
na − 1

nt
≤

N̂p

Np
⪅ (1 +

na − 1
nt

)na. (11)

Since (nt/na)2 ⪅ Np ≤ n2
t , when na is increased linearly and the ratio of nt to na is a

constant a ≜ nt/na, the lower bound of Np increases linearly as Np = a2na. This conclusion
is consistent with Figure 3b. Based on observation of comparisons, the actual computational
burden of RPM is skewed towards the lower bound. When nt is increased linearly and na is
fixed, Np increases quadratically to nt. In addition, the standard deviation of computation
time in Figure 4b is increasingly larger than in Figure 3b. This observation appears because
the number of assigned tasks for each robot |T̂1|, · · · , |T̂na | tends to be more diverse as nt
increases and na is constant. As for Figure 3b, the task–robot ratio is fixed and thus the
deviation remains relatively the same when na increases.

As for replacing the bid cost as the length of a collision-free path, the extra computa-
tional burden of CBBA is greater than the actual burden of RPM. The difference between
the two upper bounds is nt(na − 1), which increases linearly as nt or na increases. When
the task–robot ratio is fixed and na increases, N̂p/Np is still greater than 1 and it increases
with a rate of 1/na. The upper bound N̂p/Np increases with a rate of na. When na ≫ nt,
na · Np ≤ N̂p ⪅ n2

a · Np. Therefore, the computation burden of CBBA is at least na times
heavier than RPM and up to n2

a times heavier. When na ≪ nt, Np ≤ N̂p ⪅ na · Np. The
worst case of RPM is that its computation burden is slightly less than CBBA’s but CBBA’s
burden at most is na times greater than RPM’s. Thus, task segmentation and parallelizable
mission planning benefit run-time computation. Revising the bid prices of CBBA is not
computationally efficient and, hence, the scalability is not good.
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4.5. Optimality Gap in Small-Size Problems

Section 4.5 shows the optimality gap between RPM and the global optimum. The
global optimum is found by exhaustive search and thus the search is only feasible in small-
size problems. Figure 5 shows the optimality gap with two cases, 2 robots + 4 tasks and
3 robots + 6 tasks. For each case, there are 20 scenarios with different positions of robots,
tasks, and obstacles. It is impossible to search a global optimum exhaustively for problems
with a larger size since the MRMP problem is NP-hard. The total number of solutions for na

robots and nt tasks is (nt+2na−1)!nt !
(na+nt)!(na−1)! . For the case with three robots and six tasks, there are

39,600 possible solutions and it takes about 10 s to find a global optimum. For four robots
and eight tasks, there are 18,345,600 solutions and the estimated time to find an optimum is
78 min.

Figure 5. Optimality gap in small-size problems.

In the case of two robots, the optimality gap between RPM and the optimum is on
average 4.3% while CBBA’s cost is on average 36.3% greater than the optimum. As for
another case, RPM’s cost is on average 8.3% greater than the optimum whereas CBBA’s cost
is 43.1% greater than the optimum. The RPM’s optimality gap increases when the problem
size increases since the task segmentation algorithm cannot explore all the permutations of
the number of assigned tasks for each robot. Nevertheless, the algorithm makes the MRMP
problem tractable and solves it at run-time.

5. Conclusions

The collision-aware multi-robot mission planning problem is NP-hard but requires
real-time computational performance in many applications. This paper presents a real-time
parallel algorithm RPM, which partitions the entire task set into several subsets such that
each robot can determine the task allocation order and collision-free path parallelly. This
process reduces the dimension of the original problem and, hence, makes RPM able to run
in real time with good scalability. The above results show that, by using global information
in a parallel manner, RPM achieves better performance on both computation and optimality.

There are still numerous challenges in real-time multi-agent mission planning, such as
enforcing endurance and capacity constraints, handling dynamic obstacles and tasks with
intention prediction, introducing the heterogeneity of agents and tasks, etc. Also, designing
distributed algorithms with good optimality and computational performance is another
interesting direction.
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Supplementary Materials: Video S1 (https://youtu.be/bT5-EjS9rAk (accessed on 26 February 2024)):
a video includes all the experiments that are mentioned within this paper. Source Code S2 (https:
//github.com/zehuilu/Real-time-Multi-Robot-Mission-Planning-in-Cluttered-Environment
(accessed on 26 February 2024)): a repository of all the source codes for the proposed algorithm RPM.

Author Contributions: Conceptualization, Z.L. and S.M.; methodology, Z.L.; software, Z.L. and T.Z.;
validation, Z.L.; formal analysis, Z.L.; investigation, Z.L. and T.Z.; resources, S.M.; data curation,
Z.L.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L., T.Z. and S.M.;
visualization, Z.L. and T.Z.; supervision, S.M.; project administration, S.M.; funding acquisition, S.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work research was funded by NASA University Leadership Initiative (ULI) under
grant number 80NSSC20M0161 and Northrop Grumman Corporation.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Herbert, S.L.; Chen, M.; Han, S.; Bansal, S.; Fisac, J.F.; Tomlin, C.J. FaSTrack: A modular framework for fast and guaranteed safe

motion planning. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, Melbourne,
Australia, 12–15 December 2017; pp. 1517–1522.

2. Kousik, S.; Holmes, P.; Vasudevan, R. Safe, aggressive quadrotor flight via reachability-based trajectory design. In Proceedings of
the ASME 2019 Dynamic Systems and Control Conference, American Society of Mechanical Engineers Digital Collection, Park
City, UT, USA, 8–11 October 2019.

3. Tordesillas, J.; Lopez, B.T.; How, J.P. Faster: Fast and safe trajectory planner for flights in unknown environments. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Macau, China, 4–8 November
2019; pp. 1934–1940.

4. Danielson, C.; Berntorp, K.; Weiss, A.; Di Cairano, S. Robust motion planning for uncertain systems with disturbances using the
invariant-set motion planner. IEEE Trans. Autom. Control 2020, 65, 4456–4463. [CrossRef]

5. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
6. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
7. LaValle, S. Rapidly-exploring random trees: A new tool for path planning. Res. Rep. 9811 1998.
8. Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-angle path planning on grids. J. Artif. Intell. Res. 2010, 39, 533–579.

[CrossRef]
9. Nash, A.; Koenig, S.; Tovey, C. Lazy Theta*: Any-angle path planning and path length analysis in 3D. In Proceedings of the

Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; Volume 24, pp. 147–154.
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