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Abstract: Predicting the trajectory of other road users, especially vulnerable road users (VRUs), is an
important aspect of safety and planning efficiency for autonomous vehicles. With recent advances
in Deep-Learning-based approaches in this field, physics- and classical Machine-Learning-based
methods cannot exhibit competitive results compared to the former. Hence, this paper provides
an extensive review of recent Deep-Learning-based methods in trajectory prediction for VRUs and
autonomous driving in general. We review the state and context representations and architectural
insights of selected methods, divided into categories according to their primary prediction scheme.
Additionally, we summarize reported results on popular datasets for all methods presented in this
review. The results show that conditional variational autoencoders achieve the best overall results
on both pedestrian and autonomous driving datasets. Finally, we outline possible future research
directions for the field of trajectory prediction in autonomous driving.

Keywords: survey; trajectory prediction; autonomous driving; VRUs; motion forecasting; pedestrian
trajectory prediction

1. Introduction

Autonomous driving is presently at the heart of the automotive industry, attracting
numerous research institutes globally. High-profile companies such as Zoox, Cruise, and
Waymo are making impressive strides in the latest iterations of their autonomous taxis [1–3].
This significant progress has drawn the public’s attention to the field.

A crucial aspect of autonomous vehicles is the capacity to anticipate the future behav-
iors of other road users, particularly in urban settings. In these environments, the traffic
often includes vulnerable road users (VRUs), and predicting their movements is inherently
more challenging than predicting the movements of vehicles. This is due to a number of
reasons. Firstly, pedestrians are not bound by non-holonomic constraints and can thus
change their movement with more degrees of freedom than vehicles [4]. Secondly, guessing
the ulterior goals of VRUs is more difficult in traffic scenarios as they do not have to stay in
a lane like vehicles. Thirdly, the margin of error is much narrower as collisions stemming
from erroneous predictions have a higher probability of leading to the loss of life. A better
understanding of other road users’ behaviors would assist in planning the autonomous
vehicle’s trajectory, reducing the need for unexpected maneuvers that could necessitate
a complete trajectory replanning or even result in a collision. This also involves under-
standing how road users interact with each other to plan their own trajectories. Figure 1
schematically shows the influences on the possible trajectories of road users in a scene.

The importance of accurate trajectory prediction in autonomous driving has attracted
extensive research interest, as evidenced by the multitude of studies presented at recent pres-
tigious conferences such as CVPR 2023 [5] and ICCV 2023 [6]. Several reviews have focused
on the topic of Deep Learning methods for trajectory prediction [7,8]. Huang et al. [9] not
only included Deep Learning methods but also physics-based, classic Machine-Learning-
based, Deep-Learning-based, and Reinforcement-Learning-based methods. Unfortunately,
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these surveys ignored the important aspect of pedestrian motion prediction in autonomous
driving. The works by Ridel et al. [10] and Rudenko et al. [11] reviewed VRU (pedestrian)
trajectory prediction methods but failed to put them into context with methods developed
on autonomous driving datasets for the prediction of all traffic participants. Huang et al. [9]
showed in their survey that physics-based and classical Machine-Learning-based methods
are inferior to deep neural networks with respect to prediction quality. Additionally, the
surveys cited above fell short of capturing recent advancements made with deep neural
networks in the field of trajectory prediction. Therefore, we introduce our comprehen-
sive review of Deep-Learning-based trajectory prediction techniques within the context of
autonomous driving, focusing on the VRU, with our contributions being three-fold:

• We summarize and synthesize recent Deep Learning strategies for enhancing trajec-
tory prediction in autonomous driving, focusing on VRU safety. To the best of our
knowledge, no comparable studies have delved into recent Deep Learning methods to
this extent.

• We scrutinize various interaction models, revealing critical input features driving the
success of prevalent prediction methods, and give an in-depth summary of possible
output modes.

• We provide extensive insight into the efficacy of methods on various datasets, conduct
a rigorous analysis of the results, and identify promising further research directions.

The paper is organized as follows: In Section 2, we briefly introduce the problem
description of trajectory prediction (Section 2.1) and explain our classification taxonomy
together with a short explanation of how the methods were collected (Section 2.2). Section 3
first details possible input features, then reviews the scene representations and interaction
modeling schemes employed by the subsequently introduced methods. Lastly, this section
also scrutinizes the trajectory output strategies employed. Section 4 introduces the selected
methods clustered by their prediction category. Section 5 begins with a brief introduction
to commonly used datasets and metrics for trajectory prediction, then presents the reported
results of the introduced methods. Lastly, this section discusses the presented results and
offers potential future research directions. In the last chapter, we summarize the paper and
offer a short conclusion.

Figure 1. Influences on trajectory prediction in complex scenarios involving VRUs and vehicles.
Trajectory predictions are characterized by multiple modes; interactions with other road users;
long-term goals; and the static context of the environment, including traffic lights and pedestrian
crosswalks. The arrows in this figure represent the potential future trajectories of the agents in the
scene, while the ellipses schematically show the corresponding positional probability distributions.



Robotics 2024, 13, 1 3 of 39

2. Fundamentals and Taxonomy
2.1. Problem Formulation

Consider a traffic scene containing N agents of any class, where each agent i at timestep
t can be described by a state denoted as xt

i . The goal of this problem is to predict sequences
of positions, i.e., trajectories; thus, one can adapt the problem formulation for sequence
generation tasks from Graves [12] to this application. With this adaptation, the problem
of trajectory prediction in autonomous driving can be formulated as the prediction of a
sequence Y i of k future positions denoted as Y i = {yT+1

i , yT+2
i , . . . , yT+k

i } for an agent i in
the scene from an input sequence of T observed states denoted as X i = {x1

i , x2
i , . . . , xT

i }
of an agent i, where yT+1

i is the future position of agent i at timestep T + 1. An observed
state can be any property of agent i at timestep t, which also includes latent features or a
direct sensor input. Possible properties or states, e.g., position, velocity, or heading, are
introduced in Section 3.1. In an autonomous driving setting, incorporating the movement
of the autonomous vehicle in these transformations and also in the input positions X is
also required. With the above-derived definitions, we can formulate a trajectory prediction
equation connecting the input X i with the output Y i using an unknown function f for a
single agent i (adapted from Huang et al. [9]):

Y i = f (X i). (1)

As the dimensionality and complexity of f are unknown, constraining the expressivity
of the predictor through the manual engineering of features or model choice (e.g., physics-
based models [9]) could lead to reduced prediction performance. Using a data-driven
approach with as few manual influences as possible allows the model to learn the underly-
ing complexities of the problem through examples. Since Multilayer Perceptrons, and thus
deep neural networks, can be considered to be general function approximations, and due
to the success of Deep Learning methods in other domains such as computer vision [13],
we can transfer the problem formulation to a Deep Learning context with a Deep Learning
model M for N agents as [14]

{Y}N
i=1 = M

(
{X}N

i=1

)
, (2)

where M approximates the unknown function f connecting the input and output features
of the trajectory prediction problem. However, many Deep Learning methods do not
output Y directly but rather model the underlying probability distribution p(Y |X). This
distribution can be multimodal to model different movement choices of agents, like taking
a left or a right turn, which is clarified in Figure 2. Sampling Y i from the modeled p(Y i|X i)
given an input sample X i allows one to extract trajectories from the modeled distribution.

Additionally, one can differentiate between marginal and joint predictions for agents.
Marginal predictions are predictions for a single agent i without considering other agents
in the scene, resulting in the probability distribution given above. Joint predictions are
predictions for an agent i considering other agents j ̸= i in the scene, yielding the probability
distribution q

(
Y i|X i,

{
X j

}N
j=1

)
. The latter is more challenging as it requires modeling the

interactions between agents and making scene-consistent predictions without collisions.
This can be extended to pairwise, groupwise, or scene-wide joint predictions [15–17].
Figure 3 illustrates the difference between marginal and joint predictions for a scene
with two independent agents. While marginal predictions are carried out separately for
every agent, assuming no other agents in the scene, joint predictions consider possible
interactions between agents and provide, in this example, pairwise predictions without
predicted collisions.
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m2
m1

m3

agent i

Figure 2. Agent i at a 4-way intersection with three different movement modes m1, m2, and m3,
whose probability distributions are schematically pictured using ellipses and arrows.

agent i

agent j

(a)

agent i

agent j

(b)

Figure 3. Agents i and j at the same 4-way intersection. (a) shows a marginal prediction, where
the agents’ predicted future positions (blue and red arrows) indicate a potential collision. Marginal
predictions are obtained by considering only a single agent at a time and not incorporating sur-
rounding agents and their potential future actions. (b) shows a joint prediction of the agents’ future
positions since agent i yields the right of way to agent j in this prediction. For the joint prediction, the
positions of both agents in the scene and their potential future interactions with their effect on future
trajectories are considered. The depicted predictions are over the same time horizon.

2.2. Classification Taxonomy and Method Selection

This section will give a short overview of the classification taxonomy used in this
survey. For trajectory prediction methods based on models beyond Deep Learning, we
refer the interested reader to the excellent survey on trajectory prediction methods for
autonomous driving by Huang et al. [9].

The methods introduced in this review were classified according to the considera-
tions of their primary prediction scheme. Some methods could arguably be assigned to
multiple classes but were assigned to one for the sake of this review. The proposed cate-
gories are diffusion-based, anchor-based, generative adversarial network (GAN)-based,
conditional variational autoencoder (CVAE)-based, recurrent neural network (RNN)-based,
Transformer- and attention-based, convolutional neural network (CNN)-based, temporal
convolutional network (TCN)-based, graph neural network (GNN)-based, and set-based
methods. Methods that did not fit any other category were assigned to “Other”. This also
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included some end-to-end methods that directly predict the movement of LiDAR points.
As RNNs and graph-based approaches were also present in some of the other categories at
interim positions, methods were only assigned to these two categories if they mainly relied
on RNNs or GNNs for their predictions.

This review considers important methods published between the years 2021 and 2023
using Deep-Learning-based approaches for the problem of trajectory prediction in the
domains of autonomous driving and pedestrian prediction. However, some exceptions are
made for older, interesting, and still relevant publications that have been cited throughout
recent works. The methods were collected by scanning the benchmark leaderboards of
commonly used datasets (see Section 5.1), reviewing publications of prestigious conferences
like CVPR and ICCV, and conducting searches within the year constraints given above
for the keywords “trajectory prediction”, “pedestrian trajectory prediction”, and “motion
forecasting” on Google Scholar. The methods were chosen based on their architectural
insights and their reported trajectory prediction performance. Table 1 gives an overview of
all methods reviewed in this paper.

Table 1. An overview of all methods introduced in this review.

Diffusion Anchor GAN CVAE RNN Transformer CNN TCN Graph Set Other

[18–20] [21–31] [32–37] [16,38–51] [52–57] [17,58–76] [77,78] [79–84] [85–87] [88–90] [15,91–99]

3. State and Context Representation

This chapter will first give an overview of how to approach the problem of Deep-
Learning-based trajectory prediction by introducing possible input features, ways to repre-
sent a scene and model interactions, and commonly used ways to output trajectory predictions.

3.1. Possible Input Features

Commonly used input features can be categorized into agent-specific and environ-
mental input features. While agent-specific features describe some part of the agent’s state,
environmental features describe the scene’s static surroundings (here, traffic lights and
their states are considered static).

Among the agent-specific input features, the 2D position of each agent, viewed from
a bird’s eye view (BEV) perspective, is the most prevalent feature employed by almost
all trajectory prediction methods [16,20,27,30,37,42,54,61,67,69,72,84,91,96,100–105]. This
method uses the 2D position with global or local scene coordinates depending on its appli-
cation. For instance, Gu et al. [29] used a local coordinate scheme, where the trajectory and
surroundings of the agent of interest were transformed into a local coordinate system with
the agent at the origin. This process was repeated for every agent in the scene. Encoding
the positions with a global coordinate system is typically used in static scenes, such as the
surveillance scenes in the ETH/UCY datasets [106,107] or drone scenes in the Stanford
Drone Dataset (SDD) [108], given the sensor’s origin never changes. Using a global frame
of reference potentially leads to more efficient computations as agent features have to be
computed once and can be reused for multiple agents of interest. However, the downside
of this approach is a potential loss of pose invariance [17]. Local frames of reference require
transforming agent positions into every agent’s frame of reference, which benefits the pose
invariance of the model but scales linearly with the number of agents [17]. Zhang et al. [58]
employed a third approach to parse the 2D positions, supplying the method with the
trajectory of each agent as a sequence of relative positions, or position changes.

Apart from the agent’s position, some methods also utilize the heading angle ψ as
input. Chen et al. [16] used the heading angle in the form of a feature vector containing
cos(ψ) and sin(ψ) to avoid confusion in the network when distinguishing between 2π
and −2π, although they represent the same angle. Another frequently used feature is the
agent’s velocity. Rowe et al. [85] incorporated the velocity as v ∈ R2, alongside the agent’s
position p ∈ R2 and the agent’s heading angle ψ, in their input feature vector x = [p, v, ψ].
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Explicitly adding features like the heading angle and velocity, even though they were
implicitly present in the sequence of positions, gave the model additional focus on these
features. Furthermore, these features could be used to further describe and construct
interactions between agents [16].

Another agent-specific feature recently incorporated into some methods is the pose of
vulnerable road users. The premise behind using the pose is that it can provide insight into
the intentions of vulnerable road users (for instance, cyclists’ gestures indicating a turn).
Su et al. [45] employed a pose estimator to extract the positions of 17 joints as heatmaps
for further use in the model [109]. Kress et al. [105] followed a different approach and
provided the explicit positions of 13 joints of a VRU as input for their method.

The accurate prediction of possible future trajectories requires the consideration of
static objects in the agent’s surroundings through environmental features. To this end,
many methods add high-definition (HD) maps to agent-specific features to support their
predictions [29,57,60,68,69,73,91]. HD maps are centimeter-accurate digital representations
of physical environments, integrating detailed geospatial information and infrastructure
details, such as lane information [110]. The use of these maps is contingent upon their avail-
ability in the relevant dataset or location. The current state-of-the-art method for using and
encoding HD maps in a trajectory prediction approach is VectorNet [110], which encodes
the features of an HD map as polylines using a vector-based graph representation of the
scene. This environmental graph representation can be fused with the agents’ features to
predict trajectories that align with scene-specific physical constraints. As HD maps are ex-
pensive and require regular updates due to environmental changes (e.g., construction sites),
alternatives for incorporating static environmental features are sought. Schmidt et al. [111]
showed that using navigational maps instead of HD maps by training a method with
locally available HD maps and navigational maps via a teacher–student scheme is a viable
alternative. In datasets like ETH/UCY, which do not offer maps but only images of the
surroundings, methods integrate scene information into their trajectory predictions by
encoding environment images using a convolutional neural network (CNN)-based back-
bone [16,26,28,39,79,96]. Incorporating environmental features (map information) improves
the prediction performance as the models are able to learn traversable areas of the agents’
surroundings [110].

Several studies, such as those by Peri et al. [99], Wang et al. [95], Wang et al. [77], and
Casas et al. [101], bypassed explicit object and environmental features as introduced above
and used raw sensor data (in this case, LiDAR point clouds) as input for their prediction
methods. This input format necessitated changes to the prediction methodology; for ex-
ample, Peri et al. [99] predicted future positions as detection classes, while Wang et al. [95]
predicted the motion of each point in the point cloud in voxelized form. A special property
of this approach was that a reduced number of human-engineered features were used,
which required the model to learn important features from the sensor inputs by itself.

3.2. Scene Representation and Interaction Modeling

Scene representation refers to the method used to depict the configuration of agents
in a scene, while interaction modeling pertains to the techniques used to capture the
relationships between agents and between agents and their environment.

Many trajectory prediction methods utilize a simple scene representation strategy
where the 2D position of agents is used without additional processing [20,26,69,74,102].
However, increasingly, researchers are exploring the use of graph-based scene representa-
tions. In these models, agents are represented as nodes in the scene graph, with features
encoded as per the discussion in Section 3.1 and the agent’s class [51]. Edges between
nodes are used to represent interactions between agents [57], and the inclusion of HD map
data enables the modeling of interactions between agents and their environment [85].

For instance, Rowe et al. [85] utilized LaneGCN [112] to merge heterogeneous data
from agents and HD maps, allowing for the incorporation of interactions into a common
feature space. Similarly, Wang et al. [68] generated separate subgraphs for agents and
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infrastructure using VectorNet [110]. The nodes of the subgraphs were encoded using fully
connected graph neural networks. They then modeled interactions between agents and
infrastructure elements using a multi-layer cross-attention network [113]. Gu et al. [29]
followed this approach closely but directly used VectorNet’s subgraph and global graph
modules to model all interactions. Mo et al. [57] took a different approach by encoding
interactions between agents, the agents’ historical states, and the map features separately
without explicitly modeling interactions between agents and infrastructure elements. Their
system represented the scene as a directed edge-featured heterogeneous graph and used an
enhanced graph attention network to extract agent–agent interaction features. Infrastruc-
ture interactions were implicitly modeled by supplying all three feature types to the predic-
tion module. Salzmann et al. [51] encoded agent–agent interactions by encoding connecting
edges with type-specific LSTMs and aggregating them using an additive attention module.
Infrastructure interactions were considered by applying a CNN to the agent-centered area
of the HD map and then concatenating the extracted features with the features of each
agent node. Chen et al. [16], Xu et al. [87], and Zhou et al. [34] used a group-wise interac-
tion scheme. While Chen et al. [16] only established edges between nodes within a group
based on future distances between agents, Xu et al. [87] and Zhou et al. [34] also allowed
for intergroup interactions. Zhou et al. [34] further extended this idea by modeling three
different interactions: between pedestrians across groups, between pedestrians within one
group, and between groups.

Graph-based representations that do not utilize HD maps implicitly model agent–
infrastructure interactions by encoding an image of the surroundings or a local map using
CNN-based feature extractors [16,39] or not modeling these interactions. Li et al. [72]
presented a different approach, where each node in the graph-based scene representation
was a local area of the scene, and the edges represented the spatial relationship between
these areas. They used a graph-based spatial Transformer network to extract features from
these local areas and model pedestrian interactions.

Two methods, one proposed by Mangalam et al. [28] and the other by Lee et al. [42],
represented the scene as a heatmap overlayed on the RGB image of the scene, where each
channel of the heatmap corresponded to one timestep. This approach simplified the fusion
of trajectory and scene information.

Guo et al. [96] offered a unique solution using a directional pooling grid for each
agent of interest. Each cell in the grid reflected the relative velocity between the agent of
interest and the agent in that cell. This method comprehensively represented the scene
and modeled the interactions between the agents using relative velocities and positions.
Kamenev et al. [54] used a similar representation featuring two ego-vehicle-centered maps.
One map was an occupancy map that rendered other vehicles as rectangles in a bird’s eye
view that contained the corresponding velocity vector for each pixel belonging to a vehicle.
They did not explicitly model any interactions.

Several other non-graph-based interaction modeling techniques exist. Gupta et al. [37]
introduced social pooling, where the module concatenated the relative positions between
the agent of interest and other agents in the scene. It then processed this through an
MLP and a max pooling layer. This method allowed the network to convey interaction
information between every agent in the scene. Mangalam et al. [31] also applied a form of
social pooling, but instead of using explicit features, they used the encoded representations
of trajectories and waypoints for every agent. They fused the representations for every
agent using a non-local attention mechanism, which allowed the network to learn the social
pooling mechanism.

Several methods, such as those proposed by Huang et al. [69], Sun and Sun [76],
Xie et al. [43], Zhou et al. [73], Wang et al. [60], and Ngiam et al. [17], employ attention
mechanisms, specifically transformer layers, to encode the interactions between agents.
Chen et al. [61] used cross-attention between the encoded agent trajectory and the intentions
of surrounding agents to perform conditional predictions, effectively modeling interactions
between agents. Sun et al. [15] and Li et al. [27] also utilized conditional predictions to
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model interactions. Sun et al. [15] classified agents as influencers and influenced agents and
then conditioned the influenced agent’s prediction on the influencer’s marginal prediction.
Li et al. [27] used a goal-conditioned prediction scheme where the goals of interacting
agents influenced the trajectory of an agent of interest. A similar method was introduced
by Tsao et al. [71], who applied a Transformer encoder to the trajectories of two agents
and trained it to model interactions through two pretext tasks, namely classifying the
interaction type and the closeness (social or non-social) of the two agents. Wang et al. [32]
constructed an n × m grid around the agent of interest and used a sparse tensor containing
the encoded past trajectories of other agents to represent the grid. They then modeled
the interactions by applying a convolutional autoencoder to this grid. Another interesting
method for modeling interactions is using potential fields [91]. The authors implemented a
potential field around the agent of interest, where the potential represented the cost for the
agent, which was higher around other agents and infrastructure obstacles. This method
allowed the trajectory predictor to learn to avoid obstacles and other agents.

3.3. Output Representation

This chapter will introduce possible ways to model the trajectory prediction output.
Models can either output a probability distribution or directly output trajectories as a
sequence of positions. Probability distributions can be either parametric, i.e., the trajectory
distribution is modeled as a specific kind of distribution (e.g., Gaussian) [39] or non-
parametric, where all positions in the scene receive a probability estimate that a given agent
occupies that position [28]. Non-parametric approaches normally use discrete positions,
i.e., they divide the scene into cells of a specific resolution using a grid [28]. Outputting
probability distributions requires a sampling operation to receive positional trajectories,
which are needed to apply most of the metrics introduced in Section 5.2. Bae et al. [114]
proposed a sampling network that learned to efficiently sample trajectories with respect
to diversity and accuracy. Directly outputting trajectories does not necessarily exclude
the generation of a probability distribution, as it can also be latently modeled. The scene
Transformer presented in [17] directly output k trajectories for a given input, for which the
probability distribution was modeled latently using the Transformer architecture [113]. The
input was supplied k times to the model, each with a one-hot encoding vector indicating
the modality. Both types of output could be unimodal or multimodal.

4. Neural Architectures

This chapter reviews the methods included in this work by introducing their architec-
tural features and design strategies.

4.1. Diffusion-Based Methods

Diffusion methods have shown remarkable performance in generational tasks such as
image generation [115]. The diffusion mechanism in this context consists of two steps: the
forward diffusion process and the backward diffusion process. In the forward diffusion
process, noise is gradually added to a given sample over T steps. The reverse diffusion
process is carried out by the model, which learns to decrease the induced noise to re-
cover the original sample. This corresponds to the model learning the underlying data
distribution behind the original samples. Figure 4 schematically shows this process for
image generation.

Gu et al. [20] applied this mechanism to trajectory prediction for pedestrians. This
process first introduced indeterminacy in the form of Gaussian noise to the walkable areas
in the scene. The model then learned to iteratively reduce the amount of Gaussian noise
in the scene in a reverse diffusion process. Both processes were formulated as a Markov
chain with Gaussian transitions between the states. The model consisted of an encoder
network that embedded the observed trajectories and social interactions and a Transformer
network that modeled the Gaussian transition in the Markov chain. Once the training was
complete, trajectories could be generated by sampling Gaussian noise yK ∼ N (0, I) and
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applying the learned reverse diffusion process. The reverse process was conditioned on the
previous step’s position and the encoded state embedding. This method was unimodal,
as the latent space was based on the standard distribution, and interactions during future
timesteps were not modeled. Another downside of this approach was the high inference
time through the iterative reverse diffusion process.

Figure 4. The two-step diffusion mechanism: Gaussian noise is gradually introduced for train-
ing, and the model learns to reverse that process to generate images. Image created based on
Croitoru et al. [116].

Mao et al. [18] tried to reduce this problem by introducing a learnable initialization
approach. The method used the standard forward diffusion process during training but
applied a three-step initialization for the reverse diffusion process. During this initialization,
the method estimated three components: the mean trajectory, variance, and K sample
positions. The training burden on the reverse diffusion process was reduced with the
initialization of these three components, and the model generated K trajectories based on
the sample positions and the estimated distribution.

While the method by Gu et al. [20] only allowed the prediction of unimodal single-agent
trajectories, MotionDiffuser [19] extended this diffusion concept to predict scene-consistent,
joint trajectories with multimodal distributions. The authors applied a permutation-invariant
predictor with conditional diffusion (known from text-conditioned image generation).
Condition tokens for denoising were generated by applying Wayformer [62] as an encoder
and supplying them to the denoiser. The denoiser was also a Transformer-based structure
that performed attention over agent trajectories concatenated with random Fourier-encoded
noise and the condition tokens. The authors’ formulation of the diffusion problem allowed
for arbitrary cost functions to constrain the trajectory generation. In their paper, they
introduced an attractor and a repeller cost function to guide the trajectories toward their
goal and avoid collisions. Another finding in this paper was the possibility of representing
trajectories with their principal components. Representing trajectories with 80 × 2 degrees
of freedom and only three components accounted for 99.7% of all explained variance. The
authors made use of this and represented trajectories with ten components to maintain an
accurate reconstruction.

4.2. Anchor-Conditioned Methods

Anchor-conditioned models use a set of anchor points to condition the prediction of an
agent’s trajectory [21,26–31]. These anchor points can be, for example, the respective agent’s
estimated final goal position, which is used to condition the final trajectory estimation or
even a trajectory proposal. The goal prediction module can be based on any of the other
introduced prediction methods. The schematic for anchor-conditioned methods depicted
in Figure 5 emphasizes this by showing the predictor as a black box. The goal prediction
module uses the input to predict long-term goals for the targeted agents. The trajectory
prediction module uses the goal prediction as additional input for its predictions.
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Anchor
Predictor

Trajectory
Predictor

Figure 5. Anchor-conditioned models consist of two parts: an anchor generator and a trajectory pre-
diction module. The anchor generator can predict long-term goals, waypoints, or trajectory proposals.
The trajectory prediction module uses the anchors as additional inputs to predict trajectories. Future
trajectories are marked with a dashed line and the predicted goal with a yellow star.

Mangalam et al. [28] additionally used waypoints between the last observed positions
and the estimated goal position. Here, the model predicted a probability distribution
for both the goal and the interim waypoints. While Dendorfer et al. [30] modeled the
multimodality of the task only through goal distribution estimation, which they argued
eased the task of the trajectory decoder, Mangalam et al. [28] sampled goals and waypoints
from the predicted distributions and generated a conditioned probability distribution
for every timestep of the trajectory. Chiara et al. [26] followed this approach by sam-
pling from goal distributions and injecting random noise into the trajectory generation
module. While Mangalam et al. [28] performed their computations completely in image
space, Chiara et al. [26] only predicted non-parametric probability distributions for pos-
sible goals in image space. The trajectory generation module was based on a recurrent
network handling 2D positions of the agent of interest. Contrary to Dendorfer et al. [30] and
Chiara et al. [26], who included scene information in the form of images only in their goal
estimation module, Mangalam et al. [28] provided both their goal and waypoint module
and their trajectory prediction module with an encoded segmentation map of the surround-
ings. Instead of directly predicting the goal probability distribution, Gu et al. [29] first
scored the possible future lanes of the street network and then densely sampled goals based
on this lane scoring. The probability of every goal was then calculated using the attention
mechanism and a softmax function. Before using this set of goals, the authors applied
a trainable goal set predictor to select the most likely goals. All methods introduced so
far directly modeled position-based probability distributions and used them to sample
possible goal positions for conditioning.

Zhang et al. [21] presented a goal-conditioned extension of AgentFormer [49] with
ForceFormer. The authors extended the original architecture with a goal estimation module
and a social force module. The goal estimation module estimated potential goals for agents,
which were then fed into the social force and prediction (AgentFormer) module. The social
force module modeled attractive and repulsive forces (goal and potential collisions) to
make the predicted trajectories more socially acceptable and to model interactions. The
additional features (social and goal) created in this way were supplied to AgentFormer by
concatenating them with the positional sequences.

Li et al. [27] also modeled interactions in their goal prediction module by basing it
on a GNN-encoded feature set of the surrounding agents and environment. Similarly to
Gu et al. [29], the goal distributions were determined per estimated future lane.

ProphNet [22] follows a different approach to other anchor-conditioned methods.
The method first generates proposals from the agent’s motion history (the sequence of
positions, velocity, and heading) without constraints or conditioning to ensure a diverse
and multimodal output of trajectories. ProphNet then generates anchors, i.e., goal positions,
from encoded agent states, relative agent states (other agents), and road graphs. The M
fused embeddings of anchors and proposals are used as inputs to N hydra prediction heads
to produce N × M predicted trajectories, which are reduced to the required number of
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trajectories using NMS. The method relies on gated MLPs [117] instead of Transformers for
encoding to achieve state-of-the-art inference times for agent-centric prediction methods.

Zhou et al. [23] used trajectory proposals as anchors in their method instead of goal
estimates. For this, the authors presented a novel agent-centric representation that utilized
agent features in polar coordinates, which were transformed into Fourier features. This
formulation prevented the need for the recomputation of the agent-centric features at every
timestep and was also rolled out to infrastructure elements. A DETR-inspired decoder [118]
first generates proposal trajectories with learnable, anchor-free mode queries. The proposals
are then used as anchors in the refinement module that uses learnable, anchor-based mode
queries to compute deviations from the proposals and a likelihood for each hypothesis.
The method outputs possible trajectories as a mixture of Laplace distributions.

Aydemir et al. [24] proposed a goal-conditioned method called ADAPT that could
process scenes in agent-centric (marginal prediction) and scene-centric (joint prediction)
manners using interchangeable endpoint prediction heads. ADAPT first generated scene
graphs for lanes (from the HD map) and agents and encoded them using multi-head
attention blocks with self- and cross-attention layers. This allowed the method to model
agent–agent, agent–lane, and lane–lane interactions. The encoded features were used as
input for the endpoint prediction module. The endpoint prediction module in scene-centric
mode used a dynamic neural network [119] to adapt to the input state, thus allowing the
network to adapt to each agent without having to iterate through each agent separately.
In the agent-centric mode, the dynamic neural network was replaced by a simple MLP. In
both modes, the endpoint proposals were refined using an MLP that predicted offsets for
every endpoint. The final trajectory prediction was carried out by interpolating between
the agent’s current position and the proposed goals.

Instead of relying on trajectory or goal proposals as anchors, Dong et al. [25] proposed
sparse instance conditioning, essentially a mixture of both trajectory and goal conditioning.
Their method used a memory module that stored sparse instances of future trajectories with
observed trajectories as keys. This memory module was pre-trained using LSTM-based
encoders and decoders. The second stage of the training focused on the memory refinement
module, which was responsible for fine-tuning the retrieved sparse instances by applying
two separate MLPs to generate deviation features and refined features. The refined features
were concatenated with the encoded observed trajectories to generate the corresponding
trajectory. During inference, the method retrieved more modes from memory than needed,
which were then clustered to produce the required number of modes. This was carried out
to reduce the mode redundancy of the sparse instances.

4.3. GAN-Based Methods

GANs consist of two neural networks trained simultaneously in opposition to each
other in a minimax game. The two networks are a generator G that tries to capture the data
distribution and generates samples and a discriminator D that estimates the probability
that a sample came from the original training data or from G [120]. Figure 6 shows the basic
architecture of a GAN. G takes as input a latent variable z and outputs sample G(z), and D
takes a sample x as input and outputs the probability D(x), which leads to the objective
function [37]:

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] +Ez∼p(z)[log(1 − D(G(z)))]. (3)

GANs can also be conditioned on an additional input, e.g., past trajectories, which
were used in the following methods.
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Figure 6. GANs consist of a generator G and a discriminator D. While the generator is trained
to generate realistic samples, the discriminator is trained to differentiate between real and gener-
ated samples.

Gupta et al. [37] first introduced the use of GANs for human trajectory prediction with
SocialGAN. SocialGAN uses a simple LSTM-based generator that encodes past trajectories,
passes the result through a social pooling module (see Section 3.2), and decodes the output
to produce trajectories. Diversity and uncertainty are introduced by concatenating the
output of the social pooling module with a random noise vector sampled from the standard
distribution, which makes this method only unimodal. The encoder module is used as the
discriminator to train the network adversarially.

The methods SocialBiGAT and SoPhie by Kosaraju et al. [36] and Sadeghian et al. [35]
directly built on SocialGAN but offered significant improvement through scene and inter-
action modeling. SoPhie took over the overall structure of SocialGAN but replaced the
social pooling module with an attention-based interaction module. The agent features
were combined based on the relative distance between agent i and its surrounding agents.
The inputs to the interaction module were the encoded features, the hidden states of the
decoder module, and scene features extracted with a CNN from an image of the scene.

Kosaraju et al. [36] also changed how interactions were modeled in their method.
SocialBiGAT models the interaction using a GAT [121] based on the LSTM-encoded features
of the agents in the scene. Two discriminators supervise the adversarial training. The local
discriminator is the same as in SocialGAN. In contrast, the global discriminator classifies
the generated trajectories with respect to physical scene constraints extracted with a CNN
from an image of the scene. Inspired by CycleGAN [122], the authors also introduced
multimodality by training a latent encoder that mapped the generated trajectories back
to the latent space. Wang et al. [32] applied the pedestrian-based SocialGAN architecture
to highway scenarios for vehicles. For this, the interaction module was replaced by an
autoencoder-based social module (see Section 3.2), while the rest of the overall structure
stayed the same.

Li et al. [33] also applied adversarial training to the problem of pedestrian trajectory
prediction but extracted trajectory features at different temporal resolutions using a pyra-
mid network. The concatenated features were fused using a CNN before the trajectories
were decoded. The model generated diverse trajectories by injecting unimodal noise in the
generator module.

Zhou et al. [34] also extended the original SocialGAN with a state refinement module.
This state refinement module replaced SocialGAN’s social pooling module with a GAT-
based interaction module. This module placed all agents in groups and generated a scene
graph based on intergroup, intragroup, and outgroup interactions between groups and
agents within them. This allowed more fine-grained interaction modeling than with the
proposed social pooling module.

4.4. CVAE-Based Methods

Another generative model in addition to the GAN that is used for trajectory prediction
is the CVAE. CVAEs are based on variational autoencoders that model input data x through
a latent distribution q(z|x) by mapping x with a neural network. New data are generated by
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sampling from this latent distribution and decoding the resulting feature vector. CVAEs are
conditioned on an additional input c and add a second network that maps a second latent
distribution p(z|c). In trajectory prediction, the CVAE is conditioned on past trajectory
information, while q also incorporates the corresponding future trajectory. This is shown
in Figure 7 as a schematic. The latent space modeled by the CVAE represents the latent
distribution of the observed trajectories. The modeled distributions can be multimodal by
having the CVAE predict multiple modes.

Groundtruth

Observation

Encoder

Encoder zq ∼ (µq, σq)

zp ∼ (µp, σp)

Predictor

Figure 7. Schematic of a CVAE. The CVAE models two distributions zq and zp (here modeled as
Gaussian), one for the ground truth and one for the observation. The loss function tries to bring both
distributions as close to each other as possible during training. The ground truth branch is not active
during inference.

Zhu et al. [38] used a CVAE to map past trajectories and the ground-truth goal position
into a joint probability distribution. Sampling from this distribution and concatenating
these latent features with the encoded past trajectories served as the input for the trajectory
predictor. The method also used a reciprocal consistency constraint by including a second
network that mirrored the above-described prediction network. The mirror network took
as an input the predicted trajectories and starting positions of each agent and predicted
the observed trajectories. Both network parts were trained jointly. This helped stabilize
the predictions of future trajectories and allowed the estimation of the prediction accuracy
through a Pearson correlation coefficient-based metric without knowing the ground truth.

Closely related to this approach is BiTraP [48], which maps agent trajectories to a
latent distribution using a GRU network. An MLP uses the sampled output to predict goal
positions for the observed trajectories. A separate GRU network performs a forward predic-
tion of the sampled output of the CVAE. The hidden layers, however, are not transformed
into trajectories but rather used to initialize a backward GRU network that employs the
predicted goal as a starting point and predicts the trajectory backward to the initial position
from the goal.

Similar to this method, MUSE-VAE [42] uses a CVAE to predict the long-term goal
of each agent in what the authors called the “Macro-stage”. The method then predicts
waypoints based on the predicted long-term goal. Finally, the “Micro-stage” uses a second
CVAE to predict future trajectories via the predicted long-term goals, the corresponding
waypoints, and the encoded past trajectories. Features are extracted from positional
heatmaps using convolutional U-Nets. As the bases for both the goal and the trajectory
prediction are CVAEs, this method was classified into this category.

LSSTA [39] uses a much more complex encoder scheme on top of its CVAE. The
observed agent trajectories are temporally encoded using a Transformer network and
spatially encoded using a GCN. Both feature sets are fused with a TCN module before
being concatenated with scene information extracted by a CNN from an image of the scene.
This fused feature set consisting of scene information and temporal and spatial features is
mapped into a latent space using a CVAE. The decoder is a simple MLP that predicts the
future trajectory in an autoregressive manner. The CVAE is supervised by a parallel CVAE
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network that encodes only the observed trajectories using a GRU-based encoder. This idea
influenced a more straightforward implementation by [123]. However, the authors of this
method used a spatiotemporal graph that contained both spatial and temporal features.

Xie et al. [43] also carried out more sophisticated feature extraction by extracting spatial
and temporal features separately. Additionally, they used a bi-directional decoder that
predicted the future and past trajectories, thus alleviating the error accumulation problem
with autoregressive methods. The CVAE was supervised by extracting the temporal
features of future trajectories with the same temporal feature extractor.

Miguel et al. [44] also incorporated interactions separately into their VAE by encoding
both relative positions and velocities between agents and position sequences of the agent
of interest using LSTM networks. The VAE then predicted different distributions for the x-
and y-positions of future trajectories.

Often, CVAEs only predict a unimodal latent distribution as a representation of
possible future trajectories. Zhou et al. [40] tried to increase the expressiveness of the
latent space using a cascade of CVAEs. Every CVAE predicted a single timestep of the
trajectory and passed the predicted position onto the next CVAE. This autoregressive
prediction scheme allowed the method to predict a separate latent distribution for the
agent’s position at every timestep. The predicted trajectories were refined using a social
pooling-based refinement module to make the trajectories socially acceptable. This module
allowed the method to include future predictions in its interaction module.

In contrast to the above-mentioned methods, ScePT [16] uses a discrete CVAE to predict
a discrete distribution over possible future trajectories. The latent space is represented
by a Gibbs distribution sampled using a factor graph. Then, an autoregressive policy
network first predicts the next future position and then ensures that the arising trajectory is
realistic by applying an action network with a fixed dynamic model for the agent’s possible
movements (vehicles and pedestrians).

Salzmann et al. [51] generated an agent-specific latent space by encoding the current
scene using a graph-based representation encoded via LSTMs and attention layers. Like
ScePT, the latent space was discrete and decoded using a set of GRU cells for every step.
Each GRU cell produced a bivariate Gaussian distribution over the actions, which were
combined with the agent’s system dynamics to produce the trajectory.

AgentFormer [49] uses a standard CVAE structure at its core but combines it with a
modified Transformer for the encoding and decoding of features. As Transformers tend
to lose temporal information and have no notion of agent identities for their attention
mechanism, Yuan et al. [49] added temporal embeddings to their Transformer blocks and
introduced agent-aware attention, which keeps track of an agent’s identity through masking
and the use of two different query and key pairs per agent.

Xu et al. [41] used a VAE conditioned on the hidden states of an RNN at the core
of their method. Their main focus was to address the problem of missing observations
(e.g., due to occlusions) through simultaneous trajectory imputation and prediction. They
encoded the current scene using three graph networks that employed different adjacency
matrices. One network used a standard matrix that encoded connections with 0 and 1
together with a visibility matrix. The second matrix had a learnable adjacency matrix to
learn the weights of connections between agents, and the final network used hot-encoded
connection classes depending on the visibility of the connected nodes. The trajectories were
decoded from the VAE’s hidden states.

Another interesting approach for pedestrian trajectory prediction was presented by
Halawa et al. [46]. The authors proposed a bidirectional LSTM-based encoder–decoder
structure extended from BiTraP [48] with a CVAE at its core. The main contribution of
this method was its contrastive framework, which utilized action-based contrastive loss
to train the encoder part to push trajectory embeddings of pedestrians performing the
same action (the labels used were walking and standing) closer together. To generate
enough positive and negative samples, synthetic trajectory samples generated by the
CVAE were added to the samples of a given mini-batch. This sample generation process
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allowed the method to function without specific heuristics for negative mining. The method
was able to produce multimodal outputs through its CVAE. Makansi et al. [124] showed
that the idea of contrastive losses could also be applied to rare and difficult scenarios,
making the network share cues present in these scenarios by pushing the embeddings
of the trajectories closer together. A similar approach was presented by Liu et al. [125]
with a focus on socially acceptable pedestrian trajectories without collisions, for which
synthetically negative augmentation was used.

Choi and Min [47] proposed a CVAE that was supported by a GAN-based regulariza-
tion mechanism. The core of this method was a two-level CVAE that produced a low-level
latent variable to model each mode and a high-level latent variable to model the proba-
bilities of the produced modes. Both parts used two lane-level context vectors generated
by encoding state histories of the agents present in the scene via LSTMs and applying an
attention mechanism to model interactions among agents and between agents and lanes.
The model was trained with a discriminator network that regularized the shape of the
predicted trajectory. Using the proposed two-level CVAE prevented mode blur, which
would result in unrealistic predictions between lanes.

4.5. RNN-Based Methods

RNN-based networks like long short-term memory (LSTM) networks or gated recur-
rent units (GRUs) can also perform the task of trajectory prediction due to their Seq2Seq
characteristic. Many of the introduced methods rely on RNNs at specific points. However,
this chapter will introduce methods that use RNNs directly to predict future trajectories.
PredictionNet by Kamenev et al. [54] relies on an image-based scene representation, as
described in Section 3.2. It uses CNN encoders to encode the input images of the map,
velocity, and occupancy into a latent vector that serves as the input for two RNNs: one
for processing the observed velocities and occupancy and one for predicting the future.
The hidden state of the RNNs is passed between timesteps, and the two RNNs after the
observations are encoded to predict the future. The input to the future RNN is only the
encoded current state of the velocity, occupancy, and map. This input provides a general,
non-parametric representation of future traffic. Euler integration is applied to the output
velocity tensor to provide discrete trajectories. The model is trained with simple focal loss
for the occupancy and L2 loss for the velocities.

Tang et al. [52], Sheng et al. [55], and Xu et al. [56] similarly applied RNN-based
decoders. Their methods encoded the current scene with its agents into a spatiotemporal
graph. Interactions at different temporal levels were extracted using a combination of
GCNs and TCN layers. These encoded graph features were fed into an encoder–decoder
trajectory generation module. While Tang et al. [52] used an LSTM-based generation
module, Xu et al. [56] and Sheng et al. [55] opted for a GRU-based one.

Mo et al. [57] also applied the idea of encoding the scene with its agents and inter-
actions using a graph. However, in this method, the feature processing in the graph was
carried out using an edge-enhanced graph attention network. The processed features
were decoded into trajectories using an LSTM. This method did not model multimodal-
ity and predicted future trajectories separately. The same approach was followed by
Zhang et al. [53], who applied a GAT that was decoded to provide velocities for every
timestep in an autoregressive manner using ConvGRUs.

4.6. Transformer- and Attention-Based Methods

The Transformer [113] architecture is based on an attention mechanism, which helps
to get rid of some of the disadvantages of RNNs like exploding or vanishing gradients by
processing full sequences at once. It thus offers excellent sequence processing capabilities,
which is why it is used in many trajectory prediction methods as the primary tool for
generating predictions. One downside of Transformers is their quadratic complexity. The
architecture is pictured in Figure 8.
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Figure 8. The basic Transformer architecture taken from Vaswani et al. [113].

Apart from methods that use the original Transformer architecture, this chapter will
also introduce methods that use an attention mechanism to predict trajectories. The Trans-
former architecture can be used without any changes to predict trajectories based on
observed positions [17,58,59,74–76].

Zhang et al. [58] applied two Transformers in parallel, one to infer obstacle positions
from observed trajectories and one for predicting the x and y positions separately.

Liu et al. [59] used the embeddings of the last observed position as a query for the
Transformer decoder part of the method, and Chen et al. [74] supported the training of
their Transformer structure with a multitask learning scheme that trained the model on
intention recognition and trajectory prediction.

Instead of predicting future positions directly, Shi et al. [75] designed their model to
predict trajectories as GMMs to model the multimodality. With Transformers, multimodality
can also be implicitly modeled using the output dimension of the Transformer, i.e., having
the Transformer predict multiple trajectories per agent at once [17,76]. Another approach
to using the Transformer in trajectory prediction is the use of Transformers for encoding,
fusion, or interaction modeling. Here, standard MLPs are used to decode the latent space
that is spanned by the Transformer encoding [60,69]. Multiple MLPs are used to generate
multiple modes of trajectories. Schmidt et al. [70] followed this scheme for multimodality
modeling but used a graph and soft attention for pre-processing the scene and its features.

Transformers can also be used just for decoding pre-processed scene features. Tsao et al. [71]
used a Transformer decoder to decode encoded features of the agents and their interactions.
The training was aided by two pretext tasks that predicted the interaction type and the
closeness of two agents. The labels for these tasks were automatically generated; thus, a
self-supervised approach was used.

Li et al. [72] applied a graph-based Transformer that used encoded node features
as input and generated attention-based messages according to the graph structure. The
Transformer predicted smooth and adapted trajectories using a memory replay module.
Zhou et al. [73] extended the idea of VectorNet’s [110] form of representing agents and map
features as vectors to a temporal Transformer. Multiple MLPs decoded the Transformer
output to model multimodality.

Nayakanti et al. [62] presented a detailed ablation study with their method Wayformer.
Wayformer consists of a Transformer-based encoder and decoder. In their paper, the authors
showed that performing an early fusion with all input modalities (past positions, traffic
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light state, road graph, and interactions) together with a latent query-based attention
mechanism delivered the best results. Using factorized (attention over time and space
axes separately) or multiaxis (joint attention over time and space axes) attention did not
influence the results significantly (Waymo Open Motion: minFDE difference, 0.001; mAP
difference, 0.007; other metrics were equal).

Other methods do not directly apply Transformers but heavily rely on an attention
mechanism for encoding and pre-processing the input data [61,67,68]. These features are de-
coded using RNN-based approaches [61] or MLPs [67,68]. Multimodality can also be mod-
eled directly by predicting GMM components instead of directly predicting trajectories [67].

Gu et al. [63] introduced an end-to-end trajectory prediction approach that directly
used multiview images as input. The method jointly detected, tracked, and predicted the
positions of agents. For this, the authors applied 3D agent queries, which were updated
using 3D-to-2D attention at every timestep, as in DETR3D [126]. The agent queries were
used as input into the trajectory prediction module, which fused the queries with map
features using attention. The latent and fused feature sets could be decoded into trajectories
using regression, goal conditioning, or heatmap-based methods.

R-Pred [64] also employs queries in its processing pipeline. It consists of a proposal
network that can be any multimodal trajectory prediction network. The M × N proposals
for N agents, along with their features and confidence scores, serve as the input into the
refinement network. This second stage first encodes elements from an HD map using a
simple MLP and then pools these encoded features in tubular regions around the proposal
trajectory’s waypoints. The pooled features and the proposal features are fused using a
cross-attention block. A similar strategy is applied to model interactions between agents
in the scene by first selecting close proposals and then applying cross-attention between
the target proposals and the surrounding agents’ proposals. This ensures that future
interactions are modeled and not only interactions based on observed positions. The final
trajectory is generated by an MLP that predicts independent Laplace distributions using
the concatenated features from scene and interaction processing.

TUTR [66] consists of a similar structure to Scene Transformer [17] and tackles the
problem of pedestrian trajectory prediction with a simple Transformer encoder–decoder
structure. TUTR uses a mode-level encoder that takes as input motion mode embeddings
combined with observed trajectory embeddings. The motion mode embeddings are gen-
erated by clustering all future trajectories to C clusters and then projecting each cluster
using a linear layer. Then, instead of supplying masked output embeddings to the decoder,
TUTR uses the neighboring embeddings as input with the encoded motion modes and
observed trajectories. The model uses a dual prediction head to predict future trajectories
and their corresponding probabilities. Multimodality is modeled through the input of
diverse motion modes into the encoder.

Zhu et al. [65] first encoded the scene using agent-centric, polyline-based coordinates
and a Transformer encoder with relative positional encoding. The method then produced S
static intentions by generating marginal predictions for each agent using M2I [15]. These
intentions were fused using the authors’ Transformer-based high-level fusion module to
decode goals and trajectory into K modes. A Transformer-based low-level fusion module
further refined these predicted trajectories to output K scene-wide modes. Initially fusing
high-level intentions and then refining these trajectories, as well as the agent-centric,
polyline-based representation, allowed the method to take future interactions between
agents into account and predict scene-wide and scene-consistent modes.

4.7. CNN-Based Methods

CNN-based methods predict agent trajectories on an image level instead of a coor-
dinate level, as with other methods mentioned herein, and thereby rely on the popular
convolutional layer. Mangalam et al. [28] used a simple CNN-based architecture; how-
ever, this method’s excellent performance could be traced back to its goal and waypoint
conditioning, which is why the method is listed under Section 4.2. Wang et al. [77] used a
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temporal sequence of LiDAR point clouds as an input to their method. This sequence was
encoded into a 2D pseudo-image in BEV with the image’s channels corresponding to the
point cloud’s vertical dimension. The pseudo-images of every point cloud in the sequence
were processed using 2D CNNs, where different concatenations of every timestep in the se-
quence encoded the temporal features. The fully encoded feature map of the given temporal
sequence was upsampled, and a final CNN predicted the future movement of agents in the
scene from a BEV. Zamboni et al. [78] followed a similar approach with coordinate-based
input features instead of point clouds. The authors embedded the past positions of each
agent into a 64-dimensional space and thus obtained a 64 × Nt-dimensional, one-channel
image, where Nt is the number of observed positions. The paper discussed multiple ways
to proceed with this input representation, including CoordConv [127] layers. However,
the overall network architecture stayed the same: the pseudo-image was processed using
several convolutional layers. A fully connected layer output the future positions based
on the encoded convolutional features. Neither of the two above-mentioned CNN-based
methods modeled the multimodality of the trajectory prediction task.

4.8. TCN-Based Methods

As depicted in Figure 9, TCNs make use of temporal convolutions, which apply the
convolution operation across time instead of image space. The methods in this chapter
utilize these to produce trajectory predictions.

Input

Output

Hidden

Hidden

Figure 9. Schematic application of the TCN operation as proposed by Bai et al. [128] to the domain of
trajectory prediction. The observed trajectory (bottom) is used as input to the TCN, which predicts
the future trajectory (top) through temporal convolutions. Figure adapted from [128].

All reviewed methods follow roughly the same network scheme [79–84]. First, the
observed scenes are processed into a graph representation. Then, the graphs are processed
using GCNs to extract features. These features are subsequently fed into a TCN-based
decoder that produces the trajectory predictions for all agents in the scene. Lu et al. [82] and
Lv et al. [79] also added scene context by extracting relevant features with a CNN encoder.
Shi et al. [83] followed the method of Yang and Pei [39], introducing the division of spatial
and temporal features and adding encoded temporal features to their spatial graph features
before passing both to the TCN decoder. All methods except for the method of Bae and
Jeon [84] applied some form of attention in their graph processing pipeline before passing
the output to the decoder. Multimodality was not modeled in these methods.

4.9. Graph-Based Methods

This chapter introduces all reviewed methods that rely entirely on graph-based ap-
proaches like GCNs to predict future trajectories. Rowe et al. [85] modeled the scene using a
sparse directed graph where interactions represented directed interactions between agents
(nodes). This graph was pruned using an interaction classifier and turned into a directed
acyclic graph (DAG) to decompose the joint prediction task into a series of marginal and
conditional predictions for influencers and influenced agents. Predictions were made
using a directed acyclic graph neural network [129] that decoded the node features into a
sequence of future positions for each agent. Multimodality was introduced by passing N
copies of the node features and a one-hot vector signifying the modality to the decoder.
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GroupNet [87] is not a standalone trajectory prediction method. However, GroupNet
offers an interesting take on graph formation for trajectory prediction. The method uses a
multiscale hypergraph whose topology is learned during training. For this, an optimization
problem of finding submatrices in the given affinity matrix of the initial hypergraph
is solved. This optimization allows the graph to have both group-wise and individual
interactions in a self-inferred topology. Neural message passing encodes the features in the
graph, which can then be used by any prediction module to produce trajectory predictions.
Combining this with, e.g., a CVAE (as in the above paper) allowed the method to model
multimodality additionally.

Pourkeshavarz et al. [86] proposed an interesting method based on self-supervised
meta-learning. In this method, the scene was encoded as a directed, heterogeneous infor-
mation graph where infrastructure element nodes were initialized using a PointNet-based
network and agent nodes were encoded using 1D convolutions. The authors applied
Heterogeneous Graph Transformer (HGT) [130] as their GNN. They then performed joint
meta-learning, where they first learned to find meta-paths between nodes that were not
directly connected but could be reached with a series of steps between nodes. Next, they
used these learned representations of the GNN to learn the main task of trajectory pre-
diction and a set of auxiliary tasks, e.g., predicting the distance to the next intersection or
maneuver classification. Additionally, the method learned to weigh the loss of the main
and auxiliary tasks. This allowed the method to improve its map representational learning
power for predicting possible future trajectories. The representations of a set of predefined
meta-paths were used to model multimodality.

4.10. Set-Based Methods

Most of the methods introduced so far in this review directly predict trajectories or
corresponding positional probability distributions in an unconstrained way, sometimes
resulting in infeasible trajectory predictions [89,90].The methods in this chapter approach
the problem of trajectory prediction with a two-step process. First, a set of trajectories is pre-
generated, and then each sample in the set of trajectories is classified and scored according
to contextual information [88–90]. This approach eases the task of trajectory prediction by
avoiding mode collapse, eliminating dynamically infeasible trajectories beforehand, and
ensuring a desired level of coverage of the possible trajectory state space [89]. However,
this comes at the cost of the method’s expressiveness, since prior knowledge is introduced
through the trajectory set generation.

Phan-Minh et al. [89] used both fixed and dynamic trajectory sets. The fixed trajectory
set was simply generated by extracting trajectories from the training set, while the dynamic
trajectory set made use of the current dynamic state of the agent of interest to generate
possible trajectories by the forward integration of a dynamic model over diverse control
sequences. The multimodal output for a single agent (marginal prediction) was generated
by scoring the trajectories using dense layers.

To ensure both dynamic and environmental feasibility, Song et al. [90] proposed a
more sophisticated trajectory generator. The method performed a depth-first search on
an HD map to find reachable paths for the agent of interest. These paths were used as
input for a Frenét planner [131] together with the initial dynamic state of the agent to
produce dynamically and environmentally feasible trajectories. An evaluator that encoded
state histories using LSTMs and attention to model past and future interactions between
context entities (possible paths, state histories, and future trajectories) scored the proposed
trajectories to produce joint, multimodal predictions.

Schmidt et al. [88] followed the approach of CoverNet [89] to produce a fixed trajectory
set by using an algorithm to extract possible, type-specific (vehicle or VRU) trajectories
from the complete dataset based on a metric (e.g., minADE). To predict trajectories for
agents in the scene, the map, interaction, and past agent information was encoded, and
an MLP finally predicted a probability for every trajectory in the previously generated set
of trajectories depending on the class of the agent of interest. A simple non-maximum
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suppression selected the most likely trajectory. It discarded other trajectories with an
endpoint within rNMS around the first trajectory’s endpoint until the desired number of
modes was reached.

4.11. Other Prediction Methods

The methods in this chapter only partially fit into the other categories introduced so
far. They apply either a novel or unique technique for trajectory prediction or offer a study
on a topic surrounding trajectory prediction.

Bhatt et al. [91] offered an end-to-end approach for trajectory prediction. After per-
forming 3D object detection and tracking, the authors generated a potential field for every
object based on the extracted object states and HD map information. This potential field
was used as a cost function to predict the velocities of agents in the scene. The trajectory
could be deduced with the stepwise velocities (with magnitude as speed, and orientation
as heading angle).

Wang et al. [95] also had a different take on trajectory prediction than the previously
introduced methods. Instead of predicting trajectories per object, PointMotionNet predicts
the movement of single points in its LiDAR input. For this, the authors turned the input
point cloud sequence into a 4D point cloud and applied a 4D point spatiotemporal convo-
lution in an encoder–decoder format to this point cloud. The decoder predicted a motion
vector and a motion state per point.

Another end-to-end approach was proposed by Guo et al. [96]. The authors used the
agents’ past trajectories and a BEV image of the scene to generate a reward map used in
reinforcement learning. A value iteration network generated a multimodal policy map
based on the generated reward map. Sampling from this policy map with the Gumbel-
Softmax trick [132], an RNN generated the future position distribution from the high-
level policy map plan. A Transformer-based refinement network sampled the predicted
distribution to a few representative trajectories.

The method by Zernetsch et al. [97] is one of the few that dealt explicitly with pre-
dicting cyclist trajectories. The authors first extracted movement sequences through object
detection and optical flow from image sequences. Then, basic movement detection was
performed, where the observed movement was categorized as one of six movement forms
(start, stop, left, right, move, and wait). Based on the detected movement form, form-specific
networks predicted the movement probability distribution as a Gaussian distribution. Each
of these probability distributions was combined to form an ensemble forecast of the future
positions of the cyclist.

The next method to be presented in this chapter was presented by Monti et al. [98].
They published a study on reducing the dependence of methods on large numbers of
observations (timesteps of observed trajectories). The authors applied a simple Transformer
encoder–decoder structure with a teacher and student network. The teacher network
was trained on eight observations, while the student network was trained on only two.
Distillation loss was applied to let the student network closely follow the predictions of the
teacher network. The authors showed that the student network could perform similarly to
the teacher network while being trained on fewer observations. This insight is very viable
for real-world applications where the number of observations is limited due to occlusions
or sensing errors.

Sun et al. [15] relied on a two-step approach to produce joint predictions for two agents
at a time. First, the interaction was classified into one of three classes: pass, yield, and none.
Then, the trajectory of the influencer agent was marginally predicted, while the trajectory
of the influenced agent was conditioned on the trajectory of the influencer. The authors
applied a network of modules consisting of simple MLPs and ResNet structures.

Peri et al. [99] combined the problem of future trajectory prediction with object de-
tection. For this, the authors approached the problem by taking a sequence of LiDAR
point clouds as input and then detecting object classes in the scene. To predict the future
trajectories of objects, they introduced object positions at future timesteps as classes, i.e.,
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cart+1, cart+2, . . . , cart+k. This detection was independent of object detections in the current
scene, which allowed the method to detect multiple possible future positions. Future
positions were then backcasted to the current timestep and matched to object detections in
the current scene through a distance metric, allowing many-to-one matching. All matched
positions were scored by the detection confidence of the last predicted position in the
trajectory. As the method relied on neither groundtruth detections nor external detections,
it was able to learn important features of the input sensor data by itself and was closer to a
real-world application than most other methods presented in this review.

Li et al. [92] followed a similar trajectory prediction approach to Peri et al. [99], us-
ing LiDAR points clouds directly as input. Instead of using object detection, the authors
based their method on foreground/background segmentation with sparse labels. The ap-
proach consisted of a segmentation stage and a motion forecasting stage that associated
consecutive foreground voxels with each other. To train the model, the authors proposed
a novel outlier robust Chamfer distance loss formulation that incorporated three consec-
utive LiDAR frames to gauge the confidence of associated voxels. The advantage of this
formulation was that it only needed sparse segmentation labels for training and no motion
forecasting ground truth.

Chen et al. [93] proposed a self-supervised approach using masked autoencoders with
Traj-MAE. Traj-MAE consists of a trajectory encoder, a map encoder, and a decoder based
on AutoBot [133]. Both encoders were pre-trained with different masking strategies to
learn how to efficiently encode both trajectories and map information. Trajectories were
masked in their temporal and social dimensions, while map information was masked based
on point, patch, and block levels. The pre-training was carried out in three stages with a
mixture of all masking strategies to avoid forgetting crucial information.

Maeda and Ukita [94] proposed FlowChain, which is a density estimation model
for trajectory prediction. FlowChain’s main architectural insight is a chain of conditional
continuously indexed flows that transform the density of the previous timestep to the
density of the next timestep and thus predict a density for every timestep in the prediction
time frame. The first flow in this chain converts the Gaussian distribution of the newly
observed position. This allows the density to change the topology of the base density. With
every incoming observation, the model updates the densities at every timestep by replacing
the first prediction with the new Gaussian density and then updating the remaining
densities using the already computed flows. The model makes use of a temporal-social
encoder to incorporate interactions and generate a motion trend, which is supplied to the
flows. Trajectories can be generated by sampling from the computed densities. The main
contribution of this method is its fast inference time due to its simple update scheme.

V2-Net [134] approaches the task of trajectory prediction not from a temporal sequence
modeling point of view but from a spectral one. This method assumes that different fre-
quency bands in the trajectory spectrum could represent an agent’s motion preferences. In
this case, low-frequency bands could represent coarse agent goals, while high-frequency
bands could represent finer motion variations as modeled by epistemic and aleatoric un-
certainty. To model this, the authors proposed a two-network method that first predicted
waypoints, which were then refined through spectral interpolation to produce agent tra-
jectories. The model first applied a one-dimensional discrete Fourier Transform to each
dimension of the observed trajectory sequence. An MLP then embedded these spectrums,
which were afterward concatenated with a noise vector sampled from a normal distribution
to model multimodality. A Transformer, together with the MLP, predicted waypoints of
the trajectory in the spectral domain, which were used by another Transformer with CNN-
encoded scene context (surroundings and social interactions) to predict the final trajectory.
Transforming trajectories into the spectral domain allowed the display of smaller variations
present in trajectories that were not visible when viewed in a positional domain.
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5. Evaluation and Results
5.1. Datasets

The methods presented in this review were trained and evaluated using the ground
truth of various datasets. These data were obtained using a variety of sensors, such as
cameras and LiDARs, and by extracting trajectories from the obtained sensor material.
Most datasets are divided into scenarios of fixed length and provide trajectory sequences
or annotated bounding boxes for all agents in the scene. Autonomous driving datasets
also provide raw sensor data as well as annotations for these data. As this review presents
methods for trajectory prediction in autonomous driving scenarios and for VRUs, standard
large-scale autonomous driving datasets and datasets for pedestrian trajectory prediction
are introduced. The datasets used by methods in this review are listed in Table 2. HD
maps are either rasterized or vectorized maps in the form of polylines. Some datasets
like WOMD even include traffic signal states and the lanes they control [135]. While most
datasets focus on single-agent marginal predictions, the benchmarks on Interaction and
Argoverse 2 specifically incorporate scene-wide predictions (collision-free). As this review
focuses on the methods themselves and not on the datasets, we refer the interested reader
to the corresponding dataset papers for more information beyond this overview.

Table 2. Popular autonomous driving and pedestrian datasets used for trajectory prediction.

Dataset Year Setting Agent Type Data Sensors Duration

ETH/UCY [106,107] 2007/2009

pedestrian zone,
hotel lobby

(Switzerland,
Cyprus)

pedestrians trajectories at 2.5 Hz camera
(surveillance) 5 scenes

SDD 1 [108] 2016 university campus
area

pedestrians, cyclists,
cars, skateboarders,

carts, buses
trajectories at 25 Hz camera (drone) 8 locations with

10,300 trajectories

inD 2 [136] 2020 urban intersections
(Germany)

pedestrians, cyclists,
cars, trucks, buses trajectories at 25 Hz camera (drone)

10 h at 4
intersections with
13,599 trajectories

WOMD 3 [135] 2021 urban (USA) pedestrians, cyclists,
vehicles

trajectories at 10 Hz
with bounding box

and velocity, HD
map

camera, LiDAR
(vehicle)

100,000 scenes of
20 s

Argoverse 1 [137] 2019 urban (USA) vehicles trajectories at 10 Hz,
HD map

camera, LiDAR
(vehicle)

333,441 sequences of
5 s

Argoverse 2 [138] 2021 urban (USA)
pedestrians, cyclists,

vehicles, busses,
motorcyclists

trajectories at 10 Hz,
HD map

camera, LiDAR
(vehicle)

324,000 sequences of
5 s

NGSIM 4 [139,140] 2006/2007 highway (USA) vehicles trajectories camera
(surveillance)

45 min (US 101),
45 min (I-80)

nuScenes [141] 2020 urban (USA,
Singapore)

pedestrians, cyclists,
vehicles trajectories, HD map camera, LiDAR,

radar (vehicle) 1000 scenes of 20 s

KITTI [142,143] 2012 urban, highway
(Germany)

pedestrians, cyclists,
vehicles images, point clouds camera, LiDAR

(vehicle) 6 h

highD [144] 2018 highway (Germany) vehicles trajectories camera (drone)
16.5 h at 6 locations

with 110,000
trajectories

Forking Paths [145] 2020 urban, pedestrian
zones pedestrians, vehicles trajectories

(multifuture) simulation 750 sequences of
15 s

VIRAT/ActEV
[146,147] 2018 urban, pedestrian

zones pedestrians, vehicles trajectories camera
(surveillance) more than 29 h

Interaction [148] 2019
urban, highway

(USA, China,
Germany, Bulgaria)

pedestrians, vehicles trajectories, HD map camera (drone,
surveillance) 16.5 h

Apolloscape [149] 2019 urban (China) pedestrians, cyclists,
vehicles trajectories, HD map camera, LiDAR,

radar (vehicle) 1000 km trajectories

Lyft [150] 2021 urban (USA) pedestrians, cyclists,
vehicles trajectories, HD map camera, LiDAR

(vehicle) 1000 h

JAAD [151] 2017 urban (USA,
Europe) pedestrians

trajectories
(annotations in

images)
camera (vehicle)

82,000 frames with
2200 pedestrian

samples

PIE [152] 2019 urban (Canada) pedestrians
trajectories

(annotations in
images)

camera (vehicle) 6 h

1 Stanford Drone Dataset. 2 Intersection Drone Dataset. 3 Waymo Open Motion Dataset. 4 Next-Generation
Simulation consisting of US-101 and I-80.
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5.2. Metrics

This section will briefly overview commonly used evaluation metrics for trajectory
prediction in autonomous driving and pedestrian trajectory prediction. All metrics are
comparable over an equal prediction horizon, i.e., if the methods predict trajectories of an
equal length.

Root Mean Square Error (RMSE): The RMSE calculates the square root of the average
squared error between prediction ŷ and ground truth y:

RMSE =

√√√√ 1
T

T

∑
t=1

(yt − ŷt)
2, (4)

where T denotes the number of predicted samples, and y and ŷ are positions extracted at
timestep t.

Average Displacement Error (ADE): The ADE calculates the average L2-error be-
tween ground truth y and predicted position ŷ over all agents and timesteps. It is thus very
similar to the RMSE. However, it allows an easier interpretation as the ADE is given in
meters or pixels. The ADE is defined as follows:

ADE =
1
N

1
T

N

∑
n=1

T

∑
t=1

∥yn
t − ŷn

t ∥2, (5)

with N agents and T predicted timesteps. As many methods employ a multimodal output,
i.e., predict multiple trajectories simultaneously, the ADE has to be slightly adapted. For
this, minADEk is introduced. This metric requires sampling or predicting k modes from the
predicted multimodal output. minADEk is the mode with the lowest ADE. Another exten-
sion of this metric is the brier minADEk or b-minADEk. With this extension, the uncertainty
estimation of the predicted trajectory is included beyond the sampling mechanism with

b-minADEk = minADEk(1 − p)2, (6)

where p is the probability score of the best-performing mode. Another extension is the
extension as a joint or scene-wide metric, which includes the trajectories of all predicted
agents in the scene at once.

Final Displacement Error (FDE): The FDE is very similar to the ADE metric, but
instead of computing an average over the complete predicted trajectory, the FDE is only
computed over the predicted endpoints ŷn

T . This can be formulated as

FDE =
1
N

N

∑
n=1

|yn
T − ŷn

T |
2. (7)

Multimodal extensions can be applied for the FDE in the same way as for the ADE,
resulting in minFDEk and b-minFDEk over k predictions.

Miss Rate (MR): The MR is closely connected to the FDE. It provides the ratio of
predictions where the FDE is bigger than 2 m [23]. Here, as for the ADE and FDE, a
multimodal version MRk exists. This simply provides the MR of the best of k trajectories.
The miss rate can also be set according to different criteria like longitudinal and lateral
thresholds in order to, for example, model the structure of lanes [27].

Overlap Rate (OR): An overlap is defined for multi-agent scenarios in which the
top-scoring predicted trajectories of two agents come so close at any timestep that their
respective bounding boxes overlap. This can be seen as predicting a collision between these
two agents, which is usually unrealistic. The overlap rate is the average overlaps over all
timesteps. This is more commonly used in autonomous driving datasets.

Mean Average Precision (mAP): Some datasets (main ranking metric for WOMD [135])
employ the well-known mAP score for trajectory prediction. The mAP computes the area
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under the precision–recall curve by applying a confidence score threshold and using the
MR to compute positive and negative predictions. Here, a positive prediction is defined by
having an FDE < 2 and a negative prediction as an FDE > 2. The mAP of WOMD is first
computed for eight different trajectory shape types and then averaged over the same.

5.3. Summary of Reported Results

This section will concisely present the results of all methods introduced in this review
sorted by dataset. This will give an overview of the methods and allow a direct comparison.
Some papers reported results for multiple datasets, which is why these methods will be
listed more than once. We refer the reader to the respective papers for details on the training
parameters and settings. Results using datasets for which only one paper in this review
reported results can be found in Appendix A. Tables 3–15 display the reported results of
the methods introduced in Section 4. Individualized reports of results are indicated as
best as possible. If a method was not given a name, we assigned one for the tables below.
If not stated otherwise, the methods in the dataset tables below were trained under the
same dataset settings (dataset splits, observation and prediction horizons, and number of
sampled trajectories). Of course, this does not include model-specific hyperparameters like
the learning rate or batch size. The methods reporting results on WOMD and nuScenes
used many different settings (see Tables 6 and 10), which made it hard to compare the
results. We indicated deviations from the standard evaluation metrics mentioned in the
tables through footnotes for each applicable method under every dataset table.

Table 3. Unified results table for ETH/UCY datasets. The results are reported as minADE20 and
minFDE20 in meters. Averages over all five scenes are reported. Methods observed 8 frames and
predicted 12 frames (sampling at 0.4 s). The best overall results are marked in bold, and the best
results for the respective method classes are underlined.

Method Method Class Year minADE20 minFDE20

LED [18] Diffusion 2023 0.21 0.33
MID [20] Diffusion 2022 0.21 0.38

ForceFormer [21] Anchor 2023 0.19 0.30
SICNet [25] Anchor 2023 0.19 0.33

Goal-SAR [26] Anchor 2022 0.19 0.29
Y-Net [28] Anchor 2021 0.18 0.27

Goal-GAN [30] Anchor 2020 0.43 0.85
PECNet [31] Anchor 2020 0.29 0.48

TPNSTA [33] GAN 2022 0.37 0.71
GCHGAT [34] GAN 2022 0.44 0.86

SocialBiGAT [36] GAN 2019 0.48 1.00
SoPhie [35] GAN 2019 0.54 1.15

SocialGAN [37] GAN 2018 0.39 0.58

RCPNet [38] CVAE 2023 0.33 0.58
LSSTA [39] CVAE 2023 0.21 0.40

CSR [40] CVAE 2023 0.14 0.23
SBD [43] CVAE 2022 0.16 0.29

ScePT [16] CVAE 2022 0.12 0.73
AgentFormer [49] CVAE 2021 0.18 0.29

BiTraP [48] CVAE 2021 0.18 0.35
Trajectron++ [51] CVAE 2020 0.21 0.41

Obstacle-Transformer [58] Transformer 2023 0.42 1.27
NaST [59] Transformer 2023 0.24 0.50

VRU-Traj-Pred [61] Transformer 2023 0.32 0.75
TUTR [66] Transformer 2023 0.21 0.36

Social-Transformer [76] Transformer 2022 0.51 0.53
Social-SSL [71] Transformer 2022 0.44 0.85

CAGN [67] Transformer 2022 0.25 0.43

Ped-CNN [78] CNN 2022 0.44 0.91

SSAGCN [79] TCN 2023 0.13 0.24
PTP-STGCN [80] TCN 2023 0.42 0.68

D-STGCN [81] TCN 2023 0.42 0.68
SGCN [83] TCN 2021 0.37 0.65

DMRGCN [84] TCN 2021 0.34 0.58
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Table 3. Cont.

Method Method Class Year minADE20 minFDE20

GroupNet [87] Graph 2022 0.19 0.38

FlowChain [94] Other 2023 0.29 0.52
Observations [98] Other 2022 0.43 0.88

V2-Net [134] Other 2022 0.18 0.28

Table 4. Unified results table for SDD. The results are reported as minADE20 and minFDE20 in pixels.
Methods observed 8 frames and predicted 12 frames (sampling at 0.4 s). The best overall results are
marked in bold, and the best results for the respective method classes are underlined.

Method Method Class Year minADE20 minFDE20

LED [18] Diffusion 2023 8.48 11.66
MID [20] Diffusion 2022 7.61 14.30

SICNet [25] Anchor 2023 8.44 13.65
Goal-SAR [26] Anchor 2022 7.75 11.83

Y-Net [28] Anchor 2021 7.85 11.85
Goal-GAN [30] Anchor 2020 12.20 22.10

PECNet [31] Anchor 2020 9.96 15.88

SoPhie [35] GAN 2019 16.27 29.38

RCPNet [38] CVAE 2023 8.18 13.83
CSR [40] CVAE 2023 4.87 6.32
SBD [43] CVAE 2022 7.78 11.97

Muse-VAE [42] CVAE 2022 6.36 11.10

TUTR [66] Transformer 2023 7.76 12.69
Social-SSL [71] Transformer 2022 6.63 12.23

SSAGCN [79] TCN 2023 10.36 11.80
D-STGCN [81] TCN 2023 15.18 25.50

GroupNet [87] Graph 2022 9.65 15.34

FlowChain [94] Other 2023 9.93 17.17
End-to-End [96] Other 2022 8.60 13.90

V2-Net [134] Other 2022 7.12 11.39

Table 5. Unified results table for inD. The results are reported as minADE20 and minFDE20 in
meters or pixels as indicated.

Method Method Class Year minADE20 minFDE20

Goal-SAR [26] Anchor 2022 0.31 1 0.54 1

End-to-End [96] Other 2022 13.09 2 19.39 2

1 Metric reported in meters. 2 Metric reported in pixels.

Table 6. Unified results table for WOMD. The results are reported as minADE6, minFDE6, MR, OR,
and mAP. Methods observed 10 frames and predicted 80 frames (sampled at 10 Hz). The best overall
results are marked in bold, and the best results for the respective method classes are underlined.

Method Method Class Year minADE6 minFDE6 MR OR mAP

MotionDiffuser 4 [19] Diffusion 2023 0.86 1.95 0.43 - 0.20

CGTP [27] Anchor 2022 2.371 5.395 0.559 0.169 0.180
DenseTNT [29] Anchor 2021 1.039 1.551 0.178 - 0.3281

MTR-A 1 [75] Transformer 2022 0.564 1.134 0.116 - 0.449
Scene Transformer 2 [17] Transformer 2022 1.17/0.60/1.17 2.48/1.25/2.43 0.19/0.12/0.22 - 0.27/0.23/0.20

Wayformer [62] Transformer 2023 0.545 1.128 0.123 0.127 0.419
BiFF 2 [65] Transformer 2023 - 3.71/2.73/4.29 0.47/0.56/0.69 - 0.12/0.05/0.03

BE-STI 3 [77] CNN 2022 0.0244/0.2850/1.594 - - - -

MPC-PF [91] Other 2023 1.0102 1.652 - - 0.3105
M2I [15] Other 2022 1.46 2.43 0.12 - 0.41

Weakly 3 [92] Other 2023 0.0219/0.3385/1.6576 - - - -

1 Ensemble method. 2 Results reported for vehicles/pedestrians/cyclists separately. 3 Prediction: static,
speed ≤ 5 m

s , speed ≥ 5 m
s . 4 Joint, scene-wide metrics.



Robotics 2024, 13, 1 26 of 39

Table 7. Unified results table for Argoverse 1. The results are reported as minADE6, minFDE6, and
MR. Methods observed 20 frames and predicted 30 frames (sampled at 10 Hz). The best overall
results are marked in bold, and the best results for the respective method classes are underlined.

Method Method Class Year minADE6 minFDE6 MR

ProphNet [22] Anchor 2023 0.7726 1.1442 0.1121
QCNet [23] Anchor 2023 0.73 1.07 0.11
ADAPT [24] Anchor 2023 0.79 1.17 -
CGTP [27] Anchor 2022 0.753 1.6140 0.3369

DenseTNT [29] Anchor 2021 0.93 1.45 0.107

Hierarchical [47] CVAE 2022 0.65 1.24 -

Wayformer [62] Transformer 2023 0.7675 1.1615 0.11186
R-Pred [64] Transformer 2023 0.76 1.12 0.116

Lane Transformer [60] Transformer 2023 0.86 1.31 0.15
Scene Transformer [17] Transformer 2022 0.80 1.23 0.13

Multimodal Transformer [69] Transformer 2022 0.8372 1.2905 0.1429
CRAT [70] Transformer 2022 1.06 1.90 0.26
HiVT [73] Transformer 2022 0.77 1.1693 0.1267
LTP [68] Transformer 2022 0.83 1.29 -

MENTOR [86] Graph 2023 0.79 1.21 0.1301

PRIME [90] Set 2022 1.22 1.56 0.115

Traj-MAE [93] Other 2023 0.81 1.25 0.137
PointMotionNet [95] Other 2022 - - -

Table 8. Unified results table for Argoverse 2. The results are reported as minADE6, minFDE6, and
MR. Methods observed 20 frames and predicted 30 frames (sampled at 10 Hz). The best overall
results are marked in bold, and the best results for the respective method classes are underlined.

Method Method Class Year minADE6 minFDE6 MR

ProphNet [22] Anchor 2023 0.68 1.33 0.18
QCNet [23] Anchor 2023 0.62 1.19 0.14

RESET [88] Set 2023 1.26 2.28 0.3127

FJMP [85] Graph 2023 0.812 1.963 0.337

Table 9. Unified results table for NGSIM. The results are reported as RMSE at prediction horizons of
1 s, 2 s, 3 s, 4 s, and 5 s in meters. Models observed 3 s of motion for their prediction. The best overall
results are marked in bold, and the best results for the respective method classes are underlined.

Method Method Class Year RMSE@1 s RMSE@2 s RMSE@3 s RMSE@4 s RMSE@5 s

Collab 1 [32] GAN 2022 0.60 1.24 1.95 2.78 3.72

iNATran 2 [74] Transformer 2022 0.39 0.96 1.61 2.42 3.43

Multiscale 1 [52] RNN 2023 0.37 0.93 1.48 2.04 2.67
AI-TP 1 [53] RNN 2023 0.47 1.05 1.53 1.93 2.31

GSTCN 1 [55] RNN 2022 0.42 0.81 1.29 1.97 2.95
Global 1 [56] RNN 2022 0.323 0.815 1.404 2.143 2.965
HEAT 3 [57] RNN 2022 0.68 0.92 1.15 1.45 2.05

1 US-101 and I-80. 2 US-101, I-80, Peachtree Street, and Lankershim Boulevard. 3 US-101.

Table 10. Unified results table for nuScenes. The results are reported as minADE10 and minFDE10 in
meters. Since the methods’ results were reported with different settings (see footnotes), it was only
possible to obtain a small subset to directly compare the methods. The best overall results are marked
in bold, and the best results for the respective method classes are underlined. The prediction horizon,
if not stated otherwise, was 6 s.

Method Method Class Year minADE10 minFDE10

Muse-VAE [42] CVAE 2022 1.09 2.10
ScePT 1,5 [16] CVAE 2022 - 0.4/0.8/1.36/2.14

Hierarchical [47] CVAE 2022 1.04 2.15
PTP 2 [123] CVAE 2021 0.378/-/1.017/- 0.490/-/1.527/-

AgentFormer [49] CVAE 2021 1.31 2.48
Trajectron++ 1 [51] CVAE 2020 - 0.07/0.45/1.14/2.20

ViP3D 3,6 [63] Transformer 2023 2.03 2.90
R-Pred [64] Transformer 2023 0.94 1.50
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Table 10. Cont.

Method Method Class Year minADE10 minFDE10

BE-STI 2, 4 [77] CNN 2022 0.0220/0.2115/0.7511 -

CoverNet [89] Set 2020 1.48 9.26 4

Weakly 2, 4 [92] Other 2023 0.0243/0.3316/1.6422 -
1 Prediction: 1 s/2 s/3 s/4 s. 2 Prediction: static, speed ≤ 5 m

s , speed ≥ 5 m
s . 3 Combined object detection. 4 One

mode. 5 Three modes. 6 Six modes.

Table 11. Unified results table for highD. The results are reported as RMSE in meters at time horizons
of 1 s, 2 s, 3 s, 4 s, and 5 s. The best overall results are marked in bold.

Method Method Class Year RMSE@1 s RMSE@2 s RMSE@3 s RMSE@4 s RMSE@5 s

Recurrent VAE 1 [44] CVAE 2022 0.3/0.09 0.52/0.18 0.68/0.20 0.98/0.28 1.33/0.36

Multiscale [52] RNN 2023 0.20 0.39 0.549 0.90 1.49

iNATran [74] Transformer 2022 0.04 0.05 0.21 0.54 1.10
1 Results are split into longitudinal/lateral.

Table 12. Unified results table for Interaction. The results are reported as ADE and FDE in meters.
The prediction horizon is 3 s. The best overall results are marked in bold. The best results per category
are underlined.

Method Method Class Year ADE FDE

ADAPT 1 [24] Anchor 2023 0.16 0.34

PredictionNet [54] RNN 2022 0.518 1.228
HEAT [57] RNN 2022 0.19 0.66

HCAGCN [82] TCN 2022 0.187 0.58

FJMP 1 [85] Graph 2023 0.194 0.630
1 Best of 6 predictions.

Table 13. Unified results table for JAAD. The results are reported as ADE in squared pixels. Prediction
horizons were 0.5 s/1.0 s/1.5 s with an observation time of 0.5 s. The best overall results are marked
in bold.

Method Method Class Year ADE

ABC+ [46] CVAE 2022 40/89/189
BiTraP [48] CVAE 2021 38/94/222

Table 14. Unified results table for PIE. The results are reported as ADE in squared pixels. Prediction
horizons were 0.5 s/1.0 s/1.5 s with an observation time of 0.5 s. The best overall results are marked
in bold.

Method Method Class Year ADE

ABC+ [46] CVAE 2022 16/38/187
BiTraP [48] CVAE 2021 23/48/102

Table 15. Unified results table for Apolloscape. The results are reported as weighted ADE and
weighted FDE in meters. The metrics are the weighted average of the performance for the vehicle,
pedestrian, and cyclist classes. The best overall results are marked in bold, and the best results for the
respective method classes are underlined.

Method Method Class Year ADE ADE

Multiscale [52] RNN 2023 1.1546 2.1281
AI-TP [53] RNN 2023 1.1559 2.1324

5.4. Discussion

This chapter will provide a short evaluation and discuss the presented methods.
Through its separate, dedicated datasets (ETH/UCY and SDD) and methods, one can see
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that pedestrian trajectory prediction is still somewhat detached from trajectory prediction
for autonomous driving in general. Only a subset of methods, e.g., ScePT [16] and Trajec-
tron++ [51], presented results on both types of dataset (nuScenes and ETH/UCY). Both
methods come from the CVAE class, which yielded state-of-the-art results on ETH/UCY,
SDD, and nuScenes (see Tables 3, 4, and 10). Most likely, this can be attributed to the
excellent multimodality modeling capabilities of CVAEs. They can map their input to any
parametric probability distribution and thus gain significant flexibility. Comparing the per-
formance of different CVAEs on ETH/UCY (Table 3), one can see that the complex design
choices of RCPNet [38] and LSSTA [39] described in Section 4.4 did not pay off compared to
ScePT [16], which outperformed both of these methods with a simple graph-based encoding
scheme using MLPs. One can also see that the cascaded CVAEs of CSR [40] benefitted
the prediction of later timesteps, evident in its best overall minFDE20 of 0.23. A similar
trend can be seen with the two-level CVAE proposed by Choi and Min [47], which resulted
in the best overall minADE6 on Argoverse 1. The good performance of the parametric
distributions is contrasted by the performance of Y-Net [28], which achieved the maximum
amount of flexibility by modeling occupancy probabilities with a non-parametric probabil-
ity distribution. This flexibility allowed the method to achieve minADE20 and minFDE20
values of 0.18 and 0.27, respectively, which made it the best-performing anchor-conditioned
model on ETH/UCY (Table 3).

For the pedestrian datasets and Argoverse 1, anchor-conditioned models also showed
outstanding performance metrics [21,23,25,26,28,29,31]. Again, their setup allows them to
model multimodality very well. By estimating possible anchor points and refining their
predicted trajectories conditioned on these anchors, they model epistemic and aleatoric
uncertainty sequentially, thus following the route-finding mechanism of real-world agents
(every agent has a long-term goal and reacts to events and the environment on the way).
Additionally, though it is not reported in the tables of this review, Mangalam et al. [28]
presented an interesting study on long-term prediction horizons using SDD with a time
horizon of 30 s, showing remarkable performance. With an observation time of 1 s, Y-Net
increased its minADE20 to only 14.99 compared to 7.85 for a time horizon of 4.8 s and an
observation time of 3.2 s. This shows that the combination of goal anchors and waypoint
anchors stabilized the trajectory prediction compared to an anchor-less method like S-
GAN [37] that achieved a minADE20 of 38.57 in the same long-term setting. On the other
hand, Transformers lagged slightly behind the previously mentioned classes on ETH/UCY
and SDD (compare the results in Tables 3 and 4). This most likely can be explained by
their quadratic complexity and their need for large amounts of data, which might not be
satisfied by the sizes of ETH/UCY and SDD [153,154]. While ETH/UCY and SDD only
offer five and eight locations, respectively, the autonomous driving datasets offer many
more, e.g., WOMD has 100,000 scenes of 20 s [106,107,155]. On these bigger datasets, the
Transformer architecture is able to outperform other methods, as can be seen by MTR-A [75]
and Wayformer [62] achieving the best overall results on WOMD. The attention mechanism
and the original Transformer architecture also find uses along the complete prediction
pipeline in encoders or for interaction modeling.

Diffusion models are a recent, interesting transfer of the diffusion process from image
and text generation to the domain of trajectory prediction [18–20]. The introduced models
showed good performance on ETH/UCY and SDD; however, they struggled with longer
inference times. When evaluating 512 trajectories on the ZARA1 scene of the ETH/UCY
dataset, Trajectron++ [51] needed 0.443 s, while MID took 17.368 s to process the same
amount of trajectories [20]. This problem was partially addressed by Mao et al. [18]
through their initialization strategy of the diffusion process. LED [18] and MID [20] showed
competitive results on ETH/UCY and SDD (see Tables 3 and 4), while MotionDiffuser only
achieved an mAP of 0.20 compared to the values of 0.449 and 0.419 achieved by the leading
Transformer architectures on WOMD [62,75]. This could be due to the higher diversity of
the predicted trajectories resulting from the diffusion process, evident in the significantly
higher MR of 0.43 (0.116 and 0.123 for MTR-A [75] and Wayformer [62], respectively).
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GAN-based methods showed reasonable results on ETH/UCY [33–37] but remained
mostly absent from autonomous driving datasets like nuScenes or WOMD (see Tables 6 and 10).
This may partly be due to the training difficulties of GANs, e.g., mode collapse, where the
generator only learns to generate a small subset of samples that seem especially realistic to
the discriminator [156,157]. Nevertheless, adversarial training still remains a promising
future research direction if these training difficulties can be resolved. GANs also show
flexibility with respect to their application, as demonstrated by Dendorfer et al. [30] with
their Goal-GAN method, where they extended the GAN trajectory prediction structure to
also include anchors. However, considering the results on SDD in Table 4, one can see that
this integration is not very competitive and is in need of further tuning and research.

TCNs also showed competitive performance with the Transformer class on Interaction
(Table 12) and ETH/UCY (Table 3) [79–84]. Considering the methods utilizing TCNs, one
can see that the main application of TCNs in the setting of trajectory prediction is the
decoding of high-dimensional, temporal graph features into trajectories. LSSTA [39] is at
its core a CVAE but also makes use of TCNs in its encoding module. Through their ablation
studies, the authors showed that TCNs can capture more details than a Transformer and
process input sequences more efficiently than RNNs, which is evident in the promising
results on ETH/UCY (see Table 3).

Graphs or GNNs are utilized in almost all methods in this review at some point in
their architectural makeup. They are especially useful in modeling interactions through
connections between agent nodes in the graph, which is essential for benchmarks like
Argoverse 2 and Interaction that heavily focus on scene-consistent, and thus collision-free,
trajectory predictions. However, comparing the results of graph-based methods (purely
relying on graphs) shows that they generally only play a role in the middle of the perfor-
mance field (compare the results on all presented datasets in Section 5.3). Thus, graphs are
a significant asset for encoding scenes, but relying purely on GCNs to decode trajectories is
insufficient to capture the inherent multimodality and complexity of future trajectories.

Another interesting direction taken by the authors of the ViP3D [63], PointMotion-
Net [95], and End-to-End [99] methods was the creation of an end-to-end pipeline that
directly uses sensor input for its predictions. This, however, prevented a direct comparison
of the achieved metrics, as these methods jointly detect and predict objects while other
methods rely on the ground-truth positions provided by the datasets. Thus, one can ques-
tion the real-world applicability of these methods in cars, as in most cases, it is not clear
if the methods can handle inaccuracies and uncertainties in object positions caused by an
upstream object detector.

One can see from Tables 9 and 11 that all method classes struggled with increasing
time horizons. However, considering speeds in urban environments, longer time horizons
might not be necessary or realistic with respect to inference times. Also, with respect to the
use of predictions in a downstream ego-motion planner, it might be enough to provide a
non-parametric occupancy probability distribution, which would allow the thresholding of
safe areas for the ego vehicle to drive on.

5.5. Potential Research Directions

This section will provide a brief overview of possible future research directions to
improve and strengthen trajectory prediction in autonomous driving for vehicles and VRUs.

Joint and Scene-wide Predictions: Joint and scene-wide predictions are extremely
important for predicting realistic trajectories in real-world scenarios. This necessitates mod-
eling interactions not only in the scene encoding stage but also throughout the prediction
process of future trajectories. Multimodal predictions result in scene-wide modes as the
output is a connected probability distribution with all agents covered. ScePT [16] already
incorporates this and shows excellent results, demonstrating that marginal predictions are
less realistic than joint predictions. With benchmarks like Argoverse 2 and the 2023 Waymo
Open Dataset Motion Prediction Challenge, which presents teams with the task of predict-
ing up to eight agents for eight seconds simultaneously, the training and benchmarking



Robotics 2024, 13, 1 30 of 39

capabilities are already present to improve models in this regard. Aleatoric uncertainty
greatly influences how all traffic participants navigate their environment; thus, it is crucial
to model this over the complete prediction horizon.

Input Features and Application: The choice of input features greatly impacts the
performance of trajectory prediction methods. Map usage is ubiquitous in methods ap-
plied to larger autonomous driving datasets like nuScenes and WOMD (see references
in Tables 6 and 10). This helps increase the prediction quality as an agent’s environment
significantly impacts their movement choices [110]. Closely connected to this is the in-
corporation of specific and explicit traffic rules, which has not been studied much in the
context of trajectory prediction. This includes both the introduction of traffic signs and
more high-level concepts like right of way or police-controlled intersections. Lin et al. [158]
showed that incorporating traffic rules into a trajectory planning module helps generate
rule-compliant trajectories for an ego vehicle. Transferring this approach to trajectory
prediction models holds great promise for more rule-compliant predictions. Agent-specific
features can also be investigated further regarding their impact on prediction quality. The
pose of a VRU (both pedestrians and cyclists) can provide great insight into its future
movements through viewing directions or concrete gestures by cyclists indicating their
intent to turn. Human Scene Transformer [159] demonstrates this in an indoor setting.
Its application to large datasets in the autonomous driving domain and the investigation
of its concrete impacts on the quality of pedestrian predictions are still open questions.
Additionally, including cyclist gestures in a Deep-Learning-based method remains to be
achieved. Kooij et al. [160] examined specific cyclist scenarios with Dynamic Bayesian Net-
works and showed the benefit of using raised arms to indicate the cyclist’s intention to turn.
The end-to-end methods introduced herein use either multiview images (ViP3D [63]) or
LiDAR point clouds (End-to-End [99] and PointMotionNet [95]) as input, which leaves the
combination of the two sensor modalities in an end-to-end method with a fusion approach
open for future research. Tied together with end-to-end methods is the performance of
trajectory prediction methods under uncertain inputs, i.e., with an upstream object detec-
tor. End-to-end methods jointly perform the two tasks, while the application of an object
detector to most trajectory prediction methods has not been reported. The performance of
the introduced methods without using the ground-truth object detections supplied by the
dataset but instead employing an object detector remains questionable. Methods built for
this particular application should make use of the object detector’s uncertainty estimates
when predicting their trajectory uncertainties.

Generative and Foundation Models: With the advent of LLMs like GPT-4 [161] and
their application to many different domains, research on their use as a trajectory prediction
method remains largely open. Seff et al. [162] explored motion forecasting as a language
modeling task in their recent paper. Their state-of-the-art WOMD results further proved
that this is a promising research direction. Additionally, researching the explainability
of multimodal predictions using LLMs would help increase the reliability and safety of
prediction methods with respect to their later use in vehicles. Incorporating LLMs could
also help implement active learning in an adversarial manner by allowing human feedback
on possible predictions. Additionally, generative methods hold great promise for extending
the reciprocal consistency constraints postulated by Zhu et al. [38] to not only positional
data but also, e.g., the gestures and poses of VRUs. This leads to the next important topic,
which is closely connected to the input features discussed in the previous paragraph. If
novel methods employ more sophisticated input features, data augmentation becomes
more difficult as rotations or translations will no longer be sufficient. For example, a valid
augmentation of a scenario of a cyclist turning could be a cyclist who uses a gesture to
indicate their intention or does not use a gesture. Augmentations like this can be achieved
with models such as MotionGPT [163], which is able to generate realistic human motion
applied to an SMPL model.

VRU Safety and Performance: Incorporating more fine-grained VRU classes is also
a direction worth investigating as the dynamics within the greater VRU class can change
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drastically. Consider, for example, a person in a wheelchair and a walking adult, who
move differently from each other. Also, maintaining model performance while reducing
the inference time for real-world applications in vehicles should be an important aspect of
future research. This includes investigations into the necessary time horizon for predictions
and increasing the prediction accuracy for longer time horizons. A dynamically changing
prediction horizon dependent on the speed, number of agents, and environmental state
is also possible. Directly comparing models like this will be challenging. Nevertheless,
increasing the model performance for predicting VRU movements is essential to reducing
fatalities in traffic.

Data Availability and Domain Gaps: With the trend of ever more potent model
architectures containing Transformers, the availability of data is key for training these
models. That is why increasing the data availability, especially in challenging scenarios
displaying interactions between infrastructure and heterogeneous agents, is very important
for future research on trajectory prediction. As with data augmentation, mentioned above,
artificially generating scenarios could be an interesting research direction. This could be
exceptionally useful for dangerous or near-collision scenarios without endangering human
life. The applicability of simulated scenarios together with real-world data is still an open
issue for trajectory prediction methods. The impact of potential domain gaps in agent
behavior, visual features, and rules between data recording locations also remains an open
field of research worth investigating.

6. Conclusions

This paper conducted a thorough review of important Deep Learning methods in
trajectory prediction for autonomous driving and VRUs. The review presented popu-
lar datasets, possible input features, ways to model interactions among agents, output
representations, and multiple methods divided into several classes based on their pri-
mary prediction scheme. The postulated classes were diffusion-based, anchor-conditioned,
GAN-based, CVAE-based, RNN-based, Transformer- and attention-based, CNN-based,
TCN-based, graph-based, and set-based methods. Models that did not fit any of these
classes but were still worth mentioning in this review were introduced under “Other”. Ad-
ditionally, the reported results of the introduced methods were collected and summarized.
A discussion of the performance and efficacy of the respective method classes followed the
presentation of the reported results, which showed that CVAEs exhibit good performance
on both pedestrian and autonomous driving datasets. On the other hand, Transformers
lag behind CVAEs and anchor-conditioned methods on pedestrian datasets due to their
quadratic complexity coupled with the dataset sizes. Last but not least, this review offered
suggestions for future research directions regarding trajectory prediction methods in au-
tonomous driving. Future research should focus on joint metrics and predictions, novel
input features for end-to-end methods, and VRU safety. Additionally, investigating recent
advances in generative and foundation models, as well as data availability and domain
gaps between datasets, shows great promise for future research. This review should help
in the future development of trajectory prediction methods by providing an easy way to
compare and find corresponding methods and by facilitating the entrance into the vast
field of Deep Learning methods in trajectory prediction for autonomous driving and VRUs.
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Appendix A

This section contains the results of the methods introduced in this review on datasets
for which no other paper presented in this review reported results.

Table A1. Unified results table for Lyft Level 5. The results are reported as ADE and FDE in meters.
The method used a reduced version of this dataset (1000 agents).

Method Method Class Year ADE FDE

Observations [98] Other 2022 0.24 0.53

Table A2. Unified results table for VIRAT/ActEV. The results are reported as ADE and FDE in pixels.

Method Method Class Year ADE FDE

Spatial Transformer [72] Transformer 2022 18.51 35.84

Table A3. Unified results table for KITTI. The results are reported as ADE and FDE at time horizons
of 1 s and 3 s in meters.

Method Method Class Year ADE@1 s ADE@3 s FDE@1 s FDE@3 s

PTP [123] CVAE 2021 0.471 1.319 0.763 2.299
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