
Citation: Moutsis, S.N.; Tsintotas,

K.A.; Kansizoglou, I.; Gasteratos, A.

Evaluating the Performance of

Mobile-Convolutional Neural

Networks for Spatial and Temporal

Human Action Recognition Analysis.

Robotics 2023, 12, 167. https://

doi.org/10.3390/robotics12060167

Academic Editor: Marco Ceccarelli

Received: 27 September 2023

Revised: 28 November 2023

Accepted: 5 December 2023

Published: 8 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Evaluating the Performance of Mobile-Convolutional Neural
Networks for Spatial and Temporal Human Action
Recognition Analysis
Stavros N. Moutsis * , Konstantinos A. Tsintotas , Ioannis Kansizoglou and Antonios Gasteratos

Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sophias,
GR-671 32 Xanthi, Greece; ktsintot@pme.duth.gr (K.A.T.); ikansizo@pme.duth.gr (I.K.);
agaster@pme.duth.gr (A.G.)
* Correspondence: smoutsis@pme.duth.gr

Abstract: Human action recognition is a computer vision task that identifies how a person or a
group acts on a video sequence. Various methods that rely on deep-learning techniques, such as
two- or three-dimensional convolutional neural networks (2D-CNNs, 3D-CNNs), recurrent neural
networks (RNNs), and vision transformers (ViT), have been proposed to address this problem over
the years. Motivated by the fact that most of the used CNNs in human action recognition present
high complexity, and the necessity of implementations on mobile platforms that are characterized
by restricted computational resources, in this article, we conduct an extensive evaluation protocol
over the performance metrics of five lightweight architectures. In particular, we examine how these
mobile-oriented CNNs (viz., ShuffleNet-v2, EfficientNet-b0, MobileNet-v3, and GhostNet) execute
in spatial analysis compared to a recent tiny ViT, namely EVA-02-Ti, and a higher computational
model, ResNet-50. Our models, previously trained on ImageNet and BU101, are measured for their
classification accuracy on HMDB51, UCF101, and six classes of the NTU dataset. The average and
max scores, as well as the voting approaches, are generated through three and fifteen RGB frames of
each video, while two different rates for the dropout layers were assessed during the training. Last, a
temporal analysis via multiple types of RNNs that employ features extracted by the trained networks
is examined. Our results reveal that EfficientNet-b0 and EVA-02-Ti surpass the other mobile-CNNs,
achieving comparable or superior performance to ResNet-50.

Keywords: human action recognition; mobile-CNNs; spatial analysis; RNNs; temporal analysis

1. Introduction

Human action (or activity) recognition attempts to determine what action is being per-
formed by an individual or a group in a video sequence [1]. Even if this can be considered a
simple task, it has puzzled computer vision scholars for several decades [2–4]. Throughout
this period, human action recognition has been widely adopted by various scientific fields,
such as human–machine interaction [5,6], medical assistive technologies [7–10], surveil-
lance systems [11,12], sports analysis [13], and human–robot interaction [14,15]. Similarly, it
assists in path planning for tasks like social collision avoidance and route optimization [16]
in autonomous navigation [17]. However, the main reasons why human action recognition
constitutes such a challenging task are the following. The first concerns the environment
where the action occurs: entirely different surroundings may present the same act. Ad-
ditionally, the direction might vary from one video to another (e.g., a person walks from
right to left and vice versa). The second challenge is related to the sensor’s position, which
affects the recorded visual information. More specifically, the closer the sensor is to the
scene, the more detailed information it provides, yet the more negligible the action it covers.
Moreover, the video streams recorded by a steady camera should be perfectly stabilized;
otherwise, the motion adds extra noise to the incoming data. To this end, the large amount

Robotics 2023, 12, 167. https://doi.org/10.3390/robotics12060167 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12060167
https://doi.org/10.3390/robotics12060167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0009-0008-3824-3821
https://orcid.org/0000-0002-1808-2601
https://orcid.org/0000-0003-2064-6442
https://orcid.org/0000-0002-5421-0332
https://doi.org/10.3390/robotics12060167
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12060167?type=check_update&version=1


Robotics 2023, 12, 167 2 of 30

of data needed is a common barrier to efficient solutions. Last is the curse of dimensionality:
video sequences used for human action recognition use more than 500 image-frames with
similar information, enlarging the size of the datasets.

Nevertheless, several methods have been proposed to address this problem based on
different data types and techniques, which are mainly distinguished into two categories [18].
The first regards pipelines that apply representation-based solutions, such as global [18–20],
local [18,19,21,22], and depth [23,24] ones. On the other hand, techniques of the second
category concern frameworks implemented with deep-network-based pipelines, such as
convolutional neural networks (CNNs) [25]. Despite the promising results of the former
systems, their need to adapt to changes (e.g., environmental, frame background, or camera
motion) between videos containing the same action presents a disadvantage. In contrast,
the latter can adjust to the above challenges, showing remarkable outcomes in different
computer vision and robotics tasks [26] (e.g., image recognition [27], object detection [28,29],
visual-based navigation [30,31], place recognition [32–34], loop closure detection [35,36],
and video description [37]). In particular, these approaches use two-dimensional CNNs
(2D-CNNs) that receive a grid of values as input (i.e., an image) and subsequently perform
spatial analysis via 2D convolutional filters. This way, they keep most of the image’s
information while reducing its dimensionality [38]. To this end, many CNN architec-
tures have been proposed in the previous years, reaching improved performances (viz.,
LeNet [39], AlexNet [40], GoogleNet or InceptionNet [41], BN-Inception [42], VGGNet [27],
and ResNet [43]). Still, many trainable parameters are retained in these models, rendering
their training process time consuming (i.e., more than a week when employed on Ima-
geNet [44,45]), even if modern graphics processing units (GPUs) are used. Because of this,
mobile-CNNs (viz., YOLO [28], MobileNet-v1 [46], MobileNet-v2 [47], ShuffleNet-v1 [48],
SuffleNet-v2 [49], NASNetMobile [50], FBNet [51], EfficientNet-b0 [52], MobileNet-v3 [53],
and GhostNet [54]) were designed with fewer trainable parameters, simultaneously main-
taining high outputs. In most of the cases, when 2D-CNNs are employed for human action
recognition, these are large architectures [55], such as CNN-M-2048 [56–58], which is similar
to ClarifaiNet [59], AlexNet [60], VGGNet [61–63], ResNet [64,65], GoogleNet [57], and
BN-Inception [61,66]. When mobile versions are used, these include MobileNet-v2 [55,67]
and EfficientNet-b0 [68]. Vision transformers (ViT) [69], which were recently introduced
for different computer vision tasks (such as image classification [70], object detection [71],
image segmentation [72], and action recognition [73–75], were inspired by their success in
natural language processing [76]. However, while they show dominance over CNNs [77,78],
they are characterized by high-complexity models in accordance with their demands for
large-scale datasets [69,79]. On the contrary, lightweight models, such as Swin-T [80],
MobileViT [81], and EVA-02-Ti [82], have also been applied, showing high performances.

Although deep learning techniques reach high accuracy scores, networks based on
many parameters and floating point operations per second (FLOPs) are computationally
costly. Due to this fact, since roboticists primarily experiment with mobile platforms,
mainly characterized by restricted computational powers, lightweight frameworks are
deemed more suitable [83]. To this end, architectures presenting high complexity during
inference are unsuitable, as they increase the latency and decrease the power autonomy of
the system. Given the abovementioned considerations and the fact that lightweight 2D-
CNNs show limited adoption in action recognition tasks [55], in this work, we implement
an extensive evaluation protocol over the performance of four mobile-CNNs, namely
ShuffleNet-v2, EfficientNet-b0, MobileNet-v3, and GhostNet, and the EVA-02-Ti lightweight
vision transformer. A comparison is also performed against ResNet-50, aiming for this
work to be self-contained. Our experiments took place on HDB51 [84], UCF101 [85], and
NTU [86,87], which are three widely used and known datasets. Our evaluation is based on
the deep learning models’ performance according to their average and max scores, as well
as their voting, by applying two sampled frame types for each video. It is worth noting that
temporal analysis is also provided as the activity’s information is derived from a sequence
of consecutive images. Hence, we use the selected neural networks as feature extractors,



Robotics 2023, 12, 167 3 of 30

which are subsequently utilized for recurrent neural networks’ (RNNs) training and testing.
This way, we present a holistic evaluation protocol for spatial and temporal human action
recognition analysis to help future robotics scholars decide which mobile NN executes
better according to the application required.

The main contributions of the proposed study are summarized as follows:

• Since most of the literature referred to high-complexity networks, our article imple-
ments an extended performance evaluation on four mobile and widely used CNNs
and a tiny ViT for human action recognition with three datasets. At the same time, for
the sake of completeness, a non-lightweight CNN is also tested.

• With regard to models’ evaluation, the examination is based on the following points:

– Nine for the spatial analysis:

* The rate of the dropout layer at p = 0.8 and p = 0.5.
* The previous models’ training on ImageNet and ImageNet + BU101.
* The final prediction according to the average/max/voting score of 15 and

3 frames.

– Six for the temporal analysis:

* Classification based on all 15 outputs of RNN, long short-term memory
(LSTM), and gated recurrent unit (GRU).

* Classification based on the last output of RNN/LSTM/GRU.

• This work extensively evaluates known resource-efficient models and techniques in
activity recognition. Our comprehensive approach can assist researchers in choosing
suitable architectures, highlighting lightweight networks and techniques based on
performance across three diverse datasets.

The remainder of this article is organized as follows. Section 2 briefly reviews ap-
proaches addressing human action recognition based on deep learning. Section 3 describes
the selected neural networks, datasets, and applied techniques, and it gives the implemen-
tation details, including the training and testing protocols. Sections 4 and 5 present our
results, and Section 6 presents a discussion of those results. Finally, the last section provides
the conclusions.

2. Related Work

When tackling human action recognition, 2D-CNN models usually perform spatial
analysis on the incoming RGB image frames. In addition, various algorithms are em-
ployed to accomplish the temporal analysis. The following section briefly describes these
approaches, aiming to present the reader with the state-of-the-art solutions. In particu-
lar, pipelines based on 3D-CNNs, two-stream CNNs, temporal segment networks, and
CNN + RNN are explored.

2.1. Human Action Recognition through 3D-CNNs

As 3D convolutional filters can be applied to a sequence of consecutive images, per-
forming spatial and temporal analysis simultaneously, 3D-CNNs have been proposed for
human action recognition. Using a set of such models and capturing the video’s visual
appearance and motion dynamics, the authors in [88] propose a framework where the final
prediction results from all the used models. Their pipeline is based on several architec-
tures, giving better outcomes for different datasets. Nevertheless, they mention drawbacks,
such as the high complexity and computational cost. Aiming to tackle this weakness,
Sun et al. [89] simulate the 3D-CNN function utilizing 2D kernels at the first layers for
spatial analysis, with 1D kernels following for the temporal analysis. Combined with
improved dense trajectories (iDT) [21] and a linear support vector machine (SVM) classifier,
C3D [90], a model employing 3 × 3 × 3 convolutional kernels to every layer, can achieve
better results if it is previously trained on I380K [90]. Aiming to gain the high performance
of 3D-CNNs in parallel with the low complexity of 2D-CNNs, Lin et al. [91] suggest a tem-
poral shift module (TSM) that can be applied to 2D-CNNs without increasing the latency



Robotics 2023, 12, 167 4 of 30

of the system. The basic concept lies in shifting parts of the channels through the time
dimension, aiming at the information division between adjacent frames. More specifically,
two strategies are introduced. The first concerns offline approaches, wherein all frames
are processed, while the second regards the online systems, indicating that only the last
frames are available during real-time activity recognition. In particular, the former utilizes
a two-directional (+1 or −1) displacement, while during live demonstrations, the relocation
happens only in one direction (+1). Lastly, ResNet-50 is adopted as the backbone network.

2.2. Human Action Recognition through Multiple-Stream CNNs

Two-stream CNN models perform spatial and temporal analysis via different 2D-
CNNs that are trained separately [57], and the final prediction comes after the networks’
later fusion. Specifically, the first 2D-CNN, responsible for spatial analysis, receives static
RGB images as input, while the second network accepts a stack of dense optical flows be-
tween several consecutive images. The latter improves the framework’s outcome as it is in-
variant to visual appearance, even when temporal coherence is not retained [92]. Therefore,
temporal analysis is provided by the optical flow data. In a later work, Feichtenhofer et al.
evaluate different fusion types, such as in a convolutional layer instead of the softmax
layer [93]. Three different architectures, ClarifaiNet, GoogleNet, and VGGNet-16, are tested
in [58], showing that the latter model is outperformed on spatial stream. At the same time,
the performance of each network is improved on the temporal streams when they have
previously trained on ImageNet. Since 3D-CNNs can learn spatiotemporal features only
from RGB images, improved performance is attained when they are utilized with optical
flows. The authors in [94] propose a two-stream 3D-ConvNet, wherein a 3D-CNN, called
I3D, is used in each stream instead of a 2D-CNN. Previously trained on kinetics-400, I3D
showed improved results [95].

Similarly, C3D [90] is employed in the two-stream CNN by the authors in [96], where
two different types of fusion are tested. The first adopts a late fusion on the results
provided by softmax average scores. The second uses an early fusion. Specifically, the
vectors generated by the first fully connected (FC) layers are concatenated, creating a
singular vector, which is subsequently loaded to an SVM. During training, a random
frame is chosen from each video as input for the spatial stream. At the same time, an
optical flow set of five or ten consecutive images is selected for the temporal stream [57].
Zhu et al. increase the accuracy by applying an end-to-end training protocol to both the
spatial and temporal streams [66]. Their method is based on samples of 25 RGB images
and optical flow stacks from each video. Aiming to achieve this result, at each epoch,
the BN-Inception [42] model’s last convolutional layer outputs end up in an FC layer via
temporal pyramid pooling (TPP). The final prediction comes from the fusion of the spatial
and temporal streams. Additionally, Feichtenhofer et al. [97] present a framework based on
a two-stream 3D-CNN [98], wherein each model runs on different frame rates. Specifically,
the one concerning the slow stream utilizes a low frame rate and is responsible for the
spatial analysis. On the contrary, more frames are applied during rapid frames, aiming
to handle the temporal analysis. The backbone networks ResNet-50 and ResNet-101 are
also evaluated. Finally, it is worth mentioning that in this work, apart from the video
classification, the task of action detection is also tackled with high performance.

Because of the optical flow’s high computational complexity, motion vectors are also
proposed for lightweight live action recognition [99]. Similarly, Kim and Won [100] propose
a stacked gray-scale three-channel image (SG3I) to replace the optical flow data and achieve
faster implementation. Zong et al. use two additional streams, a spatial-saliency and a
temporal-saliency stream, which capture the salient object and salient motion information,
respectively, by taking as input sampled saliency maps. These two spatial and temporal
streams create a four-stream feature extractor [65]. Huo et al. [55] propose a temporal
trilinear pooling pipeline for lightweight action recognition, where three modalities are
generated from compressed videos (viz., I-frames, motion vectors, and residuals serve
as inputs to the framework). The CNN used as the backbone is MobileNet-v2, and three



Robotics 2023, 12, 167 5 of 30

versions are employed, each dedicated to one of the three modalities. Finally, a processing
speed of 40 frames per second is achieved on a mobile device. In [68], a multi-head attention
mechanism [76] is applied after EfficientNet-bo, used as the backbone network to address
the action recognition task based on [57]. The use of an attention module has been shown
to improve performance in both spatial and temporal streams across all the examined
networks serving as backbones, namely ResNet-18, ResNet-34 [43], ResNet-50, and the
proposed EfficientNet-b0.

2.3. Human Action Recognition through Temporal Segment Networks

In temporal segment networks, each video is divided into three equal segments,
wherein a snippet of each segment is randomly selected as an input of the two-stream
CNN. Next, this input is applied three times in each video [101]. Finally, a segmental
consensus function, such as max, average, or weighted average, is used for the spatial
and temporal prediction before the fusion. This sampling strategy provides relevant
information from the entire video, and learning is performed regardless of size. At the same
time, the execution time and the system’s complexity remain constant. Instead of taking
the segmental consensus function’s result as the final prediction for spatial and temporal
streams, one more training step is employed in [61]. BN-Inception or VGGNet-16 is used
as a feature extractor for the video’s three segments, aiming to train two separate SVMs
for spatial and temporal analysis. This way, false matches between videos and labels are
limited since the SVM’s final prediction comes from the feature extractor referring to the
video’s three segments.

2.4. Human Action Recognition through CNN + RNN

Recurrent networks can be a valuable tool in human action recognition as a video is a
temporal sequence of images. With that in mind, several techniques have been developed
that use CNNs as feature extractors for feeding into a recurrent network, such as RNN,
long short-term memory (LSTM) [102], or gated recurrent unit (GRU) [103]. AlexNet and
GoogleNet, previously trained on ImageNet, are tested on two frameworks for activity iden-
tification [60]. The first method was explored using several types of pooling architectures,
such as convolution pooling, late pooling, slow pooling, local pooling, and time-domain
convolution, on the output of convolutional layers aiming to make the final prediction.
Their findings show that convolution pooling outperformed the other architectures. The
second pipeline connected an LSTM to the last convolutional layer outputs, intending to
synthesize the temporal dynamics of the input stream. Five stacks of LSTM layers are
used, followed by a softmax classifier to predict each frame. However, adding optical flow
improved the performance in the LSTM approach but not in the convolutional pooling.

In [37], an end-to-end trainable hybrid model, entitled long-term recurrent convolu-
tional network (LRCN), consisting of a CNN and an LSTM, is proposed. More specifically,
the used CNN is a minor variant of AlexNet, called CaffeNet [104], that has previously
been trained on ILSVRC-2021 [45]. LRCN is trained to predict the action at each time
step, and the final prediction comes from sixteen clip-frames. It is worth noting that using
optical flow enhanced the performance compared to the framework using RGB images. In
another work by Carreira and Zisserman [94], four human action recognition techniques are
compared with the two-stream I3D. Among them, one uses InceptionNet-v1’s last average
pooling layer, trained on ImageNet, as a feature extractor, with an LSTM following. During
training, the cross-entropy loss is applied to the output of all time steps. However, CNN +
LSTM and 3D-CNN are the only ones that do not apply the frame’s optical flow, showing
the lowest performance. AlexNet, previously trained on ImageNet, is used as a feature
extractor to accomplish the spatial analysis [105]. Moreover, consecutive frames, in step
six, are chosen to feed into a bi-directional LSTM to avoid using redundant frames without
losing the action sequence. Similarly, VGGNet-16 trained on ImageNet is employed for
the images’ feature extraction in [62]. Backpropagation is utilized only for the last eight
layers of the network when the model is trained on the target dataset. Subsequently, thirty



Robotics 2023, 12, 167 6 of 30

extracted vectors constitute the bi-directional LSTM input, from which the final prediction
is derived. Ahme et al. [67] use MobileNet-v2 trained on ImageNet as a feature extractor.
Their network’s last layers are frozen when trained on the target dataset, and new layers
are added for fine-tuning. After each video frame is transformed via the network, it is fed
to a GRU aiming to make the final prediction. Zhang et al. [63] propose a method that
combines three of the techniques above, wherein separated VGGNets are used for both
spatial and temporal streams. In addition, the video is divided into k segment networks as
proposed by [101], while the prediction is carried out by loading to a Bi-LSTM the fused
features from the convolutional layers.

Finally, it is worth noting the significance of the features represented by CNNs, as they
have a crucial role in the techniques mentioned earlier. These features are fed into the RNNs
to perform the temporal analysis and predict the action within a video. Gao et al. [106]
propose the Res2Net module as an alternative to the bottleneck block, achieving in this way
the capture of more and richer information from the input image, enhancing the features.
This improvement is done by dividing the input map into smaller segments. Each part,
apart from the first one, is transformed by a 3 × 3 convolution, with the output of the
previous convolution being added to the input of the next one. Finally, all the outputs are
merged back into one map, and a last 1 × 1 convolution is applied, similar to the initial
bottleneck block.

2.5. Skeleton Data Approaches

When only RGB data is used, skeleton data is often utilized for human action recog-
nition as it provides a greater amount of information regarding the pose of an individual,
which is directly related to the type of activity. Graph convolutional networks (GCN) have
been used to tackle the action recognition task through skeleton data [107], where each
joint is defined as a node, and the connections between the joints are considered as the
edges. To address the high computational cost of GCNs, Cheng et al. [108] have proposed
the shift GCN. In this approach, the features of the adjacent joints are loaded to its current
1 × 1 convolution node. Furthermore, in [109], the spatial-temporal GCN (ST-GCN) has
been presented. Multiple skeleton data are fed into multiple ST-GCN layers to achieve
action recognition according to the changes in the graphs over time. As ST-GCN requires
complex pre-processing of the input, Peng et al. [110] proposed a framework that captures
the features between sequential graphs but with a lower computational cost, achieved by
transforming them into three dimensions. Finally, in [111], the joint-bone fusion GCN is
presented, which combines two streams, one for the bones and one for the joints, aiming to
analyze the relationship between these two dependencies. Additionally, a pose estimation
transformer is applied for semi-supervised training.

3. Materials and Methods
3.1. Neural Networks and Techniques

This subsection describes the deep neural networks used, including CNN, ViT, and
RNNs, which are subsequently evaluated with regard to action recognition tasks. In
particular, ShuffleNet-v2, EfficientNet-b0, MobileNet-v3, GhostNet, ResNet-50, and EVA-
02-Ti are presented, along with an overview of the characteristics of the RNNs. Finally,
techniques adopted to mitigate over-fitting are shown.

3.1.1. Mobile-CNNs & ResNet

The main innovation of mobile-CNNs rests upon adopting a depthwise separable
convolution layer [42,112,113] instead of the common 2D convolutional one. To that end,
MobileNet-v1, forming one of the first mobile-CNNs, exploits such a depthwise separable
convolution, basically a set of two cascaded layers. The first one constitutes the pointwise
convolution layer (i.e., a convolutional layer with a 1 × 1 × D kernel, with D denoting
the depth of the input, which iterates through every single pixel of the input feature map).
The following layer is a depthwise convolution with a 3 × 3 × 1 kernel, indicating that



Robotics 2023, 12, 167 7 of 30

the 2D convolutions are applied separately at each channel of the input feature map (i.e.,
the red (R), the green (G), and the blue (B) in the case of an RGB input image). This
architecture differentiates these layers from the classic 2D convolutional layers, where
both operations are performed simultaneously. This way, the computational complexity of
the typical 2D convolutional layer is considerably reduced while maintaining competitive
representation capacities.

However, it is notable that the pointwise group of convolutions reduces the network’s
performance, as the output of a given channel originates from a small region of the input.
This drawback can be remedied by adopting a channel shuffle approach, which constitutes
an operation that helps the information flow across channels [48]. Considering the above,
ShuffleNet-v1 combines convolutions and depthwise separable convolutions to decrease
the computational cost and enhance performance. Moving a step further, ShuffleNet-v2
has been proposed as an optimized model of its previous version, focusing on FLOPs
and speed optimization. The rectified linear unit (ReLU), a function that returns x if x is
positive or zero and zero for negative x, is applied in both versions. Please note that, for
our evaluation scenario, ShuffleNet-v2 ×1.0 is selected.

Another useful technique widely exploited on mobile and classic CNNs uses the
residual connections initially introduced in ResNets. Here, the output of a layer (or a block
of layers) is added with the identity of its input. Such a technique allows deeper networks
to be designed and improves the learning process, addressing the vanishing gradient
problem. Therefore, the 50-layer ResNet (ResNet-50), where a 3-layer bottleneck is applied,
is utilized in the presented work. This bottleneck block implements a residual connection
that reduces and restores the input’s dimensions by exploiting three cascaded convolutions
with 1 × 1, 3 × 3, and 1 × 1 kernels, where the two pointwise (1 × 1) convolutions utilize
the reducing and increasing properties, respectively. ReLU is applied as the activation
function between and after the three bottleneck layers.

Following the residual connections, MobileNet-v2’s architecture introduces inverted
residuals and linear bottlenecks while applying depthwise separable convolutions. In
particular, the inverted residual is an inverted bottleneck that increases the input’s di-
mension instead of decreasing it. The linear bottleneck is a block that excludes the use
of ReLU behind the last layer. By applying these techniques, more of the information is
maintained after activation. This article selects the third version of MobileNets [53], where
the platform-aware NAS and NetAdapt algorithms are utilized [114]. The former optimizes
each network block, while NetAdapt searches every layer for the filters’ set. Similarly,
hand-crafted optimizations are also applied, such as replacing ReLU6 [115], which is used
on MobileNet-v2, with Hard-Swish [53] on MobileNet-v3. ReLU6 behaves like ReLU for
non-negative input values but caps the output at 6 for positive values, while Hard-Swish
(see Equation (1)) emulates ReLU for zero and positive inputs but exhibits a smoother
transition near zero, enhancing computational efficiency.

Hard-Swish(x) = x
ReLU6(x + 3)

6
(1)

EfficientNet balances the network’s depth, width, and resolution for better perfor-
mance. The one chosen for this work is EfficientNet-b0, which is similar to MnasNet [116]
due to using the same search space, but EfficientNet-b0 is larger concerning the FLOPs.
In addition, the inverted bottlenecks from MobileNet-v2 are utilized, and squeeze-and-
excitation optimization [117] is added. In a squeeze-excitation block, the “squeeze” is
achieved via an average pooling layer and the “excitation” through two FC layers. ReLU
follows the first, adding non-linearity, while the sigmoid function follows the second. This
way, the network’s representational power is improved. Finally, SiLU (or Swish) [118] is
used as an activation function, offering a smooth and non-linear activation by utilizing the
sigmoid, as represented in Equation (2).

SiLU(x) = x · Sigmoid(x) (2)



Robotics 2023, 12, 167 8 of 30

Our last mobile-CNN is GhostNet, version x1.0, where the MobileNet-v3’s architecture
is followed; however, GhostNet replaces the bottleneck block. Two stacked Ghost modules,
an alternative to convolution layers, with the ReLU function between them, create the
Ghost bottleneck. The first module increases the input channels, while the second reduces
the channels. The main convolution of this network is pointwise, and in the Ghost module,
3 × 3 convolution is used. As a final note, squeeze and excitation are also applied in
GhostNet. At the same time, ReLU is used as an activation function instead of Hard-Swish
(see Equation (1)).

As shown in Table 1, ResNet-50 is the biggest model used considering the total pa-
rameters. Regarding the mobile-CNNs, EfficientNet-b0, MobileNet-v3, and GhostNet
present similar parameters, while ShuffleNet-v2 has the smallest set. Based only on FLOPs,
ShuffleNet-v2 and MobileNet-v3 have the lowest sets, followed by GhostNet, and fi-
nally EfficientNet-b0.

Table 1. Networks’ FLOPs and parameters were chosen for the presented evaluation. As shown,
ShuffleNet-v2 [49] and GhostNet [54] have the smallest FLOPs set and parameters, while EVA-02-Ti
maintains a parameter set and FLOPs comparable to those of mobile CNNs.

Network FLOPs (G) Parameters (M)

ShuffleNet-v2 [49] 0.14 2.3

EfficientNet-b0 [52] 0.39 5.3

MobileNet-v3 [53] 0.2 5.4

GhostNet [54] 0.14 5.2

EVA-02-Ti [82] 4.8 5.7

ResNet-50 [43] 4.19 25.6

3.1.2. Tiny Vision Transformer

In ViT [69], the input image is divided into patches of fixed sizes, usually 16 × 16,
which serve as the input to the transformer encoder after being flattened into a linear
projection. The encoder consists of two blocks, where the first one includes a normalization
layer followed by a multi-head self-attention (MSA) layer. The latter’s output passes to the
second block, which contains a multilayer perceptron (MLP) and a normalization layer.
Both blocks incorporate residual connections, allowing components to traverse the network
while bypassing non-linear functions. At the network’s edge, when addressing the image
classification task, the encoder’s output is fed into an MLP that predicts the class of the input
image. The image’s local and global dependencies are captured through the MSA module,
where each parallel attention head emphasizes a different input segment. In this work, the
EVA-02-Ti (from Tiny) [82,119,120] ViT is employed for evaluation in the task of human
action recognition. The EVA-02 transformer series achieves state-of-the-art performances
with limited computational cost, utilizing only 5.7 million parameters and 4.8 GFLOPs
in the smallest version (i.e., EVA-02-Ti). Noteworthy optimizations in the EVA-02 series
include the gated linear unit (GLU) with Swish activation, called SwiGLU [121], as the
feedforward network; the sublayer normalization; and the 2D rotary position embedding
(RoPE) [122]. The SwiGLU function is calculated as:

SwiGLU(x, W, V, b, c, β) = Swishβ(xW + b)⊗ (xV + c), (3)

where x is the input, W and V are weight matrices, b and c are bias vectors, and β is a learnable
parameter of the Swish [123] function. The latter is determined as Swish(x) = x · Sigmoid(βx),
where if β = 1, it is the same as the SiLU. Furthermore, normalization is applied indepen-
dently in distinct subsets of the layers, and the RoPE technique is applied in the MSA layer
as an alternative to the initial rotational position embeddings (RPE) in ViT. The advantage
of RoPE is that it extends the RPE’s concept of apprehending rotational information in a 1D
form to 2D by capturing both horizontal and vertical relations. As illustrated in Table 1,



Robotics 2023, 12, 167 9 of 30

ViT Eva-02-Ti has more parameters and FLOPs than the mobile-CNNs. However, it still
can be considered lightweight, having 5.7 million parameters and 1.3 GFLOPs.

3.1.3. Recurrent Neural Networks

When mentioning RNNs, we refer to neural architectures for processing sequential
data and time series usually encountered in tasks, such as bitcoin price prediction [124],
speech recognition [125], and machine translation [126]. It is worth noting that implement-
ing RNNs in problems related to natural language processing (NLP) leads to improved
results compared to CNNs in most cases [127]. Concerning their functionality and com-
pared to other types of networks (e.g., the multilayer perceptron (MLP) and CNN, which
map a given input representation to an output vector), an RNN can estimate an output vec-
tor taking into account the entire history of a sequence of previous inputs [128]. To achieve
this, the concept of using memory inside the network’s cells is introduced, indicating that
the hidden state of a layer passes to the state of the same layer for the next time step (see
Figure 1). In each time step, Equations (4) and (5) are applied in the hidden state and the
output, respectively, to estimate their current values. Therefore, we calculate:

ht = tanh(Wh(t−1) + UXt + b), (4)

Yt = σ(Vht + c), (5)

where b and c are bias vectors; U, V, and W are weight matrices; and σ is an activation
function. Thus, the main advantage of RNNs rests on their ability to share the same weights
and biases across time.

Figure 1. Architecture of a simple recurrent neural network. The output of the previous hidden state
constitutes the input to the next hidden state. Xi is the input vector, Yi is the output vector, hi is the
hidden layer vector, and U, V, and W are weight matrices.

Regarding the “vanishing gradients” drawback present in RNNs [129], where the
information in earlier time points cannot be retrained effectively over the long term, it
denotes that the final prediction depends more on the latter points of the data, ignoring the
earlier ones. To overcome this drawback, LSTM (i.e., a variation of the traditional RNN
cells) introduces a set of forget and memory gates, aiming for the initial inputs to flow until
the final stages of the sequence. The authors subsequently proposed a GRU by forming a
simpler version of LSTM in [103].

3.1.4. Techniques to Avoid Over-Fitting

We follow the same training and testing procedure for each of the five CNNs and
ViT mentioned above to evaluate their performance in human action recognition based on
their spatial analysis. A similar methodology to [57] is adopted in the spatial analysis. As
training and testing sets, we use the first split provided by the authors of each dataset. Due
to the limited training sets in HMDB51 and UCF101, various techniques were proposed
to avoid overfitting [58,93,101]. In particular, the three main techniques used for our
evaluation protocol are the following:



Robotics 2023, 12, 167 10 of 30

1. Increased probability rates are applied to the dropout layer [130]. Following the
contemporary literature, very high dropout rates (p ≥ 0.8) are proven to perform
better [37,57,58,66,93,99,101].

2. Image augmentation, such as random cropping, flipping, and RGB jittering, tends to
improve performance, especially when more augmentation techniques are
applied [57,58,94,101].

3. Finally, transfer learning is usually adopted for increasing the performance when
ImageNet is utilized for previously trained networks, both in the case of the two-
stream pipeline [57,93,101] and the CNN feature extractor [37,60,62,67,94,105].

The final predictions generated through the sampled frames of each video are fed into
the networks, as well as their corresponding scores (i.e., average, maximum, and voting).
In addition, the feature vectors extracted by the CNNs and tiny ViT are fed into the RNN
architectures to test the performance for the exact frames when the sequential property
is exploited.

3.2. Datasets

This subsection describes the datasets used, aiming to evaluate their performance.
More specifically, the selected HMDB51 [84], UCF101 [85], and NTU [86,87] are presented,
as well as BU101 [131], which is used for increasing the networks’ performance through
transfer learning.

3.2.1. HMDB51

The first dataset consists of 51 classes, each providing 101 clips (video sequences), while
the total of clips is 6766. Furthermore, the frames’ height has been set to 240 pixels, and the
frames-per-second (FPS) ratio has been set to 30 for every clip. These video sequences have
been manually extracted and annotated from various sources (e.g., YouTube and movies).
Finally, the 51 actions are grouped into five categories: (i) general facial actions, (ii) facial
actions with object manipulation, (iii) general body movements, (iv) body movements with
object interaction, and (v) body movements with human interaction. Three splits have been
generated for the training and testing procedures. Therefore, 70 videos have been chosen
for every class and split for the training set, with 30 for the testing set. Choosing the specific
clips and not some random splits is vital for our evaluation since these splits are created to
ensure that there are no identical or similar video sequences in both sets. We evaluated the
networks on the first of the three splits provided by the authors [84]. This consists of 3571
training and 1531 testing videos.

3.2.2. UCF101

The second dataset constitutes an extension of UCF50 [132], providing 101 classes
with 13,320 clips. The frame rate has been fixed at 25, and each clip’s frame resolution is
320 × 240. The video sequences have been downloaded from YouTube. Next, they were
grouped again into five categories: (i) human–object interaction, (ii) body motion only,
(iii) human–human interaction, (iv) playing musical instruments, and (v) sports. Three
splits have been generated for the training and testing procedures, where approximately
9500 and 3700 videos are presented. Similar to HMDB51, specific splits are used and not
random so that no identical or similar video sequences exist in either training or testing
sets. A similar evaluation protocol was followed for this dataset, wherein the networks
are evaluated on the first of the three splits provided by the authors [85]. This consists of
9537 training and 3783 testing videos.

3.2.3. NTU

NTU is one of the largest datasets for human action recognition, contrasting with the
aforementioned datasets, which are characterized as small-scale and challenging for deep
learning techniques. More specifically, it consisted of 60 classes and was later expanded
to 120. Its has three main categories: the daily actions, where 82 classes are included; the



Robotics 2023, 12, 167 11 of 30

medical, where 12 classes are encompassed; and the mutual, where 26 types of activities
are incorporated. Apart from the RGB data, the 3D skeletons, the masked depth maps,
the full depth maps, and the infrared data are also provided. However, in this work, only
the RGB data are utilized. More than 114 thousand videos are included, which have been
created by 106 individual subjects, corresponding to 8 million frames. From the 120 classes,
we focus on the ones within six specific classes: “pick up”, “sit down”, “stand up”, “squat
down”, “cross toe touch”, and “falling down”. These have been selected with the intention
of evaluating the networks on their performance to recognize cases of falls. The five non-fall
classes include actions that look similar to a depiction of a fall. Regarding the split between
train and test videos, the authors propose two types of splits. The cross-subject evaluation
involves adding videos from 53 specific subjects to the training set, while the remaining
videos are used for testing. The second one is the cross-setup evaluation, where subjects
with even IDs are utilized for training, and those with odd IDs are used for testing. In this
work, cross-subject evaluation has been chosen with the minor modification of adding the
IDs “061”, “062”, “063”, “064”, “065”, “066”, “067”, “068”, “069”, “075”, “087”, “088”, “090”,
“096”, “099”, “101”, and “102” to the training set, aiming to achieve a balance between the
classes among the splits. Specifically, for the classes “pick up”, “sit down”, “stand up”, and
“falling down”, the training and testing sets include 672 and 276 videos, respectively, while
for the remaining two classes, 624 are used for training and 336 for testing.

3.2.4. BU101

BU101 is chosen to increase the chosen networks’ performance rather than for evalua-
tion purposes. More specifically, it is used for our models’ training, just as with ImageNet.
It contains approximately 23,800 images with 101 classes identical to the ones in UCF101.
The visual data was automatically downloaded from the web, while the irrelevant data was
filtered out. Finally, 2769 images from Standford40 [133] were added to the initial dataset.

3.3. Experimental Details

The current work has been implemented using Python and the PyTorch deep learning
library. All the training and evaluation procedures conducted in our experimental study
have been performed on a GeForce RTX 3080 10 GB GPU.

3.3.1. Previously Trained on ImageNet and BU101

It is widely known that the utilization of previously trained networks curtails the
duration of the training procedure, and higher performance is usually achieved. Hence,
transfer learning constitutes a vital process in human action recognition pipelines, mainly
when applied in small datasets (e.g., HMDB51 and UCF101). For instance, ImageNet,
one of the most extensive static-image datasets containing more than 1.2 million samples
for 1000 classes, is a widely adopted dataset for developing previously trained models.
However, most target classes of ImageNet, such as “flowers”, “animals”, and “foods,” are
irrelevant to the human activity classes, like “push-ups”, “dribbling”, or “pick-up” (see
Figure 2). On the contrary, BU101 is a set of data from the web containing static images
that depict a human action, as shown in Figure 3, and has been widely used to enhance the
performance of activity identification in video sequences [64,131,134,135].

Figure 2. Part of example images extracted from the Tiny ImageNet dataset [136], a subset of
ImageNet [44,45]. As shown, these are irrelevant to human action recognition.



Robotics 2023, 12, 167 12 of 30

Figure 3. Example images extracted from BU101 [131]. The presented elements show how relevant
they are to human action recognition.

For the aforementioned reasons, BU101 is selected for training our networks before
these are transferred and trained on the target datasets. More specifically, for this process,
BU101 was split randomly into two sets (70% for training and 30% for testing). Therefore,
the networks’ architecture remained the same as the original version, except for the last
classification layer, wherein the number of outputs was set to 101 (i.e., the number of
classes in BU101). Before the training on BU101, the networks were previously trained
on ImageNet. In addition, the Adam optimizer [137] is also utilized with a learning rate
of 10−4 and the cross-entropy loss function. Subsequently, similar image augmentation
techniques are applied as in the target datasets.

Next, since these networks are intended to be used as previously trained networks
on the target datasets, we saved the models’ weights at the epoch with the highest test-
ing accuracy and the smallest difference between training and testing accuracies. In
Table 2, these training and testing sets results are denoted for the corresponding epochs, as
mentioned earlier.

Table 2. Accuracies in training and testing sets for each network on BU101 [131] in the epoch with the
highest test accuracy and the smallest difference between train and test accuracies. Before training
the networks on BU101, the weights of the previously trained networks on ImageNet [44,45] were
loaded via the PyTorch and timm [120] libraries.

CNN Train Accuracy Test Accuracy Epoch

ShuffleNet-v2 [49] 92.38% 81.08% 23

EfficientNet-b0 [52] 98.38% 90.04% 8

MobileNet-v3 [53] 97.59% 87.50% 8

GhostNet [54] 96.91% 86.44% 14

EVA-02-Ti [82] 97.14% 90.58% 5

ResNet-50 [43] 97.97% 90.40% 5

No image transformation is applied when accuracy is measured apart from the image
resizing (step four). Lastly, the weights of the previously trained networks on ImageNet are
loaded via the PyTorch (torch and torchvision) library [138], except for EVA-02-Ti, where
the model along with its weights is loaded through the Timm library.

3.3.2. Training

For the training part, a similar procedure to Simonyan and Zisserman [57] is adopted
to train the spatial stream. In each epoch, each video frame is randomly chosen to be
the network’s input. At the same time, image augmentation techniques are applied at
each image frame before it is fed into the networks. Moreover, we do not generate a more
extensive synthetic dataset, although we transform every frame according to probability
before loading it into the network. Four steps are applied, as presented in Table 3. In partic-
ular, step one includes four types of transformations (i.e., random crop with output size
100 × 100, center crop with output size 100 × 100, center crop with output size 224 × 224,
and no transformation). Step two comprises five types: random horizontal flip, random
vertical flip, 30-degree random rotation, 45-degree random affine transformation, and no



Robotics 2023, 12, 167 13 of 30

transformation. Finally, in step three, four types are included: color jitter, Gaussian blur,
random solarize, and without transformation. Consequently, one of the transformations is
applied to the frame at each step based on the given probability, as shown in Table 3. Finally,
in step four, all the frames are resized to 224 × 224, following the networks’ architecture.

Table 3. Four steps of image augmentation techniques, where one of the transformations is applied
in each step according to the corresponding probabilities.

Image Augmentation Techniques Probability Transform

Step 1

0.25 Random Image Crop (100 × 100)

0.25 Center Crop (100 × 100)

0.25 Center Crop (224 × 224)

0.25 No Transform

Step 2

0.165 Random Horizontal Flip

0.165 Random Vertical Flip

0.165 Random Rotation 30◦

0.165 Random Affine 45◦

0.165 No Transform

Step 3

0.2 Color Jitter (brightness = 0.4, contrast = 0.4, hue = 0.2)

0.2 Gaussian Blur (kernel size = 3, sigma = (0.1, 0.2))

0.2 Random Solarize (threshold = 1) with 90% probability

0.4 No Transform

Step 4 1 Image Resized (224 × 224)

Furthermore, we fine-tuned each network by changing the last layer to match the
classes in the target datasets, with 51 outputs for HMDB51, 101 for UCF101, and 6 for NTU.
We also increased the probability ratio of the dropout layer before the classification one
in EfficientNet-b0 and MobileNet-v3 from p = 0.2 to p = 0.5 and p = 0.8. In addition, a
dropout layer was added before the last dense layer in Shuffle-Net-v2, GhostNet, EVA-02-Ti,
and ResNet-50, with p = 0.5 and p = 0.8. The fine-tuned classifiers are represented in
Table 4 for each dataset.

During training, the cross-entropy was utilized as the loss function, and the softmax
was used to activate the last layer. However, the optimizer, the learning rate, and the batch
size vary among networks. The batch size in each training is a function of the power of
2 (e.g., 64, 128, 256), and according to the dynamics of each network, it is adjusted for the
optimization of the GPU’s memory.

As far as the optimizer and the learning rate are concerned, Simonyan and Zisser-
man [57] used stochastic gradient descent (SGD) with an initial learning rate at 10−2 that
decayed one order of magnitude after 14 thousand iterations. Following this approach, we
first tested all the networks using the SGD optimizer with a learning rate of 10−3. Then,
the optimizer or (and) the learning rate value was changed if the model was underfitted
or overfitted too fast. Table 5 presents this parameterization, which permitted similar and
smooth training curves as shown in Figures 4 and 5, where the training and testing losses
are represented across epochs for each network and dataset.



Robotics 2023, 12, 167 14 of 30

Figure 4. Train and test losses for ShuffleNet-v2 [49], EfficientNet-b0 [52], MobileNet-v3 [53], Ghost-
Net [53], EVA-02-Ti [82], and ResNet-50 [43] on the HMDB51 [84] and UCF101 [85] datasets across
epochs. In each diagram, four colours are depicted. The red represents the models previously trained
on ImageNet [44,45] with p = 0.8 on the dropout layer [130], black represents the models previously
trained on ImageNet+BU101 [131] with p = 0.8 on the dropout layer, green represents the models
previously trained on ImageNet with p = 0.5 on the dropout layer, and blue represents the models
previously trained on ImageNet+BU101 with p = 0.5 on the dropout layer.

Figure 5. Train and test losses on the NTU [87] (in 6 classes) dataset across epochs for EfficientNet-
b0 [52], depicted by orange color; EVA-02-Ti [82], illustrated by light blue; and ResNEt-50 [43],
represented by gray. All the networks have previously trained on both ImageNet [44,45] and
BU101 [131], and no dropout layer was applied during training.



Robotics 2023, 12, 167 15 of 30

Table 4. The initial classifiers of ShuffleNet-v2 [49], EfficientNet-b0 [52], MobileNet-v3 [53], Ghost-
Net [54], EVA-02-Ti [82], and ResNet-50 [43] architectures for the ImageNet dataset [44,45] are
represented in the second column. In the next columns, the fine-tuned classifiers for the HMDB51 [84]
and UCF101 [85–87] (for 6 out of 120 classes) datasets are depicted.

Network
The Initial Last/Classifier
Layer(s) of Networks Trained on
ImageNet

Fine-Tuned Classifiers for the
HMDB51 (Output = 51) and
UCF101 (Output = 101), with
p = 0.8 on Dropout Layer

Fine-Tuned Classifiers for the
HMDB51 (Output = 51) and
UCF101 (Output = 101) with
p = 0.5 on Dropout Layer

Fine-Tuned Classifiers for the
NTU (Output = 6), without a
Dropout Layer

ShuffleNet-v2 No Dropout Layer, FC Layer
(input = 1024, output = 1000)

Dropout Layer (p = 0.8), FC
Layer (input = 1024,
output = 51/101)

Dropout Layer (p = 0.5), FC
Layer (input = 1024,
output = 51/101)

-

EfficientNet-b0
Dropout Layer (p = 0.2), FC
Layer (input = 1280,
output = 1000)

Dropout Layer (p = 0.8), FC
Layer (input = 1280,
output = 51/101)

Dropout Layer (p = 0.5), FC
Layer (input = 1280,
output = 51/101)

Dropout Layer (p = 0.0), FC
Layer (input = 1280, output = 6)

MobileNet-v3
Dropout Layer (p = 0.2), FC
Layer (input = 1280,
output = 1000)

Dropout Layer (p = 0.8), FC
Layer (input = 1280,
output = 51/101)

Dropout Layer (p = 0.5), FC
Layer (input = 1280,
output = 51/101)

-

GhostNet No Dropout Layer, FC Layer
(input = 1280, output = 1000)

Dropout Layer (p = 0.8), FC
Layer (input = 1280,
output = 51/101)

Dropout Layer (p = 0.5), FC
Layer (input = 1280,
output = 51/101)

-

EVA-02-Ti
Dropout Layer (p = 0.0), FC
Layer (input = 192,
output = 1000)

Dropout Layer (p = 0.8), FC
Layer (input = 192,
output = 51/101)

Dropout Layer (p = 0.5), FC
Layer (input = 192,
output = 51/101)

Dropout Layer (p = 0.0), FC
Layer (input = 192, output = 6)

ResNet-50 No Dropout Layer, FC Layer
(input = 2048, output = 1000)

Dropout Layer (p = 0.8), FC
Layer (input = 2048,
output = 51/101)

Dropout Layer (p = 0.5), FC
Layer (input = 2048,
output = 51/101)

No Dropout Layer, FC Layer
(input = 2048, output = 6)

Table 5. The parameters optimizer, learning rate, and batch size chosen for the training of the
networks, along with the GPU capacity during the training.

Network Optimizer Learning Rate Batch Size Capacity in GPU

ShuffleNet-v22 [49] Adam 0.0001 256 ≈8615 Mb/10,240 Mb

EfficientNet-b0 [52] SGD 0.001 64 ≈8309 Mb/10,240 Mb

MobileNet-v3 [53] SGD 0.0005 128 ≈8889 Mb/10,240 Mb

GhostNet [54] SGD 0.001 128 ≈7829 Mb/10,240 Mb

EVA-02-Ti [82] Adam 0.00001 64 ≈9299 Mb/10,240 Mb

ResNet-50 [43] SGD 0.0005 64 ≈8893 Mb/10,240 Mb

3.3.3. Testing

For the testing procedure, we sample 15 frames of each video with an equal temporal
difference between them, as depicted in Figure 6 with the blue and orange blocks. A
similar method was proposed in [57]; however, they used 25 frames for each video. Our
approach is based on the work of Lan et al. [61], wherein, during evaluation, they utilized
3, 9, 15, 21, and 25 frames on the same datasets. Notably, in various works [57,58,93], the
initially chosen frames extract more images for evaluation by applying cropping or flipping
techniques. Nevertheless, in the proposed work, the final prediction only comes from the
initial frames. Subsequently, inspired by the TSN method [101], each video is split into
three equal segments, and one frame is selected randomly for evaluation (see the green part
in Figure 6). The final class for a whole video is obtained in three different ways according
to the outputs of the networks:

1. by averaging the scores of all the sampled frames: max (∑n
i=0 scoresi

n )→ f inal_class;
2. by taking as a final prediction the class with the highest score:

max (max(scores0), · · · , max(scoresn))→ f inal_class;
3. by applying the voting method and taking as the final prediction the class with the

most votes: most_ f requent(class0, · · · , classn)→ f inal_class.



Robotics 2023, 12, 167 16 of 30

Figure 6. In the testing procedure, two different sampled frame methods are evaluated. In the one
depicted in the blue and orange part, 15 video frames with equal temporal space between them are
chosen for evaluation [57,61]. In the one depicted in the green part, the video is divided into three
equal segments, and 1 random frame of each segment is chosen for evaluation [101]. For the final pre-
diction, three different methods are tested: the average score, the max score, and voting on the outputs
of the network (ShuffleNet-v2 [49]/EfficientNet-b0 [52]/MobileNet-v3 [53]/GhostNet [54]/EVA-02-
Ti [82]/ResNet-50 [43]) from each sampled frame.

3.4. Training and Testing of the RNNs

The same 15 sampled frames presenting equal temporal intervals are exploited to
evaluate three types of RNNs (i.e., the simple RNN cell, the LSTM, and the GRU). The
above-mentioned frames are fed into the CNNs and ViT, which are utilized as feature
extractors [37,60,62,67,94,105], and the extracted feature vectors are passed to the recurrent
architectures. We utilize the networks that achieve the highest accuracies on the spatial
analysis. These are employed after training on the target datasets and after being previously
trained on ImageNet+BU101. EfficientNet-b0 is utilized with p = 0.5 on the dropout layer
for both HMDB51 and UCF101; ResNet-50 with p = 0.8 and p = 0.5, for HMDB51 and
UCF101, respectively; and EVA-02-Ti with p = 0.5, for both datasets. For the NTU dataset,
the networks trained without a dropout layer due to its large size. Table 4 shows how
the last layers of each network extract the feature vector. Each frame of EfficientNet-b0 is
represented by a feature vector of 1280 bins. The output of EVA-02-Ti is 192, and that of
ResNet-50 is 2048.

All RNNs are trained using the same parameters. We employ one hidden layer with
512 units, similar to [60,94]. The batch size is 256, adopting the SGD optimizer with a
learning rate at 10−3. For weight optimization, the common cross-entropy loss function is
employed. The output of each RNN is fed into an FC classification layer, with 51 output
neurons for HMDB51 and 101 for UCF101. During training, the RNNs’ input is the feature
vectors from the 15 sampled frames with equal space between them. Two types of training
were applied. In the first, the final prediction comes from all the hidden states (i.e., fifteen
frames); in the second one, prediction is generated from the last hidden state. That means
that in the first type, the input of the classification layer is 512× 15 = 7680, and when the
final prediction comes from the last hidden state, the input of the classification layer is
512× 1 = 512. During testing, the RNNs’ input is the 15 feature vectors from the sampled
frames. These have been used for average, max scores, and voting predictions.

4. Experimental Results

Tables 6–8 present the achieved accuracies following the aforementioned testing
protocol for each network on HMDB51, UCF101, and NTU, respectively. Additionally, the
tables include information on the training process types, specifically the dropout layer rates
and the used datasets for transfer learning.



Robotics 2023, 12, 167 17 of 30

Table 6. Accuracies on HMDB51 [84]. For each network (ShuffleNet-v2 [49], EfficientNet-b0 [52],
MobileNet-v3 [53], GhostNet [54], EVA-02-Ti [82], and ResNet-50 [43]), results from six test methods
are depicted. The first triple refers to the highest accuracies of the 15 sampled frames, and the second
triple refers to the highest accuracies of the 3 sampled frames for average, max scores, and voting,
respectively. For each test method, four accuracies are presented according to the rate that is used on
the dropout layer [130] and whether the model has been previously trained only to ImageNet [44,45]
or to both ImageNet and BU101 [131]. The highest accuracies for each network on 3 and 15 frames
are depicted in bold.

HMDB51 Split-1 Dropout Rate = 0.8 Dropout Rate = 0.5

Network Test Method ImageNet ImageNet + BU101 ImageNet ImageNet + BU101

ShuffleNet-V2

test_15_avg 44.30% 44.92% 43.59% 45.47%

test_15_max 42.03% 44.06% 41.48% 43.20%

test_15_vot 43.59% 44.92% 43.20% 44.84%

test_3_avg 43.36% 45.00% 43.44% 44.22%

test_3_max 42.58% 43.52% 42.66% 43.75%

test_3_vot 42.19% 43.13% 42.19% 42.81%

EfficientNet-b0

test_15_avg 51.49% 55.50% 45.11% 54.55%

test_15_max 49.39% 51.97% 48.10% 51.43%

test_15_vot 51.02% 54.48% 49.80% 53.53%

test_3_avg 51.02% 54.01% 50.27% 53.46%

test_3_max 49.93% 52.51% 48.91% 52.17%

test_3_vot 49.39% 51.97% 48.64% 51.70%

MobileNet-v3

test_15_avg 50.57% 50.28% 49.57% 49.22%

test_15_max 47.80% 48.58% 46.45% 47.66%

test_15_vot 49.08% 50.28% 48.22% 48.22%

test_3_avg 49.15% 49.57% 48.37% 48.22%

test_3_max 47.94% 48.30% 46.59% 47.87%

test_3_vot 47.80% 47.87% 47.02% 46.95%

GhostNet

test_15_avg 47.09% 50.21% 49.57% 50.14%

test_15_max 45.67% 46.54% 46.16% 47.02%

test_15_vot 46.38% 49.08% 48.44% 49.29%

test_3_avg 46.52% 50.07% 48.93% 49.43%

test_3_max 45.53% 48.65% 47.02% 48.01%

test_3_vot 45.60% 48.44% 47.16% 47.59%

EVA-02-Ti

test_15_avg 37.98% 48.44% 50.07% 49.73%

test_15_max 37.09% 47.86% 47.76% 47.89%

test_15_vot 37.50% 47.28% 50.07% 48.71%

test_3_avg 37.43% 47.83% 50.34% 48.51%

test_3_max 38.38% 46.74% 48.91% 48.23%

test_3_vot 36.82% 46.33% 45.51% 47.28%



Robotics 2023, 12, 167 18 of 30

Table 6. Cont.

HMDB51 Split-1 Dropout Rate = 0.8 Dropout Rate = 0.5

Network Test Method ImageNet ImageNet + BU101 ImageNet ImageNet + BU101

ResNet

test_15_avg 52.58% 55.03% 52.31% 53.19%

test_15_max 48.85% 50.82% 47.96% 51.15%

test_15_vot 52.72% 52.92% 52.04% 52.51%

test_3_avg 51.77% 53.74% 51.63% 52.92%

test_3_max 50.27% 52.45% 50.27% 51.63%

test_3_vot 50.48% 51.56% 50.41% 50.82%

Table 7. Accuracies on UCF101 [85]. For each network (ShuffleNet-v2 [49], EfficientNet-b0 [52],
MobileNet-v3 [53], GhostNet [54], EVA-02-Ti [82], and ResNet-50 [43]), results from six test methods
are depicted. The first triple refers to the highest accuracies of the 15 sampled frames, and the
second triple to the highest accuracies of the 3 sampled frames, for average, max scores, and voting,
respectively. For each test method, four accuracies are presented according to the rate that is used on
the dropout layer [130] and whether the model has been previously trained only to ImageNet [44,45]
or to both ImageNet and BU101 [131] datasets. The highest accuracies for each network on 3 and
15 frames are illustrated in bold.

UCF101 Split-1 Dropout Rate = 0.8 Dropout Rate = 0.5

Network Test Method ImageNet ImageNet + BU101 ImageNet ImageNet + BU101

ShuffleNet-V2

test_15_avg 69.20% 73.38% 68.95% 73.30%

test_15_max 66.52% 72.41% 65.85% 69.64%

test_15_vot 69.20% 75.17% 67.86% 73.19%

test_3_avg 68.83% 75.17% 68.14% 71.90%

test_3_max 67.75% 73.24% 67.13% 70.93%

test_3_vot 67.49% 73.38% 66.69% 70.73%

EfficientNet-bo

test_15_avg 84.11% 86.10% 84.08% 85.65%

test_15_max 82.28% 83.85% 82.02% 83.45%

test_15_vot 83.66% 85.33% 83.47% 84.98%

test_3_avg 83.45% 85.54% 83.40% 84.83%

test_3_max 82.71% 84.14% 82.44% 83.85%

test_3_vot 82.31% 83.85% 82.02% 83.58%

MobileNet-v3

test_15_avg 81.87% 82.97% 80.66% 79.93%

test_15_max 79.74% 80.95% 78.45% 78.21%

test_15_vot 81.98% 82.68% 80.44% 79.80%

test_3_avg 81.49% 82.62% 80.44% 79.69%

test_3_max 80.50% 81.79% 79.07% 79.39%

test_3_vot 80.33% 81.44% 79.07% 78.66%

GhostNet

test_15_avg 81.57% 83.16% 82.14% 80.06%

test_15_max 79.28% 80.25% 79.58% 78.23%

test_15_vot 80.87% 82.60% 81.84% 79.98%

test_3_avg 81.14% 82.41% 81.36% 79.88%

test_3_max 79.18% 81.30% 79.74% 78.69%

test_3_vot 79.42% 80.98% 79.93% 78.15%



Robotics 2023, 12, 167 19 of 30

Table 7. Cont.

UCF101 Split-1 Dropout Rate = 0.8 Dropout Rate = 0.5

Network Test Method ImageNet ImageNet + BU101 ImageNet ImageNet + BU101

EVA-02-Ti

test_15_avg 79.45% 83.40% 83.73% 86.04%

test_15_max 72.21% 81.78% 82.02% 84.40%

test_15_vot 74.31% 83.02% 83.18% 85.73%

test_3_avg 74.02% 82.71% 83.02% 85.06%

test_3_max 73.28% 82.10% 82.52% 84.56%

test_3_vot 72.67% 81.54% 81.97% 84.30%

ResNet

test_15_avg 85.09% 87.39% 85.20% 87.45%

test_15_max 82.65% 85.09% 82.84% 84.96%

test_15_vot 84.83% 86.55% 84.77% 86.71%

test_3_avg 84.80% 86.68% 84.56% 86.71%

test_3_max 83.87% 85.46% 83.21% 85.75%

test_3_vot 83.24% 85.12% 83.02% 85.33%

Table 8. Accuracies on the six classes (“pick up”, “sit down”, “stand up”, “squat down”, “cross
toe touch”, and “falling down”) of the NTU [87]. For the EfficientNet-b0 [52], EVA-02-Ti [82], and
ResNet-50 [43] networks, results from six test methods are depicted. Before the training, the networks
had previously trained on both the ImageNet [44,45] and BU101 [131] datasets, while the dropout
layer was deactivated. The highest accuracies for each network on 3 and 15 frames are represented
in bold.

NTU—6 Classes Test Method

Network test_15_avg test_15_max test_15_vot test_3_avg test_3_max test_3_vot

EfficientNet-bo 85.59% 80.38% 80.84% 84.20% 81.65% 79.45%

EVA-02-Ti 86.27% 82.00% 79.86% 84.84% 82.29% 78.64%

ResNet-50 85.46% 82.06% 79.34% 84.72% 82.46% 79.45%

Regarding HMDB51, from Table 6, it is observed that Shufflenet-v2 achieves the lowest
performance at 45%, followed by GhostNet at 50.21%, EVA-02-Ti at 50.34%, and MobileNet-
v3 at 50.57%. ResNet-50 and Efficient-b0 exhibit the highest accuracies at 55.03% and
55.50%, respectively. In all cases, the average testing approaches outperform the maximum
and voting methods, while the average scores based on 3 frames have similar metrics
to those obtained by 15 frames. Regarding the training process, the greater scores are
secured when the models have previously been trained on both ImageNet and BU101, and
a dropout layer of high rate, p = 0.8, has been applied before the last FC. EVA-02-Ti is
the only exception, where the dropout rate at p = 0.5 and ImageNet for transfer learning
outperforms the other approaches.

Regarding the results for UCF101 (see Table 7), Shufflenet-v2 has the lowest perfor-
mance at 75.17%, followed by MobileNet at 82.97%, and GhostNet at 83.16%. The accuracies
of EVA-02-Ti and Efficient-b0 are close at 86.04% and 86.10%, respectively, while ResNet-50
outperforms all the networks at 87.45%. Once again, the average results outperform the
other two methods, and utilizing 3 frames yields performances very close to those with
15 frames. Regarding the training procedures, the optimal accuracies are secured when the
models are previously trained on ImageNet and BU101. At the same time, a dropout rate
set at p = 0.5 is applied on EVA-02-Ti and ResNet-50. In the remaining four networks, the
dropout rate set at p = 0.8 generates better metrics.



Robotics 2023, 12, 167 20 of 30

As represented in Table 8, the three networks that achieved the highest performances
on the previous datasets are evaluated on the NTU dataset, specifically the mobile-CNN
EfficientNet-b0, the tiny ViT EVA-02-Ti, and the higher-computational-cost CNN ResNet-50.
With accuracies of 86.27% and 84.84% on 3 and 15 frames (average score), respectively,
the ViT outperforms the other two networks. EfficientNet-b0 achieves 85.59% and 85.20%,
while ResNet-50 achieves 85.46%, and 84.72%, on 3 and 15 frames, respectively. Consistent
with previous observations, on HMDB51 and UCF101, the averaging scores outperform
both the maximum and voting approaches.

Table 9 presents the accuracy measurements from the temporal analysis, implemented
by the RNNs, for HMDB51, UCF101, and NTU. For each RNN type (i.e., RNN, LSTM,
and GRU), two measurements are provided according to the set of the outputs (i.e., all
the outputs or the final output, are used on the classification layer). Furthermore, three
dyads are presented for each RNN based on the model (i.e., EfficientNet-b0, EVA-02-
Ti, and ResNet-50) used as the feature extractor method. Finally, for the corresponding
networks, the highest accuracies according to the average scores of the 15 sampled frames
are provided for comparison against the RNNs, which were trained and tested with the
same 15 frames. Regarding the results on both HMDB51 and UCF101, it appears that the
contribution of the RNNs does not significantly improve the results, as the accuracies either
remain close to those of the spatial analysis or even drop to lower levels. On the other hand,
the performance on the NTU dataset reaches very high levels, exceeding 94.00% accuracy
in all the cases, while in the spatial analysis, it was close to 85.00%. Notably, the RNN
that utilizes all 15 outputs at the classification layer achieves the highest metrics across
all three configurations of networks as feature extractors. Specifically, for Efficient-b0, the
accuracy increases from 85.59%. Additionally, in the case of EVA-02-Ti, it rises from 86.27%
to 97.63%, and for ResNet-50, it improves from 85.46% to 97.07%.

Table 9. Accuracy measurements for the RNN, LSTM, and GRU based on the final and all the hidden
outputs in HMDB51 [84], UCF101 [85], and NTU [87]. The networks that were used as feature
extractors are EfficientNet-bo [52], EVA-02-Ti [82], and ResNet-50 [43].

Network for Feature Extraction

EfficientNet-b0 EVA-02-Ti ResNet-50

HMDB51 Split-1

RNN Final output 51.71% 47.96% 48.82%

All outputs 55.54% 53.20% 54.45%

LSTM Final output 52.50% 50.78% 52.42%

All outputs 55.85% 52.96% 54.21%

GRU Final output 52.18% 49.06% 51.09%

All outputs 55.54% 50.94% 54.84%

Average score of the spatial analysis 55.50% 50.07% 55.03%

UCF101 Split-1

RNN Final output 82.61% 82.92% 82.95%

All outputs 85.65% 85.79% 86.71%

LSTM Final output 84.73% 84.79% 86.69%

All outputs 85.26% 85.79% 86.36%

GRU Final output 83.87% 84.57% 84.98%

All outputs 85.82% 85.46% 87.22%

Average score of the spatial analysis 86.10% 86.04% 87.45%



Robotics 2023, 12, 167 21 of 30

Table 9. Cont.

Network for Feature Extraction

EfficientNet-b0 EVA-02-Ti ResNet-50

NTU—6 classes

RNN Final output 95.70% 97.20% 96.48%

All outputs 96.39% 97.63% 97.07%

LSTM Final output 95.24% 96.28% 94.92%

All outputs 95.83% 96.48% 95.96%

GRU Final output 94.20% 95.18% 95.89%

All outputs 96.28% 95.31% 95.37%

Average score of the spatial analysis 85.59% 86.27% 85.46%

5. Fall Recognition Analysis on the NTU Dataset

As fall recognition is one of the main objectives in action recognition within the
computer vision field [10,139–142], Table 10 presents the results of all approaches in
their capacity to distinguish falls from the other five similar actions in the NTU dataset.
The fall recognition problem is approached as a binary classification task, where either
a fall or a daily action is depicted in the video. "Fall" is considered the positive class,
while the remaining five are the negative class. It is important to note that no additional
training was implemented, but all the classes apart from "fall" are grouped as one in the
testing process. Furthermore, the metrics used for the evaluation of the networks and
approaches in fall recognition are sensitivity, specificity, and precision, as represented
in Equations (6)–(8), respectively. Sensitivity assesses the model’s ability to accurately
detect falls, while specificity measures its performance in handling non-fall cases. A high
sensitivity score indicates that the system can effectively detect most accidents, while
specificity ensures low false positive detections. However, in this specific test set, an
imbalance is evident, as it includes 1500 non-fall videos and just 276 examples of falls. The
precision metric is also illustrated, indicating the performance of the networks in detecting
true positive instances.

Table 10. Accuracy measurements for the RNN, LSTM, and GRU based on the final and all the
hidden outputs in HMDB51 [84], UCF101 [85], and NTU [87].

NTU 6 Classes NTU as 2 Classes (Fall or Daily Action)

Accuracy Sensitivity Specificity Precision

EfficientNet-bo

Frames—3 83.50% 95.28% 97.53% 87.66%

Frames—15 85.36% 95.65% 97.86% 89.18%

RNN—15 96.39% 96.01% 99.33% 96.36%

EVA-02-Ti

Frames—3 85.19% 94.56% 98.20% 90.62%

Frames—15 86.31% 92.75% 98.00% 89.51%

RNN—15 97.63% 96.73% 99.53% 97.44%

ResNet-50

Frames—3 84.06% 92.75% 98.13% 82.52%

Frames—15 85.69% 94.20% 98.60% 92.52%

RNN—15 97.07% 96.37% 99.06% 95.00%

Sensitivity = Recall =
True Positives

True Positives + False Negatives
(6)

Specificity =
True Negatives

True Negatives + False Positives
(7)



Robotics 2023, 12, 167 22 of 30

Precision =
True Positives

True Positives + False Positive
(8)

As expected, given the previously high performance of temporal analysis on the
six classes of NTU, all the metrics referring to the RNNs are above 95.00%. Furthermore,
in terms of spatial analysis, it is also observed that the models can distinguish accidents
from other daily actions. The highest scores are secured by utilizing all 15 frames, from
ResNet-50 at 92.52%, followed by EVA-02-Ti at 90.62%, with EfficientNet-b0 lagging behind
at 89.18%. Regarding sensitivity, the mobile-CNN and ResNet-50, using 15 frames, achieve
95.65% and 94.20%, respectively, while the tiny ViT, which utilizes 3 frames, performs at
94.56%. The specificity is over 97.50% in all cases, but the dominance of the negative class
influences these high rates.

Moreover, regarding the less computational approach, where only three frames are
utilized, EfficientNet-b0 outperforms the other networks on sensitivity, while EVA-02-Ti
achieves higher precision and specificity. Therefore, the lightweight networks can be
compared to ResNet-50 on the fall recognition task. Finally, we would like to highlight that
these results provide a preliminary analysis of the specific six classes of the NTU. Further
experiments on datasets specifically designed for fall detection are imperative for more
accurate conclusions.

6. Discussion

As shown from the results in Tables 6 and 7, the average score achieves higher accuracy
than the max score and voting in every network and training procedure. Furthermore,
networks previously trained on ImageNet and BU101 perform with higher accuracy than
the ones previously trained only on ImageNet. The only exception is MobileNet-v3 and
EVA-02-Ti, previously trained on ImageNet, which achieve better accuracy according
to the average score of the 15 sampled frames in HMDB51. Additionally, the dropout
probability ratio of 80% achieves higher accuracy than the 50% one in all cases, apart from
the ShuffleNet-v2 trained on HMDB51, the ResNet-50 on UCF101, and the EVA-02-Ti on
both UCF101 and HMDB51.

Regarding spatial analysis, using a total of 15 frames generally performs better than
using only 3 frames. However, the difference between the two highest accuracies of 15 and
3 frames is no more than 1.49% (see EfficientNet-b0 on HMDB51), reflecting that if the
computational power is limited, the processing and analysis of just 3 frames can be applied
to reduce the latency, while achieving similar performance as with 15 frames, as initially
supported and proposed by [101,143]. Among mobile-CNNs, ShuffleNet-v2 is the weakest
model, based on the results of the first two datasets, whereas EfficientNet-b0 is the most
powerful, achieving similar, or even superior, performance to ResNet-50. Additionally,
the ViT EVA-02-Ti outperforms the mobile-CNNs, apart from EfficientNet-b0, which in
HMDB51 lags by a margin of five percentage points, while in UCF101, they have almost
identical performance.

Moreover, in all the cases, it is observed that the models do not efficiently distinguish
between classes in HMDB51 (see Table 6) compared to UCF101, where better performance is
achieved (see Table 7). Both datasets can be characterized as challenging for deep learning
approaches, given their limited size, as HMDB51 contains 70 videos per class for training,
while UCF101 has an average of 95. As a result, deep learning models quickly transition
from underfitting to overfitting without achieving a balanced, unbiased network. Hence,
a lot of techniques to avoid over-fitting are applied (viz., image augmentation, transfer
learning, and dropout layers with high rates). However, HMDB51 is a more challenging
dataset than UCF101, as it contains fewer training videos, leading to this performance gap,
while differences between the results on these two datasets have also been identified by
multiple approaches (e.g., in [21,57,144]). Finally, regarding the performance of the models
on smaller datasets, the ResNet-50 models, with higher computational costs compared



Robotics 2023, 12, 167 23 of 30

to mobile-CNNs, and especially the ViT, require a larger amount of training as they are
susceptible to over-fitting on limited datasets.

On the contrary, the NTU is one of the largest datasets on action recognition, and
it was created in a controlled environment by subjects who were performing the actions.
Specifically, in the applied six classes, with the modification utilized in the training IDs,
each class contains more than 600 training videos. In this section, EVA-02-Ti outperforms
EfficientNet-b0 and ResNet-50 in both frame approaches by achieving 86.27% and 84.84%
for 3 and 15 frames, respectively. However, all the networks attain similar accuracies in
both sets of frames, with their differences being smaller than 0.64%.

In terms of the temporal analysis performance with RNNs on HMDB51 and UCF101,
no improvement is observed, as the accuracies do not surpass those obtained through
spatial analysis. The only exception is in HMDB51, where the RNN, utilizing all the
outputs and EVA-02-Ti employed as feature extractor, has an accuracy of 53.03%, while the
spatial analysis is 50.07%. On the contrary, the results exhibit a marked difference when
applying RNNs to the NTU dataset. Notably, while the metrics from spatial analysis using
CNNs and ViT mirror those of UCF101, all types of RNNs achieve a performance exceeding
94%, with RNNs utilizing all 15 outputs to the last FC layer outperforming LSTM and GRU.
Specifically, features from EVA-02-Ti result in an accuracy of 97.63%; from ResNet-50, it is
97.07%; and from EfficientNet-b0, it is 96.39%. Based on the aforementioned findings, it
is evident that the tiny ViT produces superior feature vectors, while the most lightweight
model, EfficientNet-b0, generates vectors that achieve similar performance through RNNs,
making it a viable choice, especially when computational resources are limited.

The sharp difference between the performances achieved by RNNs on the NTU,
compared to HMDB51 and UCF101, is likely a result of the distinct nature of the NTU
dataset, influencing the networks to generate more enlightening vectors [26]. The NTU
dataset includes significantly more training points than HMDB51 and UCF101, and it has
been created under controlled environments and with specific subjects who carry out the
actions. In contrast, HMDB51 and UCF101 contain entirely different videos, such as movie
scenes and YouTube videos. Additionally, the fact that we applied fewer total classes (6 out
of 120) for the NTU dataset, compared to HMDB51 and UCF101, with 51 and 101 classes,
respectively, could potentially impact the performance metrics. However, it is worth noting
that such an impact is not observed in the spatial analysis between UCF101 and NTU.
Aiming to explain why RNNs outperform LSTM and GRU, we analyzed video clips where
key action segments are mostly positioned in the middle or at the end. This could turn the
“vanishing gradients” [129] drawback of RNNs into an advantage, as the earlier information
strives to endure over the long term, and the final prediction depends more on the latter
points of the data. However, this is only a hypothesis and not a conclusion.

Additionally, the RNNs in HMDB51 and UCF101 can achieve higher performance if
different training or testing strategies are applied. Such strategies could include end-to-end
training [37], the training of only specific layers [62], the use of more (or fewer) frames in
the training/test part [37,94,105], and different approaches for the final prediction like max
pooling, summing, linearly weighting [60], and average score [37]. Furthermore, the addi-
tional use of optical flow on RNNs can enhance the final classification performance [37,60].

7. Conclusions

This article presented a quantitative and qualitative evaluation protocol for four
mobile-CNNs and a tiny ViT for human action recognition. Aiming to facilitate future
robotics-oriented implementations, we conducted experiments based on the networks’
spatial and temporal analysis. This way, boundaries and limitations concerning the outcome
and computational complexity have been studied. As our results show, EffiecientNet-b0 and
ResNet-50 perform similarly on the small-scale HMDB51 and UCF101, while MobileNet-v3
and GhostNet outperform ShuffleNet-v2; however, they cannot compete with EfficientNet-
b0. In addition, EVA-02-Ti performs similarly to EfficientNet-b0 on UCF101, while HMDB51
is close to GhostNet’s accuracy. Another finding of ours, which agrees with the literature,



Robotics 2023, 12, 167 24 of 30

regards the dropout layer probability. In particular, higher outcomes are attained during
training using a higher probability before the last classification layer, apart from EVA-02-Ti,
which performs better with the lower dropout rate despite the limited size of the datasets.
Moreover, networks previously trained on ImageNet and BU101 can reach higher accuracy
scores than those trained only on ImageNet, as was expected due to their relevance to
the videos of the target datasets. Regarding the temporal analysis through RNNs, which
utilized the trained networks as feature extractors of frames, their application did not
lead to improved results in the two challenging datasets. In the six classes of NTU, the
three evaluated networks—EfficientNet-bo, EVA-02-Ti, and ResNet-50—attain comparable
results in spatial analysis, while the ViT outperforms the CNNs. In the temporal approach,
unlike in the aforementioned datasets, all the RNNs enhance the performance, regardless of
which network is used as an extractor. Consequently, for a lightweight system, the mobile-
CNN EfficientNet-b0 and the tiny ViT EVA-02-Ti can be applied, as they have achieved
similar or even, in some cases, superior results compared to the higher-computational-cost
CNN, ResNet-50. In particular, EfficientNet-b0, being the lightest network in terms of total
FLOPs and parameters, could be the optimal choice for action recognition, especially if
the minor superiority of ViT on large datasets does not outweigh its higher complexity.
Moreover, concerning spatial analysis, performance comparable to that with 15 frames can
be achieved when the classification is based on only 3 frames, thereby reducing latency.
Furthermore, RNNs, as observed in temporal analysis, appear more effective when applied
to large-scale datasets. Our plans include evaluation of the attention-based approaches for
temporal analysis instead of the conventional RNNs.

Author Contributions: Conceptualization, S.N.M., K.A.T. and I.K.; methodology, S.N.M.; software,
S.N.M.; validation, S.N.M., K.A.T., I.K. and A.G.; formal analysis, K.A.T. and I.K.; investigation, K.A.T.
and I.K.; resources, S.N.M.; data curation, S.N.M. and K.A.T.; writing—original draft preparation,
S.N.M.; writing—review and editing, K.A.T., I.K. and A.G.; visualization, S.N.M.; supervision, A.G.;
project administration, K.A.T. and A.G.; funding acquisition, A.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by “Wearable systems for the safety and wellbeing applied in
security guards—SafeIT” which has been financially supported by the European Union and Greek
national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH–CREATE–INNOVATE grant number [T2EDK-01862].

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: Portions of the research in this paper used the NTU RGB+D 120 Action Recogni-
tion Dataset made available by the ROSE Lab at the Nanyang Technological University, Singapore.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zhang, H.B.; Zhang, Y.X.; Zhong, B.; Lei, Q.; Yang, L.; Du, J.X.; Chen, D.S. A comprehensive survey of vision-based human action

recognition methods. Sensors 2019, 19, 1005. [CrossRef] [PubMed]
2. Arseneau, S.; Cooperstock, J.R. Real-time image segmentation for action recognition. In Proceedings of the 1999 IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999), Conference Proceedings (Cat. No.
99CH36368), Victoria, BC, Canada, 22–24 August 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 86–89.

3. Masoud, O.; Papanikolopoulos, N. A method for human action recognition. Image Vis. Comput. 2003, 21, 729–743. [CrossRef]
4. Charalampous, K.; Gasteratos, A. A tensor-based deep learning framework. Image Vis. Comput. 2014, 32, 916–929. [CrossRef]
5. Gammulle, H.; Ahmedt-Aristizabal, D.; Denman, S.; Tychsen-Smith, L.; Petersson, L.; Fookes, C. Continuous Human Action

Recognition for Human-Machine Interaction: A Review. arXiv 2022, arXiv:2202.13096.
6. An, S.; Zhou, F.; Yang, M.; Zhu, H.; Fu, C.; Tsintotas, K.A. Real-time monocular human depth estimation and segmentation on

embedded systems. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 55–62.

http://doi.org/10.3390/s19051005
http://www.ncbi.nlm.nih.gov/pubmed/30818796
http://dx.doi.org/10.1016/S0262-8856(03)00068-4
http://dx.doi.org/10.1016/j.imavis.2014.08.003


Robotics 2023, 12, 167 25 of 30

7. Yin, J.; Han, J.; Wang, C.; Zhang, B.; Zeng, X. A skeleton-based action recognition system for medical condition detection. In
Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–4.

8. Cóias, A.R.; Lee, M.H.; Bernardino, A. A low-cost virtual coach for 2D video-based compensation assessment of upper extremity
rehabilitation exercises. J. Neuroeng. Rehabil. 2022, 19, 1–16. [CrossRef]

9. Moutsis, S.N.; Tsintotas, K.A.; Gasteratos, A. PIPTO: Precise Inertial-Based Pipeline for Threshold-Based Fall Detection Using
Three-Axis Accelerometers. Sensors 2023, 23, 7951. [CrossRef]

10. Moutsis, S.N.; Tsintotas, K.A.; Kansizoglou, I.; An, S.; Aloimonos, Y.; Gasteratos, A. Fall detection paradigm for embedded devices
based on YOLOv8. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Copenhagen,
Denmark, 1 May–19 October 2023; pp. 1–6.

11. Hoang, V.D.; Hoang, D.H.; Hieu, C.L. Action recognition based on sequential 2D-CNN for surveillance systems. In Proceedings of
the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 3225–3230.

12. Tsintotas, K.A.; Bampis, L.; Taitzoglou, A.; Kansizoglou, I.; Kaparos, P.; Bliamis, C.; Yakinthos, K.; Gasteratos, A. The MPU RX-4
project: Design, electronics, and software development of a geofence protection system for a fixed-wing vtol uav. IEEE Trans.
Instrum. Meas. 2022, 72, 7000113. [CrossRef]

13. Wei, D.; An, S.; Zhang, X.; Tian, J.; Tsintotas, K.A.; Gasteratos, A.; Zhu, H. Dual Regression for Efficient Hand Pose Estimation. In
Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 6423–6429.

14. Carvalho, M.; Avelino, J.; Bernardino, A.; Ventura, R.; Moreno, P. Human-Robot greeting: Tracking human greeting mental states
and acting accordingly. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1935–1941.

15. An, S.; Zhang, X.; Wei, D.; Zhu, H.; Yang, J.; Tsintotas, K.A. FastHand: Fast monocular hand pose estimation on embedded
systems. J. Syst. Archit. 2022, 122, 102361. [CrossRef]

16. Charalampous, K.; Kostavelis, I.; Gasteratos, A. Robot navigation in large-scale social maps: An action recognition approach.
Expert Syst. Appl. 2016, 66, 261–273. [CrossRef]

17. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Online Appearance-Based Place Recognition and Mapping: Their Role in Autonomous
Navigation; Springer Nature: Berlin/Heidelberg, Germany, 2022; Volume 133,

18. Herath, S.; Harandi, M.; Porikli, F. Going deeper into action recognition: A survey. Image Vis. Comput. 2017, 60, 4–21. [CrossRef]
19. Poppe, R. A survey on vision-based human action recognition. Image Vis. Comput. 2010, 28, 976–990. [CrossRef]
20. Bobick, A.F.; Davis, J.W. The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell.

2001, 23, 257–267. [CrossRef]
21. Wang, H.; Schmid, C. Action recognition with improved trajectories. In Proceedings of the IEEE International Conference on

Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 3551–3558.
22. Tsintotas, K.A.; Giannis, P.; Bampis, L.; Gasteratos, A. Appearance-based loop closure detection with scale-restrictive visual fea-

tures. In Proceedings of the International Conference on Computer Vision Systems, Thessaloniki, Greece, 23–25 September 2019;
Springer: Cham, Switzerland, 2019; pp. 75–87.

23. Li, W.; Zhang, Z.; Liu, Z. Action recognition based on a bag of 3D points. In Proceedings of the 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway,
NJ, USA, 2010; pp. 9–14.

24. Zhang, S.; Wei, Z.; Nie, J.; Huang, L.; Wang, S.; Li, Z. A review on human activity recognition using vision-based method. J.
Healthc. Eng. 2017, 2017, 3090343. [CrossRef] [PubMed]

25. Kansizoglou, I.; Bampis, L.; Gasteratos, A. Do neural network weights account for classes centers? IEEE Trans. Neural Netw.
Learn. Syst. 2022, 34, 8815–8824. [CrossRef] [PubMed]

26. Kansizoglou, I.; Bampis, L.; Gasteratos, A. Deep feature space: A geometrical perspective. IEEE Trans. Pattern Anal. Mach. Intell.
2021, 44, 6823–6838. [CrossRef] [PubMed]

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
28. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.
29. Tsintotas, K.A.; Bampis, L.; Taitzoglou, A.; Kansizoglou, I.; Gasteratos, A. Safe UAV landing: A low-complexity pipeline for

surface conditions recognition. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST),
Virtual, 24–26 August 2021; pp. 1–6.

30. An, S.; Zhu, H.; Wei, D.; Tsintotas, K.A.; Gasteratos, A. Fast and incremental loop closure detection with deep features and
proximity graphs. J. Field Robot. 2022, 39, 473–493. [CrossRef]

31. Tsintotas, K.A.; Sevetlidis, V.; Papapetros, I.T.; Balaska, V.; Psomoulis, A.; Gasteratos, A. BK tree indexing for active vision-based
loop-closure detection in autonomous navigation. In Proceedings of the 2022 30th Mediterranean Conference on Control and
Automation (MED), Athens, Greece, 28 June–1 July 2022; pp. 532–537.

32. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Probabilistic appearance-based place recognition through bag of tracked words. IEEE
Robot. Autom. Lett. 2019, 4, 1737–1744. [CrossRef]

http://dx.doi.org/10.1186/s12984-022-01053-z
http://dx.doi.org/10.3390/s23187951
http://dx.doi.org/10.1109/TIM.2022.3225020
http://dx.doi.org/10.1016/j.sysarc.2021.102361
http://dx.doi.org/10.1016/j.eswa.2016.09.026
http://dx.doi.org/10.1016/j.imavis.2017.01.010
http://dx.doi.org/10.1016/j.imavis.2009.11.014
http://dx.doi.org/10.1109/34.910878
http://dx.doi.org/10.1155/2017/3090343
http://www.ncbi.nlm.nih.gov/pubmed/29065585
http://dx.doi.org/10.1109/TNNLS.2022.3153134
http://www.ncbi.nlm.nih.gov/pubmed/35259117
http://dx.doi.org/10.1109/TPAMI.2021.3094625
http://www.ncbi.nlm.nih.gov/pubmed/34232863
http://dx.doi.org/10.1002/rob.22060
http://dx.doi.org/10.1109/LRA.2019.2897151


Robotics 2023, 12, 167 26 of 30

33. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Tracking-DOSeqSLAM: A dynamic sequence-based visual place recognition paradigm.
IET Comput. Vis. 2021, 15, 258–273. [CrossRef]

34. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Visual Place Recognition for Simultaneous Localization and Mapping. In Autonomous
Vehicles Volume 2: Smart Vehicles; Scrivener Publishing LLC: Beverly, MA, USA, 2022; pp. 47–79.

35. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Modest-vocabulary loop-closure detection with incremental bag of tracked words.
Robot. Auton. Syst. 2021, 141, 103782. [CrossRef]

36. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on
Visual Loop Closure Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19929–19953. [CrossRef]

37. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent
convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

38. Oikonomou, K.M.; Kansizoglou, I.; Gasteratos, A. A Framework for Active Vision-Based Robot Planning using Spiking Neural
Networks. In Proceedings of the 2022 30th Mediterranean Conference on Control and Automation (MED), Vouliagmeni, Greece,
28 June–1 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 867–871.

39. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

41. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

42. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 448–456.

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

44. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ,
USA, 2009; pp. 248–255.

45. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

46. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

47. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

48. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

49. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

50. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

51. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10734–10742.

52. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

53. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1314–1324.

54. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

55. Huo, Y.; Xu, X.; Lu, Y.; Niu, Y.; Lu, Z.; Wen, J.R. Mobile video action recognition. arXiv 2019, arXiv:1908.10155.
56. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets.

arXiv 2014, arXiv:1405.3531.
57. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. Adv. Neural Inf. Process. Syst.

2014, 27, 568–576.
58. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y. Towards good practices for very deep two-stream convnets. arXiv 2015, arXiv:1507.02159.

http://dx.doi.org/10.1049/cvi2.12041
http://dx.doi.org/10.1016/j.robot.2021.103782
http://dx.doi.org/10.1109/TITS.2022.3175656
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/s11263-015-0816-y


Robotics 2023, 12, 167 27 of 30

59. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 818–833.

60. Yue-Hei Ng, J.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond short snippets: Deep networks
for video classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 4694–4702.

61. Lan, Z.; Zhu, Y.; Hauptmann, A.G.; Newsam, S. Deep local video feature for action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1–7.

62. Chenarlogh, V.A.; Jond, H.B.; Platoš, J. A Robust Deep Model for Human Action Recognition in Restricted Video Sequences.
In Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy,
7–9 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 541–544.

63. Zhang, Y.; Guo, Q.; Du, Z.; Wu, A. Human Action Recognition for Dynamic Scenes of Emergency Rescue Based on Spatial-
Temporal Fusion Network. Electronics 2023, 12, 538. [CrossRef]

64. Li, J.; Wong, Y.; Zhao, Q.; Kankanhalli, M.S. Attention transfer from web images for video recognition. In Proceedings of the 25th
ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1–9.

65. Zong, M.; Wang, R.; Ma, Y.; Ji, W. Spatial and temporal saliency based four-stream network with multi-task learning for action
recognition. Appl. Soft Comput. 2023, 132, 109884. [CrossRef]

66. Zhu, J.; Zhu, Z.; Zou, W. End-to-end video-level representation learning for action recognition. In Proceedings of the 2018 24th
International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 645–650.

67. Ahmed, W.; Naeem, U.; Yousaf, M.H.; Velastin, S.A. Lightweight CNN and GRU Network for Real-Time Action Recognition.
In Proceedings of the 2022 12th International Conference on Pattern Recognition Systems (ICPRS), Saint-Etienne, France,
7–10 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7.

68. Zhou, A.; Ma, Y.; Ji, W.; Zong, M.; Yang, P.; Wu, M.; Liu, M. Multi-head attention-based two-stream EfficientNet for action
recognition. Multimed. Syst.2023, 29, 487–498. [CrossRef]

69. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

70. Chen, C.F.R.; Fan, Q.; Panda, R. CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 357–366.

71. Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring Plain Vision Transformer Backbones for Object Detection. In Proceedings of the
Computer Vision—ECCV 2022, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner,
T., Eds.; Springer: Cham, Switzerland, 2022; pp. 280–296.

72. Li, Z.; Li, Y.; Li, Q.; Wang, P.; Guo, D.; Lu, L.; Jin, D.; Zhang, Y.; Hong, Q. LViT: Language meets Vision Transformer in Medical
Image Segmentation. IEEE Trans. Med. Imaging 2023, 1. [CrossRef]

73. Ma, Y.; Wang, R. Relative-position embedding based spatially and temporally decoupled Transformer for action recognition.
Pattern Recognit. 2024, 145, 109905. [CrossRef]

74. Ulhaq, A.; Akhtar, N.; Pogrebna, G.; Mian, A. Vision Transformers for Action Recognition: A Survey. arXiv 2022,
arXiv:cs.CV/2209.05700.

75. Yang, J.; Dong, X.; Liu, L.; Zhang, C.; Shen, J.; Yu, D. Recurring the Transformer for Video Action Recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 14063–14073.

76. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need.
In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30.

77. Amjoud, A.B.; Amrouch, M. Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review. IEEE Access
2023, 11, 35479–35516. [CrossRef]

78. Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image
Classification: A Literature Review. Appl. Sci. 2023, 13, 5521. [CrossRef]

79. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54,
1–41. [CrossRef]

80. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. arXiv 2021, arXiv:abs/2103.14030.

81. Mehta, S.; Rastegari, M. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer. arXiv 2021,
arXiv:abs/2110.02178.

82. Fang, Y.; Sun, Q.; Wang, X.; Huang, T.; Wang, X.; Cao, Y. EVA-02: A Visual Representation for Neon Genesis. arXiv 2023,
arXiv:2303.11331.

83. Nousi, P.; Tzelepi, M.; Passalis, N.; Tefas, A. Chapter 7—Lightweight deep learning. In Deep Learning for Robot Perception and
Cognition; Iosifidis, A., Tefas, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 131–164. [CrossRef]

http://dx.doi.org/10.3390/electronics12030538
http://dx.doi.org/10.1016/j.asoc.2022.109884
http://dx.doi.org/10.1007/s00530-022-00961-3
http://dx.doi.org/10.1109/TMI.2023.3291719
http://dx.doi.org/10.1016/j.patcog.2023.109905
http://dx.doi.org/10.1109/ACCESS.2023.3266093
http://dx.doi.org/10.3390/app13095521
http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1016/B978-0-32-385787-1.00012-9


Robotics 2023, 12, 167 28 of 30

84. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 2556–2563.

85. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,
arXiv:1212.0402.

86. Shahroudy, A.; Liu, J.; Ng, T.T.; Wang, G. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

87. Liu, J.; Shahroudy, A.; Perez, M.; Wang, G.; Duan, L.Y.; Kot, A.C. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human
Activity Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2684–2701. [CrossRef]

88. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 2012, 35, 221–231. [CrossRef]

89. Sun, L.; Jia, K.; Yeung, D.Y.; Shi, B.E. Human action recognition using factorized spatio-temporal convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4597–4605.

90. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497.

91. Lin, J.; Gan, C.; Han, S. TSM: Temporal Shift Module for Efficient Video Understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

92. Sevilla-Lara, L.; Liao, Y.; Güney, F.; Jampani, V.; Geiger, A.; Black, M.J. On the integration of optical flow and action recognition.
In Proceedings of the German Conference on Pattern Recognition, Stuttgart, Germany, 9–12 October 2018; Springer: Cham,
Switzerland, 2018; pp. 281–297.

93. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional two-stream network fusion for video action recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1933–1941.

94. Carreira, J.; Zisserman, A. Quo vadis, action recognition? A new model and the kinetics dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6299–6308.

95. Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev, P.; et al. The
kinetics human action video dataset. arXiv 2017, arXiv:1705.06950.

96. Khong, V.M.; Tran, T.H. Improving human action recognition with two-stream 3D convolutional neural network. In Proceedings
of the 2018 1st International Conference on Multimedia Analysis and Pattern Recognition (MAPR), Ho Chi Minh City, Vietnam,
5–6 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

97. Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. SlowFast Networks for Video Recognition. arXiv 2019, arXiv:cs.CV/1812.03982.
98. Sun, Z.; Ke, Q.; Rahmani, H.; Bennamoun, M.; Wang, G.; Liu, J. Human Action Recognition from Various Data Modalities:

A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 3200–3225. [CrossRef]
99. Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-time action recognition with deeply transferred motion vector cnns. IEEE

Trans. Image Process. 2018, 27, 2326–2339. [CrossRef]
100. Kim, J.H.; Won, C.S. Action recognition in videos using pre-trained 2D convolutional neural networks. IEEE Access 2020,

8, 60179–60188. [CrossRef]
101. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal segment networks: Towards good practices

for deep action recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 20–36.

102. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
103. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.
104. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA,
3–7 November 2014; pp. 675–678.

105. Ullah, A.; Ahmad, J.; Muhammad, K.; Sajjad, M.; Baik, S.W. Action recognition in video sequences using deep bi-directional
LSTM with CNN features. IEEE Access 2017, 6, 1155–1166. [CrossRef]

106. Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef]

107. Li, M.; Chen, S.; Chen, X.; Zhang, Y.; Wang, Y.; Tian, Q. Actional-Structural Graph Convolutional Networks for Skeleton-
Based Action Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019.

108. Cheng, K.; Zhang, Y.; He, X.; Chen, W.; Cheng, J.; Lu, H. Skeleton-Based Action Recognition with Shift Graph Convolutional
Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020.

109. Yan, S.; Xiong, Y.; Lin, D. Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. In Proceedings
of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [CrossRef]

110. Peng, W.; Shi, J.; Varanka, T.; Zhao, G. Rethinking the ST-GCNs for 3D skeleton-based human action recognition. Neurocomputing
2021, 454, 45–53. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2019.2916873
http://dx.doi.org/10.1109/TPAMI.2012.59
http://dx.doi.org/10.1109/TPAMI.2022.3183112
http://dx.doi.org/10.1109/TIP.2018.2791180
http://dx.doi.org/10.1109/ACCESS.2020.2983427
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/ACCESS.2017.2778011
http://dx.doi.org/10.1109/TPAMI.2019.2938758
http://dx.doi.org/10.1609/aaai.v32i1.12328
http://dx.doi.org/10.1016/j.neucom.2021.05.004


Robotics 2023, 12, 167 29 of 30

111. Tu, Z.; Zhang, J.; Li, H.; Chen, Y.; Yuan, J. Joint-Bone Fusion Graph Convolutional Network for Semi-Supervised Skeleton Action
Recognition. IEEE Trans. Multimed. 2023, 25, 1819–1831. [CrossRef]

112. Sifre, L.; Mallat, S. Rigid-motion scattering for texture classification. arXiv 2014, arXiv:1403.1687.
113. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
114. Yang, T.J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Sze, V.; Adam, H. Netadapt: Platform-aware neural network

adaptation for mobile applications. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 285–300.

115. Krizhevsky, A.; Hinton, G. Convolutional Deep Belief Networks on CIFAR-10. Master’s Thesis, University of Toronto, Toronto,
ON, Canada, 2010.

116. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 2820–2828.

117. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

118. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement
learning. Neural Netw. 2018, 107, 3–11. [CrossRef]

119. Sun, Q.; Fang, Y.; Wu, L.; Wang, X.; Cao, Y. EVA-CLIP: Improved Training Techniques for CLIP at Scale arXiv 2023,
arXiv:2303.15389.

120. Wightman, R. PyTorch Image Models. 2019. Available online: https://github.com/huggingface/pytorch-image-models
(accessed on 6 November 2023). [CrossRef]

121. Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language Modeling with Gated Convolutional Networks. arXiv 2016,
arXiv:abs/1612.08083.

122. Su, J.; Lu, Y.; Pan, S.; Wen, B.; Liu, Y. RoFormer: Enhanced Transformer with Rotary Position Embedding. arXiv 2021,
arXiv:abs/2104.09864.

123. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:abs/1710.05941.
124. McNally, S.; Roche, J.; Caton, S. Predicting the price of bitcoin using machine learning. In Proceedings of the 2018 26th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP), Cambridge, UK, 21–23 March 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 339–343.

125. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 6645–6649.

126. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

127. Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of CNN and RNN for natural language processing. arXiv 2017,
arXiv:1702.01923.

128. Zargar, S.A. Introduction to Sequence Learning Models: RNN, LSTM, GRU; Department of Mechanical and Aerospace Engineering,
North Carolina State University: Raleigh, NC, USA, 2021.

129. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term
Dependencies; IEEE Press: Piscataway, NJ, USA, 2001.

130. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

131. Ma, S.; Bargal, S.A.; Zhang, J.; Sigal, L.; Sclaroff, S. Do less and achieve more: Training cnns for action recognition utilizing action
images from the web. Pattern Recognit. 2017, 68, 334–345. [CrossRef]

132. Reddy, K.K.; Shah, M. Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 2013, 24, 971–981. [CrossRef]
133. Yao, B.; Jiang, X.; Khosla, A.; Lin, A.L.; Guibas, L.; Fei-Fei, L. Human action recognition by learning bases of action attributes and

parts. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 1331–1338.

134. Li, J.; Xu, Z.; Yongkang, W.; Zhao, Q.; Kankanhalli, M. GradMix: Multi-source transfer across domains and tasks. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 2–5 March 2020;
pp. 3019–3027.

135. Gao, G.; Liu, Z.; Zhang, G.; Li, J.; Qin, A. DANet: Semi-supervised differentiated auxiliaries guided network for video action
recognition. Neural Netw. 2023, 158, 121–131. [CrossRef] [PubMed]

136. Le, Y.; Yang, X. Tiny imagenet visual recognition challenge. CS 231N 2015, 7, 3.
137. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
138. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: New York, NY, USA, 2019; pp. 8024–8035.

http://dx.doi.org/10.1109/TMM.2022.3168137
http://dx.doi.org/10.1016/j.neunet.2017.12.012
https://github.com/huggingface/pytorch-image-models
http://dx.doi.org/10.5281/zenodo.4414861
http://dx.doi.org/10.1016/j.patcog.2017.01.027
http://dx.doi.org/10.1007/s00138-012-0450-4
http://dx.doi.org/10.1016/j.neunet.2022.11.009
http://www.ncbi.nlm.nih.gov/pubmed/36455427


Robotics 2023, 12, 167 30 of 30

139. Maldonado-Bascón, S.; Iglesias-Iglesias, C.; Martín-Martín, P.; Lafuente-Arroyo, S. Fallen People Detection Capabilities Using
Assistive Robot. Electronics 2019, 8, 915. [CrossRef]

140. Menacho, C.; Ordoñez, J. Fall detection based on CNN models implemented on a mobile robot. In Proceedings of the IEEE
International Conference on Ubiquitous Robots, Kyoto, Japan, 22–26 June 2020; pp. 284–289.

141. Raza, A.; Yousaf, M.H.; Velastin, S.A. Human Fall Detection using YOLO: A Real-Time and AI-on-the-Edge Perspective. In
Proceedings of the 12th International Conference on Pattern Recognition Systems (ICPRS), Saint-Etienne, France, 7–10 June 2022;
pp. 1–6.

142. Lafuente-Arroyo, S.; Martín-Martín, P.; Iglesias-Iglesias, C.; Maldonado-Bascón, S.; Acevedo-Rodrígue, F.J. RGB camera-based
fallen person detection system embedded on a mobile platform. Expert Syst. Appl. 2022, 197, 116715. [CrossRef]

143. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal segment networks for action recognition in
videos. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2740–2755. [CrossRef] [PubMed]

144. Wang, Z.; Lu, H.; Jin, J.; Hu, K. Human Action Recognition Based on Improved Two-Stream Convolution Network. Appl. Sci.
2022, 12, 5784. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics8090915
http://dx.doi.org/10.1016/j.eswa.2022.116715
http://dx.doi.org/10.1109/TPAMI.2018.2868668
http://www.ncbi.nlm.nih.gov/pubmed/30183621
http://dx.doi.org/10.3390/app12125784

	Introduction
	Related Work
	Human Action Recognition through 3D-CNNs
	Human Action Recognition through Multiple-Stream CNNs
	Human Action Recognition through Temporal Segment Networks
	Human Action Recognition through CNN + RNN
	Skeleton Data Approaches

	Materials and Methods
	Neural Networks and Techniques
	Mobile-CNNs & ResNet
	Tiny Vision Transformer
	Recurrent Neural Networks
	Techniques to Avoid Over-Fitting

	Datasets
	HMDB51
	UCF101
	NTU
	BU101

	Experimental Details
	Previously Trained on ImageNet and BU101
	Training
	Testing

	Training and Testing of the RNNs

	Experimental Results
	Fall Recognition Analysis on the NTU Dataset
	Discussion
	Conclusions
	References

