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Abstract: This research introduces a robust control design for multibody robot systems, incorporating
sliding mode control (SMC) for robustness against uncertainties and disturbances. SMC achieves this
through directing system states toward a predefined sliding surface for finite-time stability. However,
the challenge arises in selecting controller parameters, specifically the switching gain, as it depends
on the upper bounds of perturbations, including nonlinearities, uncertainties, and disturbances,
impacting the system. Consequently, gain selection becomes challenging when system dynamics are
unknown. To address this issue, an extended state observer (ESO) is integrated with SMC, resulting
in SMCESO, which treats system dynamics and disturbances as perturbations and estimates them
to compensate for their effects on the system response, ensuring robust performance. To further
enhance system performance, deep deterministic policy gradient (DDPG) is employed to fine-tune
SMCESO, utilizing both actual and estimated states as input states for the DDPG agent and reward
selection. This training process enhances both tracking and estimation performance. Furthermore,
the proposed method is compared with the optimal-PID, SMC, and H∞ in the presence of external
disturbances and parameter variation. MATLAB/Simulink simulations confirm that overall, the
SMCESO provides robust performance, especially with parameter variations, where other controllers
struggle to converge the tracking error to zero.

Keywords: multibody dynamics; sliding mode control; extended state observer; DDPG

1. Introduction

The expanding capabilities of multibody robot systems in autonomous operation and
their versatility in performing a wide range of tasks have gathered significant attention
from both researchers and industries, emphasizing the persistent need for precision and
reliability in their operations. As a result, multibody robot systems require robust control
algorithms. However, controlling multibody robot dynamics can be a challenging task,
especially when the robot dynamics are unknown. In this effort, different robust control
algorithms have been proposed in which sliding mode control (SMC) has been of great
interest due to outstanding robustness against parametric uncertainties and external dis-
turbances [1,2]. Subsequent developments resulted in different types of SMC, including
integral SMC (ISMC) [3], super twisting SMC (STSMC) [4], terminal SMC (TSMC) [5],
SMC with a nonlinear disturbance observer known as sliding perturbation observer (SMC-
SPO) [6], and SMC with extended state observer (SMCESO) [7].
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This research is conducted for the robust control of multibody industrial robot systems
with aims of enhancing the trajectory tracking results. Therefore, we consider the nonlinear
control SMC with ESO (SMCESO) for the robot control. ESO considers the system dynamics
and external disturbances as perturbations to the system. Therefore, with ESO, the system is
only affected by the perturbation estimation error because of the compensation provided by
the ESO. Another advantage of the ESO is that it requires no system dynamics information
and only uses partial state feedback (position) for estimating the states and the perturbation.
Subsequently, the robustness of SMCESO now depends on the quality of estimation of
the ESO, which is dependent on the selection of control parameters. However, tuning the
parameters manually becomes a challenging task. Therefore, optimal parameter selection
can be achieved through adapting the parameters for different sliding conditions.

Various methods for adaptive SMC have been explored, including model-free adapta-
tion, intelligent adaptation, and observer-based adaptation. A. J. Humaidi et al. introduced
particle swarm optimization-based adaptive STSMC [8]. The adaptation is carried out
based on the Lyapunov theory to guarantee global stability. Y. Wang and H. Wang in-
troduced model-free adaptive SMC, initially estimating unknown dynamics through the
time delay estimation method [9,10]. Nevertheless, this approach exhibited undesirable
chattering in the control input during experiments, which is deemed unacceptable in the
present research. On the other hand, R-D. Xi et al. presented adaptive SMC with a distur-
bance observer for robust robot manipulator control [11]. Observer-based adaptive SMC
stands out for its ability to ensure robustness through minimizing the impact of lumped
disturbances, a feature similarly emphasized by C. Jing et al. [12]. Conclusively, this study
states that implementing a disturbance observer can lead to finite-time stability and specific
tracking performance quality. Furthermore, H. Zao et al. introduced fuzzy SMC for robot
manipulator trajectory tracking [13]. H. Khan et al. proposed extremum seeking (ES)-based
adaptive SMCSPO for industrial robots [14]. A unique cost function is used which consists
of estimation error, and error dynamics to guarantee accurate states and perturbation esti-
mation. H. Razmi et al. proposed neural network-based adaptive SMC [15], and Z. Chen
et al. presented radial basis function neural network (NN)-based adaptive SMC [16], both
demonstrating commendable performance. However, it is worth noting that the systems
under consideration in these studies were relatively smaller than the industrial robot in
our current research. Furthermore, a model-free reinforcement learning algorithm known
as deep deterministic policy gradient (DDPG) has been observed to provide optimal SMC
parameters, enhancing performance through learning and adapting to different sliding
patterns [17–19].

Considering the diverse literature, initially, the model-free extremum seeking algo-
rithm was a consideration. However, in the current study, the need to tune multiple (four
different) parameters simultaneously led to the exploration of learning-based algorithms
such as NN and DDPG for adapting controller parameters. Notably, NN is well suited for
simpler systems, while DDPG is preferred for complex, high-dimensional systems with
unknown dynamics. DDPG is a model-free, online, and off-policy reinforcement learning
algorithm. It employs an actor–critic architecture, where the actor focuses on learning
the optimal policy, while the critic approximates the Q-function [20]. The Q-function is
responsible for estimating the expected cumulative long-term rewards for state–action
pairs. The critic achieves this by minimizing the temporal difference error, which repre-
sents the disparity between the predicted Q-value and the actual Q-value derived from
environmental feedback. This process equips the critic to evaluate action quality in various
states, guiding the actor in selecting actions that maximize expected rewards. Ensuring
the convergence of the temporal difference error is a pivotal aspect of effective DDPG
agent training.

The primary contribution of this study is the optimal tuning of SMCESO using the
DDPG algorithm for a heavy-duty industrial robot manipulator with six degrees of free-
dom (DOF). Robust performance can be achieved through minimizing estimation errors,
ensuring accurate perturbation estimation and compensation. To accomplish this, the
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DDPG input states incorporate tracking error, estimation error, current joint angle, and
estimated joint angle. A reward has been designed, integrating an overall error tolerance
of 0.01 rad for both tracking and estimation errors, yielding positive rewards if error is
below the threshold. Conversely, if errors exceed this threshold, negative rewards are
assigned. Through this approach, the DDPG agent learns a control pattern based on ac-
tual and estimated results, ultimately achieving optimal estimation and robust control
performance. The proposed algorithm was implemented and compared with optimal
proportional—integral–derivative (PID) control and SMC, and H∞ control in an extensive
MATLAB/Simulink simulation environment. The results demonstrated that SMCESO out-
performs all the three controllers, particularly in the presence of variable system parameters,
as it effectively reduces the effect of the actual perturbations on system performance.

The reminder manuscript Is organized as follows: Section 2 describes the general
multibody dynamics and formulates the SMC. Section 3 presents the ESO and the DDPG
algorithm. Section 4 then presents the simulation environment and the results of the
proposed algorithm, whereas Section 5 provides the conclusions.

2. Preliminaries
2.1. Multibody Dynamics Description

Consider the second-order multibody dynamics [14] as follows:

..
xj = f j(x) + ∆ f j(x) + ∑n

i=1

[
(b ji(x) + ∆bji(x))ui

]
+ dj(t) j = 1, . . . , n (1)

where x , [x1 . . . xn]
T are the state vectors representing the position, and f j(x) and ∆ f j(x)

are the linear dynamic and dynamics uncertainties, respectively. Similarly, the control
gain matrix and their uncertainties are represented by bji(x) and ∆bji(x), respectively. ui
and dj are the control input and external disturbance, respectively. Combining the system
nonlinearities, dynamics uncertainties, and disturbances as the perturbation (ψ) can be
written as

ψj(x, t) = ∆ f j(x) + ∑n
i=1

[
∆bji(x)ui

]
+ dj(t) (2)

whereas it is assumed that the perturbation is bounded by an unknown continuous function,
i.e.,

∣∣ψj(x, t)
∣∣ ≤ Γ > 0, and, in addition, that it is smooth with the bounded derivative∣∣∣ .

ψj(x, t)
∣∣∣ ≤ Γ.

2.2. Sliding Mode Control

The main concept of SMC is to design a sliding surface σ in the state space (position
x1, and velocity x2) [21], which is given as

σ =
.
e + ce (3)

where e = xd − x is the tracking error, and c > 0 is a positive constant. Now, in order
to drive the system dynamics, the state variable should converge to zero: i.e., lim

t→∞

.
e, e = 0

asymptotically in the presence of perturbation. Therefore, SMC tends to bring system states
on the sliding surface by means of control force u. Subsequently, SMC has two phases: The
first is the reaching phase, during which the system states are not on the sliding surface
and require a switching control usw to reach the sliding surface. The second phase is the
sliding phase, in which the system states have reached the sliding surface and now require
continuous control, generally known as equivalent control ueq, to remain on the sliding
surface, where the overall control input becomes u = ueq + usw. To compute the control
input, the derivative of the sliding surface is defined as follows:

.
σ =

..
e + c

.
e = −Ksmc·sat(σ) (4)
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where Ksmc represents the switching control gain, and ‘sat’ is the saturation function with a
boundary layer thickness εc, given as

sat(σ) =

{
σ
|σ| i f |σ| > εc
σ
εc

i f |σ| ≤ εc
(5)

Assuming unknown system dynamics,
..
x = u is presumed. Substituting this condition

with the dynamics error
..
e =

..
xd −

..
x in (4) results in the following control input.

u = −Ksmc·sat(σ) +
..
xd − c

.
e (6)

Here, Ksmc·sat(σ) is denotes the switching control (usw), and the negative sign em-
bodies the error convention. The remaining terms are considered equivalent control (ueq).
Subsequently, taking the derivative of the sliding surface, with the system disturbed by
perturbation (such as (10) in the subsequent section) yields (7):

.
σ =

..
x− ..

xd + c
.
e = u + ψ(x, t)− ..

xd + c
.
e (7)

Substituting the control law from (6) and solving results in (8):

.
σ = −Ksmc·sat(σ) + ψ(x, t) (8)

Equation (8) shows that in SMC, the sliding surface is affected by the perturbation.
Once the system states have reached the sliding phase, the relationship between the sliding
surface and the perturbation is given as the following transfer function [6].

σ

ψ(x, t)
=

1
p + Ksmc

εc

(9)

where p is the s-domain variable. Increasing the boundary layer will decrease the breaking
frequency, making the system less sensitive to the higher frequency perturbations. However,
at σ ≈ 0, increasing the boundary layer thickness reduces controller performance, leading to
higher tracking error. If the sliding surface is tightly bounded, with a very small boundary
layer, chattering occurs.

2.3. Problem Forumlation

Calculating the dynamics of a multibody robot system is a challenging task, further
compounded by the presence of inaccurate dynamics, which introduce uncertainties. There-
fore, for the later study, considering the complete dynamic model as perturbation and
b = 1, the resulting dynamics is as follows.

..
x = ψ(x, t) + u (10)

Subsequently, to ensure the sliding condition outside the boundary later, the sliding
dynamics can be written as

.
σ = c

.
e + ψ(x, t) + u, σ(0) = σo (11)

For the asymptotic stability of (11) about the equilibrium point,
.

V < 0 for σ 6= 0 must
be satisfied [22]. The derivative of V is computed as

.
V ≤ σ

.
σ = σ

[
c

.
e + ψ(x, t) + u

]
(12)

Taking η = c
.
e + u in (12) will result in

.
V ≤ σ

.
σ = σ[ψ(x, t) + η] = σ·ψ(x, t) + σ·η (13)
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.
V ≤ |σ| Γ + σ·η (14)

Selecting η = −Ksmc·sat(σ), and with Ksmc > 0, (14) becomes

.
V ≤ |σ| Γ− |σ|·Ksmc = −|σ|(Ksmc − Γ) (15)

Consequently, the overall control input becomes

u = Ksmc·sat(σ) + c
.
e (16)

Equation (15) further emphasizes that for stability, Ksmc > Γ to satisfy the Lyapunov
condition. However, obtaining information about Γ can be a complex and tedious task.

3. Proposed Algorithm

There are two concerns: First, based on (9), as the perturbation affects the sliding
dynamics, the correct dynamics are unknown. Therefore, a perturbation observer has
been used to estimate and compensate the actual perturbation effects. For this purpose,
an extended state observer (ESO) has been implemented, which offers the advantage of
not requiring the system dynamics information. Secondly, we optimally tune the control
gain for SMC and ESO to stabilize the system in finite time, ensuring that both tracking
and estimation error converge to zero. Subsequently, deep deterministic policy gradient
(DDPG) has been employed for control gain tuning.

3.1. Extended State Observer

ESO provides real-time estimations of unmeasured system states and perturbations,
which is the combination of modelled and unmodelled dynamics and external disturbances,
enhancing control system performance and robustness. This means ESO considers the
system’s linear and nonlinear dynamics as the perturbation and estimates them [23]. Con-
sequently, only the control input u in (1) is known. Furthermore, ESO does not require
system dynamics information and uses only partial state feedback (position) for estima-
tion. In addition to the system states (position x1 and velocity x2), an extended state x3 is
introduced, such as

x3 = ψ(x, t) = f (x) + ∆ f (x) + ∑n
i=1 [∆bi(x)u] + d(t) ≤ Γ (17)

Subsequently, the system dynamics in (1) can be simplified as

.
x1 = x2.

x2 = x3 + u
x3 = Γ

(18)

With the new system information, the mathematical model of nonlinear ESO [7] is
then written as .

x̂1 = x̂2 + l1·ρ
(∼

x1

)
.
x̂2 = x̂3 + u + l2·ρ

(∼
x1

)
.
x̂3 = l3·ρ

(∼
x1

) (19)

where the components with “∧ ”, and “ ∼ ” represent the estimated states and the error
between the actual and the estimated value, e.g.,

∼
x1 = x1 − x̂1. ρ is the saturation function,

which is selected as

ρ
(∼

x1

)
=


∼
x1/

∣∣∣∼x1

∣∣∣ if
∣∣∣∼x1

∣∣∣ > εo

∼
x1/εo if

∣∣∣∼x1

∣∣∣ ≤ εo
(20)
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εo is the boundary layer of the ESO such that the estimation error should be
∣∣∣∼x1

∣∣∣ ≤ εo. The
estimation errors are calculated as

.
∼
x1 =

∼
x2 − l1·ρ

(∼
x1

)
.
∼
x2 =

∼
x3 − l2·ρ

(∼
x1

)
.
∼
x3 = Γ− l3·ρ

(∼
x1

) (21)

As the estimated error should be bounded by a boundary later, therefore, (21) can be
rewritten as follows. .

∼
x1 =

∼
x2 − l1·∼x1/εo.

∼
x2 =

∼
x3 − l2·∼x1/εo.

∼
x3 = Γ− l3·∼x1/εo

(22)

Subsequently, the state space of the error dynamics can be written as

.
∼
x = A

∼
x + BΓ (23)

where

A =

−l1/εo 1 0
−l2/εo 0 1
−l3/εo 0 0

, and E =

0
0
1

 (24)

The characteristic equation of A can be calculated as follows:

|λI − A| =

∣∣∣∣∣∣
λ + l1/εo −1 0

l2/εo λ −1
l3/εo 0 λ

∣∣∣∣∣∣ = λ3 + (l1/εo)λ
2 + (l2/εo)λ + l3/εo (25)

The error dynamics are stable if the gains l1, l2, and l3 are positive. Therefore, these
gains are selected using the pole placement method as follows:

(s + λ)3 = s3 + 3·s·λ2 + 3·λ·s2 + λ3 (26)

Comparing the coefficients of (25) and (26) results in the following selection of gains:

l1 = 3·λ·εo, l2 = 3·λ2·εo, and l3 = λ3·εo (27)

3.2. Extended State Observer-Based Sliding Mode Control (SMCESO)

For enhanced system performance, the final control input uo for the system with
estimated perturbation ψ̂(x, t) from ESO and switching control from SMC can be written as

uo = u− x̂3 = u− ψ̂(x, t) (28)

where u is from (16). Consequently, the system dynamics from (10) can be rewritten
as follows.

..
x = uo − ψ̂(x, t) + ψ(x, t) = uo +

∼
ψ(x, t) (29)

where
∼
ψ(x, t) = ψ(x, t)− ψ̂(x, t) is the perturbation estimation error. Now, it is evident that

with ESO, the system is only affected by the perturbation estimation error as compared

to the actual perturbation. This follows
∣∣∣∼ψ(x, t)

∣∣∣ � |ψ(x, t)|, ensuring that ESO-based
SMC is more stable than the individual SMC. Subsequently, the Lyapunov function in (15)
will become .

V ≤ −|σ|
(

K′smc −
∼
ψ(x, t)

)
(30)
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The stability of SMCESO with the Lyapunov function σ
.
σ ≤ 0 can be calculated as

σ
.
σ ≤ |σ|

(..
e + c

.
e
)
≤ |σ|

( ..
x− ..

xd + c
.
e
)
≤ 0 (31)

With the system dynamics and combined control input from (6) and (28), according to
(7), this will result in the following condition:

σ
.
σ ≤ |σ|

(
−K′smc·sat(σ) +

..
xd − c

.
e− ψ̂(x, t) + ψ(x, t)− ..

xd + c
.
e
)
≤ 0 (32)

Simplifying (32) yields (33):

σ
.
σ ≤ |σ|

(
−K′smc·sat(σ) +

∼
ψ(x, t)

)
≤ 0 (33)

Subsequently, to keep the system stable, the control gain should follow the follow-
ing condition.

K′smc >
∣∣∣∼ψ(x, t)

∣∣∣ (34)

Now, the new control gain K′smc is small in comparison to conventional gain Ksmc, with
K′smc < Ksmc. The reduced gain will result in smoother switching control, eliminating any
chattering for improved performance. Furthermore, the control parameters K′smc, c, εc, and
λ are then optimally tuned using DDPG to reduce manual tuning efforts.

3.3. DDPG-Based SMCESO

Deep deterministic policy gradient (DDPG) is a reinforcement learning algorithm
designed for solving continuous action space problems. It combines elements of deep
neural networks and the deterministic policy gradient theorem to achieve remarkable
performance in control tasks. DDPG employs an actor–critic architecture, with the actor
network modeling the policy and the critic network estimating the state–action value
function. A key innovation in DDPG is the use of target networks to stabilize training,
with periodic updates to slowly track the learned networks. This approach, coupled with
experience replay, enables stable and efficient learning, making DDPG a prominent choice
for complex, high-dimensional control problems.

Similar to other reinforcement learning algorithms, the DDPG algorithm operates
within the framework of a Markov decision process (MDP) [24], denoted by (S ,A,P ,R),
where S and A represent the environment’s state space and the agent’s action space, re-
spectively. P signifies the probability of state transitions. During agent training, the reward
functionR serves as the training target. In core, while training the agent, the system’s state
s ε S is observed, and the associated reward r εR is acquired. Subsequently, the optimal
policy πa(a|s) is determined through maximizing the state–action value function.

Q(s, a) = E[Rc|St = s, At = a] (35)

where Rc represents the cumulative reward, and Rc = ∑∞
k=0 γkrk+1 with 0 ≤ γ ≤ 1 is

the discount factor that reflects the importance of the reward value at future moments.
To enhance the controller performance, the DDPG has to study the regulation strategy µ
(actor network) and calculate the probability of each action. Consequently, the controller
parameters are updated in real time to maximize the total reward [25,26].

max
µ

[
∑∞

k=0 γkrk(x1(k), x̂1(k))
]

st : θ(k) = µ(K′smc, c, εc, λ)
θmin ≤ θ(k) ≤ θmax

(36)

θ(k) is the set of action parameters, with minimum limit θmin and maximum limit
θmax. The structure of DDPG is presented in Figure 1. The selection of a suitable state
space is crucial for ensuring the convergence of reinforcement learning. In the context
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of the present challenges, the chosen state space should inherently pertain to the robot’s
position and its estimated dynamics. As a result, for the sake of computational efficiency
and enhanced learning, the state space is straightforwardly defined as S = [x(k), x̂(k)], and
the state vector is defined as sk =

[
x1, x̂1, e,

∼
x1

]
.

Robotics 2023, 12, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 1. Structure of DDPG. 

The actor–critic value network for the robot system is established, which is a double-
layer structure including the target network and main network. The replay buffer stores 
data in the form of 𝑠 , 𝑎 , 𝑟 , 𝑠 , which is used for network training. Both the main 
networks and target networks share the same structure but differ in their parameters. The 
actor network is denoted by 𝑎 = 𝜇(𝑠 |𝜃 ), with 𝜃  as the network parameter. The critic 
network is denoted as 𝑄(𝑠 , 𝑎 |𝜃 ), with the network parameter as 𝜃 . When training, 
small batches of sample information 𝑠 , 𝑎 , 𝑟 , 𝑠  are randomly selected from the replay 
buffer for learning. In brief, the training process involves the four networks to ensure that 
actions generated by the actor network can be used as input for the critic network to max-
imize the state–action value function in (35). The training process is provided in Algorithm 
1. 

Algorithm 1: Training DDPG Agent 
Initialize the networks 𝜇(𝑠 |𝜃 ), and 𝑄(𝑠 , 𝑎 |𝜃 ) randomly. 
Initialize the target network 𝜇 𝑠 |𝜃 , and 𝑄 𝑠 , 𝑎 |𝜃  with weights. 
Initialize the replay buffer. 
While 𝑒𝑝 ≤ 𝑒𝑝  

Randomly initialize the process 𝒩 for action exploration. 
Receive the states 𝑠  
while 𝑘 < 𝑘  𝑎 = 𝜇(𝑠 |𝜃 ) + 𝒩. 

Execute the environment to update the reward 𝑟 , and 𝑠 . 
Store 𝑠 , 𝑎 , 𝑟 , 𝑠  in replay buffer R. 
Sample a random minibatch of m transitions 𝑠 , 𝑎 , 𝑟 , 𝑠  from R. 
Set target 𝑦 = 𝑟 + 𝛾 ∙ 𝑄 𝑠 , 𝜇 (𝑠 |𝜃 )|𝜃 . 
Update the critic by minimizing the loss function 𝐽 = ∑(𝑦 − 𝑄(𝑠 , 𝑎 |𝜃 )) . 
Update the actor using the sampled policy gradient ∇ 𝐽 ≈ ∑ ∇ 𝑄(𝑠, 𝑎|𝜃 )| , ∇ 𝜇(𝑠|𝜃 ). 
Update the target network with soft update 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃 , 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃 . 
If isdone == 1 

Reset. 
End if 

end while k 
if 𝑟 𝑟  

Stop training. 
End 

end 

Figure 1. Structure of DDPG.

The actor–critic value network for the robot system is established, which is a double-
layer structure including the target network and main network. The replay buffer stores
data in the form of [sk, ak, rk, sk+1], which is used for network training. Both the main
networks and target networks share the same structure but differ in their parameters. The
actor network is denoted by ak = µ(sk|θµ), with θµ as the network parameter. The critic
network is denoted as Q

(
sk, ak

∣∣θQ), with the network parameter as θQ. When training,
small batches of sample information [si, ai, ri, si+1] are randomly selected from the replay
buffer for learning. In brief, the training process involves the four networks to ensure
that actions generated by the actor network can be used as input for the critic network
to maximize the state–action value function in (35). The training process is provided in
Algorithm 1.
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Algorithm 1: Training DDPG Agent

Initialize the networks µ(sk|θµ), and Q
(
sk, ak

∣∣θQ) randomly.

Initialize the target network µ′
(

sk

∣∣∣θµ′
)

, and Q′
(

sk, ak

∣∣∣θQ′
)

with weights.
Initialize the replay buffer.
While ep ≤ epmax

Randomly initialize the process N for action exploration.
Receive the states sk
while k < kmax

ak = µ(sk|θµ) +N .
Execute the environment to update the reward rk, and sk+1.
Store [sk, ak, rk, sk+1] in replay buffer R.
Sample a random minibatch of m transitions transitions [si, ai, ri, si+1] from R.

Set target yi = ri + γ·Q′
(

si+1, µ′
(

si+1

∣∣∣θµ′
)∣∣∣θµ′

)
.

Update the critic by minimizing the loss function J = 1
m ∑
(
yi −Q

(
si, ai

∣∣θQ))2.
Update the actor using the sampled policy gradient

∇θµ J ≈ 1
m ∑∇aQ

(
s, a
∣∣θQ)|s=si , a=µs∇θµ µ(s|θµ).

Update the target network with soft update
θQ′ ← τθQ + (1− τ)θQ′ , θµ′ ← τθµ + (1− τ)θµ′ .

If isdone == 1
Reset.

End if
end while k
if raverage ≥ rstopping

Stop training.
End

end

The DDPG-based SMCESO block diagram is presented in Figure 2. For robust per-
formance, the tracking error should be eliminated. Subsequently, the estimation should
be accurate, i.e.,

∼
x → 0 . Consequently, the true perturbation will be estimated and well

compensated. Therefore, the reward function for the current study is designed as follows.

r = R1 + R2 + R3

R1 =

{
−1 e ≥ etol
5 e < etol

R2 =

{
−1

∼
x1 ≥

∼
x1,tol

5
∼
x1 <

∼
x1,tol

R3 =

{
−100 x1 ≥ x1,stop

0 x1 < x1,stop

(37)

where etol is the error tolerance for accepting good performance of tracking control. Simi-
larly, R2 is for the good performance of ESO with estimation error tolerance as

∼
x1,tol . R3

is for the stopping condition (isdone in Algorithm 1), meaning the robot is not stable
exceeding the movement limits x1,stop.
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4. Simulations and Discussion

This section provides details about the simulation system and the environment. It also
includes the presentation of results and their subsequent discussion.

4.1. System and Environment Descrption

For the DDPG implementation, a simulation environment is created in MATLAB/
Simulink, featuring an object pick-and-place task using the Simscape Multibody model of
the KUKA KR 16 S industrial robot arm, as presented in Figure 2. The KR 16 is a six-degrees-
of-freedom (DOF) high-speed, heavy-duty industrial robot arm with a substantial payload
capacity. Demonstrating robust performance with such robot will validate the efficiency
of the proposed method. Consequently, the robot must exhibit robust performance and
a minimal tracking error in the presence of nonlinear dynamics. The sampling time for
the DDPG algorithm is set to 0.5 s, while the control algorithm operates with a sampling
time of 5 ms. The computations are carried out on a computer equipped with an Intel i7
processor and an RTX 3090 ti GPU.

4.2. Simulations

Simulations are conducted in two phases. First is the implementation of the proposed
algorithm on a simple linear system to explain the basics or the workings of the ESO.
Second is the implementation on the multibody dynamics of the robot arm, with a sine
wave as the desired position. For simulation, the DDPG hyperparameters are presented in
Table 1

4.2.1. Simple System Implementation

For a simple linear system, consider the following second-order dynamics.

..
x = uo − b

.
x− kx + d(t), d(t) = a· sin(t) (38)

ψ(x, t) = −10
.
x− 50x + d(t) (39)

where a is the magnitude of disturbance (d(t)), b = 10 is the damping coefficient, and
k = 50 is the stiffness. The performance of DDPG-based SMCESO has been compared with
SMC, proportional–integral–derivative (PID) control optimally tuned using the Control
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System Tuner toolbox in Simulink, and H∞ control [27]. The control gains are provided in
Table 2, and the trajectory tracking error is shown in Figure 3.

Table 1. DDPG parameters.

Reinforcement
Parameters

Parameter Value

Critic
Learn rate 1× 10−3

Gradient Threshold 1

Actor
Learn rate 1× 10−4

Gradient threshold 1

Agent

Sample time 0.5
Target smooth factor 1× 10−3

Discount factor 1
Minibatch size 64

Experience buffer length 1× 106

Noise variance 0.3
Noise variance decay rate 1× 10−5

Training
Maximum episode 2000

Maximum steps 20
Average reward window length 10

Table 2. Control gains.

Control Algorithm Gains

PID Kp = 200, Ki = 1000, and Kd = 20.
SMC Ksmc = 300, c = 35, and εc = 0.5.

SMCESO K′smc = 50, c = 30, εc = 0.5, λ = 137.31, and εo = 1.
H∞ Sensitivity Function Ws = s + 40/4s + 0.36
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The error results of the step response in Figure 3a reveal that when a disturbance
(a = 10) is present, all three controllers except for SMCESO demonstrate good performance
with high control gains but fail to fully converge the error to zero. In contrast, SMCESO
effectively estimates and compensates for the perturbation, as depicted in Figure 4 (on
the next page), leading to error convergence toward zero. Moreover, as anticipated in
Section 3.2, the new control gain K′smc is notably smaller than the conventional gain Ksmc
(in Table 1), which is tuned using the DDPG algorithm. Additionally, the algorithms
underwent testing with parameter changes, where the stiffness was chosen as k = 50± 8.
These variations were introduced using the Simulink random number block with a variance
of 20. The tracking errors for variable stiffness are presented in Figure 3b, illustrating that
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PID exhibits the maximum deviation, while H∞ outperforms PID. However, SMC now
surpasses H∞ due to a model mismatch between the actual system and the dynamics
used for controller synthesis. Finally, SMCESO outperforms all three controllers through
maintaining the error very close to zero. This validates that SMCESO effectively estimates
system uncertainties and compensates for their effects on the system response, resulting in
robust performance.
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4.2.2. Adaptive SMCESO with Multibody Robot

With a multibody robot system, the DDPG agent has been trained to fine-tune the
controller parameters. For controller evaluation, Joint 2 (q2) of the robot manipulator has
been considered as it holds the maximum weight of the robot against gravity. Therefore,
the robot arm is fully extended, and only q2 is moving. The desired trajectory is defined
as q2,d = sin(w·t), with initial frequency wo = 1, which resets after every episode as
w = 1 + rand[−0.5, 0.5]. Furthermore, the total simulation time is 10seconds, with an
ideal reward rmax = 210. The training stops when the average award reaches rc ≥ 199,
considering the average reward window length. The DDPG agent took 343 episodes for
the training. The episode reward and the cumulative reward are presented in the following
Figure 5, and subsequently, the tuned parameters are shown in Figure 6 and the trajectory
tracking error and joint torques are in Figure 7.
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The joints were equipped with electromechanical motor dynamics with the motor
parameters given in Table 3. Consequently, both control algorithms (SMC and SMCESO)
can achieve joint tracking errors with the range ±1 degree. However, it is evident from the
control input that SMC has sudden spikes throughout the simulation. Reducing gains can
eliminate these spikes but will reduce the control performance, resulting in larger errors.
Similarly, to reduce the error of SMC, higher gains (more than double those of SMCESO)
are required. This, in turn, increases the spikes and occasionally introduces chattering in
the response. In contrast, SMCESO shows very smooth performance and keeps the error
within the range of ±0.1 degree. This validates the robustness of SMC integrated with
ESO, which overcomes the perturbation effects of the system with a total mass m > 55 Kg
on joint 2. Overall, the initial jump in the control input is primarily attributed to motor
dynamics such as friction, which stabilizes once the robot starts moving. Moreover, for a
deeper understanding of achieving robust performance, observing the estimated states in
Figure 8.

Table 3. Motor dynamics parameters.

Parameter Value

Inductance, L 0.573× 10−3 H
Resistance, R 0.978 Ω

Torque constant, kt 33.5× 10−3 N·m/A
Voltage constant, ke 33.5× 10−3 V·s/rad

Gear Ratio 100
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Figure 8. Actual and estimated states of the system.

The position and velocity results show that the state observer is performing very
well, with estimations showing nearly zero error. This suggests that the system may
have highly effective perturbation estimation and compensation capabilities to enhance
tracking performance. Moreover, the Simscape multibody toolbox allows obtaining the
dynamics components of the robot system, including the mass matrix M(q), velocity
product torque C

(
q,

.
q
)
· .q with C

(
q,

.
q
)

Coriolis terms, and gravitational torque G(q). This
can be achieved through first creating the rigid body tree and then utilizing the Manipulator
Algorithm library from Robotics System Toolbox. Subsequently, similar to (10), the expected
perturbation is presumed as

ψ(x, t) = C
(
q,

.
q
)
· .q + G(q) (40)

The assumed and estimated perturbations are presented in Figure 9, below.
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The estimated perturbation closely aligns with the assumed perturbation. With the
desired trajectory being a sine wave, the velocity is continuously changing, leading to
some perturbation estimation error, as expected due to the motor dynamics, which are not
factored into the perturbation calculation. However, this error can be compensated by the
SMC in Equation (16), further validating the theory in Equation (29) that, with ESO, the
system dynamics are primarily influenced by the perturbation estimation error. From a
magnitude perspective, it is evident that the perturbation estimation error is considerably
smaller than the actual perturbation, making the system achieve robust performance.
Furthermore, when the robot comes to a stop, the estimated perturbation converges to
match the assumed perturbation, confirming the accurate working of the ESO.

5. Conclusions

In this study, an approach to control and stabilize multibody robotic systems with
inherent dynamics and uncertainties is presented. The approach leverages extended
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state observer (ESO) and sliding mode control (SMC) (SMCESO), combined with the
optimization capabilities of deep deterministic policy gradients (DDPGs). One of the
advantages of ESO is that it requires only partial state feedback (position) to estimate the
perturbation, which includes the system dynamics and external disturbances. Initially, the
proposed algorithm is implemented on a simple second-order system with introduced
sinusoidal disturbance. Subsequently, the control parameters were fine-tuned using a
DDPG agent, which was trained based on system tracking error, joint angle, estimated
joint angle, and estimation error. This training allowed the DDPG-based SMCESO to
outperform the optimally tuned PID control (via a control tuner toolbox), conventional SMC
(tuned through DDPG), and H∞ control in terms of robustness, significantly enhancing
system stability and performance. Even in the presence of disturbances, the SMCESO
consistently converges to zero error due to its perturbation rejection capabilities. It was
also demonstrated that with ESO, the system dynamics are primarily affected by the
perturbation estimation error, which was validated through simulations showing close
alignment between estimated and actual perturbations, leaving only minor estimation
errors to be handled by the SMC control input. As a result, the multibody robot system’s
overall performance is highly robust.
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