

Robotics 2023, 12, 157. https://doi.org/10.3390/robotics12060157 www.mdpi.com/journal/robotics

Article

Real-Time 3D Map Building in a Mobile Robot System with

Low-Bandwidth Communication

Alfin Junaedy *, Hiroyuki Masuta, Kei Sawai, Tatsuo Motoyoshi and Noboru Takagi

Department of Intelligent Robotics, Toyama Prefectural University, 5180 Kurokawa Imizu,

Toyama 939-0398, Japan; masuta@pu-toyama.ac.jp (H.M.); k_381@pu-toyama.ac.jp (K.S.);

motoyosh@pu-toyama.ac.jp (T.M.); takagi@pu-toyama.ac.jp (N.T.)

* Correspondence: u378003@st.pu-toyama.ac.jp

Abstract: This paper presents a new 3D map building technique using a combination of 2D SLAM

and 3D objects that can be implemented on relatively low-cost hardware in real-time. Recently, 3D

visualization of the real world became increasingly important. In robotics, it is not only required for

intelligent control, but also necessary for operators to provide intuitive visualization. SLAM is

generally applied for this purpose, as it is considered a basic ability for truly autonomous robots.

However, due to the increase in the amount of data, real-time processing is becoming a challenge.

Therefore, in order to address this problem, we combine 2D data and 3D objects to create a new 3D

map. The combination is simple yet robust based on rotation, translation, and clustering techniques.

The proposed method was applied to a mobile robot system for indoor observation. The results

show that real-time performance can be achieved by the system. Furthermore, we also combine high

and low-bandwidth networks to deal with network problems that usually occur in wireless

communication. Thus, robust wireless communication can be established, as it ensures that the

missions can be continued even if the system loses the main network.

Keywords: real-time 3D mapping; simultaneous localization and mapping (SLAM); mobile robot;

low-bandwidth communication; long-range (LoRa); point cloud

1. Introduction

Representing the real world in 3D visualization became increasingly important. In

robotics, 3D maps unlock smarter capabilities for the robots [1]; for example,

environmental exploration and localization [2], search and rescue [3], motion planning

and automation [4], monitoring [5], and some others. Utilization of 3D maps remains

challenging, especially for real-time implementation using mobile devices. Due to limited

computing and memory resources, the amount of data brings a significant burden to the

onboard processing, which can slow down overall performance [6,7]. On the other hand,

missions and data collection have to be continued. Therefore, data compression is

required to handle this issue.

In ground exploration missions, mobile robots are one of the most widely used

technologies due to their mobility and adaptation to environments. Wheeled [8,9] or

crawler robots [10,11] all became essential parts for both domestic and industrial

applications. In domestic applications, they are more popular as service robots, for

example, cleaning kitchens [12], cleaning floors such as the Roomba, and indoor

observation [13]. Meanwhile, for industrial applications, many of them are intended for

agriculture [14,15], hazardous tasks, saving human lives, and disaster response [16].

In order to work intelligently, maps are required in robot operations, even more so

for autonomous control [17,18]. Simultaneous localization and mapping (SLAM) is

generally applied for this purpose. It builds a map of the environment, and at the same

time, locates the robot position on the map [19]. In addition, SLAM is also considered a

Citation: Junaedy, A.; Masuta, H.;

Sawai, K.; Motoyoshi, T.; Takagi, N.

Real-Time 3D Map Building in a

Mobile Robot System with

Low-Bandwidth Communication.

Robotics 2023, 12, 157.

hHps://doi.org/10.3390/

robotics12060157

Academic Editors: Konstantinos

Tsintotas, Loukas Bampis, Nitin J

Sanket, Antonios Gasteratos, Giulio

Sandini and Yiannis Aloimonos

Received: 20 October 2023

Revised: 17 November 2023

Accepted: 20 November 2023

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, SwiMerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

AHribution (CC BY) license

(hHps://creativecommons.org/license

s/by/4.0/).

Robotics 2023, 12, 157 2 of 28

basic ability and is highly encouraged for explorer robots [20,21]. Apart from the reasons

above, SLAM can be used to provide an intuitive visualization (i.e., maps) of what the

environment looks like [22]. It helps humans beHer understand the current situation.

These are the reasons why the development and applications of SLAM were a major

research topic for at least the last decade. SLAM is not only used by the robots, but is also

useful for the humans.

In this paper, we focus on how to achieve real-time implementation of 3D map

building. We believe that nowadays the development of SLAM and its related maHers

should be applicable and real-time oriented. There were several techniques related to this

concern. In [23], a combination of perpendicular 2D data from two 2D laser scanners is

proposed. The observations are accomplished in indoor regions with two mobile robots

in parallel. Then, translational and rotational values are applied to the perpendicular data

to construct a 3D point cloud map. However, real-time computation cannot be achieved

since the combination is achieved offline, which requires around fifteen minutes; similarly

as in [24,25], where offline computation is performed. Next, the fusion of a 2D light

detection and ranging (LiDAR) and a depth camera [26] or a stereo camera [27] was

developed. The cameras are used to improve the accuracy of 2D SLAM. Although

additional information was combined, only a 2.2% to 3.6% improvement can be achieved.

Furthermore, it also results in increased computational requirements.

Real-time implementation of large amounts of data is challenging, especially for

processing requirements. As mentioned previously, one of the solutions is to compress

the amount of data. The other solution is, of course, increasing the processing capability.

In [2,22], real-time computation of 3D map building can be achieved using mobile robots.

They use an Intel Core i7-4790K CPU 32 GB RAM and a Core i7-3555LE CPU 8 GB RAM,

respectively. The method requires 1.56 s out of 3 s to update the map with 1.33× of data

downsampling [22]. A mobile robot system in [28] performed 3D mapping with high

quality and repeatability. It employs a Velodyne Puck LITE 3D laser scanner and an

inertial measurement unit (IMU) sensor to run an online SLAM algorithm. However, in

the implementation, the mobile robot was steered remotely using a wireless joystick, and

the amount of data will be nearly impossible to implement on low-cost hardware to

perform real-time observation. Modern SLAM algorithms, such as ORB-SLAMs [29–31],

may also run in real time on embedded systems [32,33]. Nevertheless, they rely on

multithreading, which is also limited in this system.

In real-world situations, degraded communication may occur during missions [2],

especially in restricted areas that require kilometers of operating distance [10]. Therefore, to

handle this issue, we also combine high and low-bandwidth networks in the system, i.e.,

Wi-Fi and long-range (LoRa). Wi-Fi, due to its high bandwidth, has a short communication

range and is thus easily affected by environments; for example, buildings, trees, tunnels,

underground, sea water, and some others. LoRa, on the other hand, has a much longer

communication range and is more robust to the environments [34]. Furthermore, LoRa can

maintain its communication for several kilometers even in urban areas [35], and its network

can be scaled to increase the number of nodes [36]. Similar to [37], which combines Wi-Fi

and an RF module (200 kbps) for sharing data between two mobile robots and constructing

a 3D map, network limitations force the system to compress the data for real-time

performance. The difference is that we use a lower communication bandwidth of about 6.01

kbps–22 kbps, which requires further data compression. Furthermore, they still require the

high-bandwidth network to construct a full 3D map.

There are two restrictions in the proposed system, i.e., limited onboard computing

resources and low-bandwidth communication. Based on the state-of-the-art above, a new

technique is required in order to perform real-time 3D map building. Therefore, we propose

a new real-time 3D map building technique using the combination of 2D SLAM and 3D

objects. The technique is applied and focused on the mobile robot system with Wi-Fi and

LoRa as the communication networks, as shown in Figure 1. Wi-Fi is used as the main

communication network, with LoRa serving as a backup. Multi-bandwidth networks

Robotics 2023, 12, 157 3 of 28

proved their impact on signal interference, shadowing, and wireless communication

attenuation [38,39]. Hence, robust wireless communication can be established.

Figure 1. System configuration overview.

The contributions of this research can be summarized as follows: (1) The system

utilizes low-cost devices, i.e., a Raspberry Pi controller and LoRa devices on the mobile

robot, and an entry-level PC controller with an Intel Core i5-10210U CPU 8 GB RAM for

controlling and monitoring the mobile robot. (2) We combine high and low-bandwidth

networks to establish a robust wireless communication system. All observation data need

to be sent wirelessly, creating a new data size restriction, and hence data compression is

required. Lastly, (3) lightweight and efficient algorithms must be developed. All

developed algorithms have to be simple, can be installed on low-cost hardware, and have

real-time capabilities. These introduce the main target of the system, which performs the

proposed method in real-time at a refresh rate of at least 1 Hz for both communication

bandwidths. A real-time system is essential for operators as it gives direct results about

environmental conditions. 3D maps will also increase intuitiveness to beHer understand

the environment. Finally, a fully wireless communication system enables a barrier

between the operators and observation fields, which increases safety for some crucial

missions, such as search and rescue and disaster response.

The rest of this paper is organized as follows. In Section 2, the system configuration

is described. Section 3 explains the proposed approach in detail. Section 4 shows the

experimental results with its discussion. Last but not least, Section 5 is the conclusion and

future work.

2. System Configuration

2.1. Hardware Design

In this system, there is a PC controller, a LoRa transceiver, and a mobile robot, as

shown in Figure 1. The PC controller is used by an operator to control and monitor the

mobile robot. It is also connected to the LoRa transceiver to communicate with the mobile

robot through the low-bandwidth communication using LoRa devices. Figure 2 shows

several devices installed on the mobile robot. We use a 2D LiDAR and a LiDAR camera as

the main sensors to observe the environment. By using both sensors, 2D and 3D data can

be provided from the mobile robot.

Figure 2. Installed devices on the mobile robot.

Robotics 2023, 12, 157 4 of 28

The hardware specifications are summarized in Table 1. The LoRa transceiver is

basically used to convert serial data from LoRa devices to USB signal. Thus, the PC

controller can read the serial data and communicate with the mobile robot. The same as

in [40], there are two LoRa devices used on the PC controller and the mobile robot to

increase the communication bandwidth. This is intended for sending large data, such as

2D and 3D data when using the low-bandwidth communication.

Table 1. System hardware specifications.

PC Controller Core i5-10210U CPU 8 GB RAM; IEEE 802.11ac (353 kbps–9 Mbps)

LoRa Transceiver
ES920LR 920.6-928.0 MHz ×2 (6.01 kbps–22 kbps); ES920ANT ×2

Arduino Mega 2560

Mobile Robot

Dimension: 350 mm × 200 mm × 200 mm

Rear-drive brushed DC motor

Servo motor with Ackermann steering

Li-Fe baHery 6.6 V/1450 mAh ×3

H-bridge MOSFET motor driver

Raspberry Pi 4B 4 GB RAM; IEEE 802.11ac (353 kbps–9 Mbps)

IMU module LSM9DS1 (3-DoF accel-gyro-magneto) @100 Hz

Rotary encoder SG2A174 ×2 (80 ppr, 200 µs rates) @5 kHz

A/D converter module ADS1115 @860 Hz

ES920LR 920.6-928.0 MHz ×2 (6.01 kbps–22 kbps); ES920ANT ×2

Hokuyo 2D LiDAR UBG-04LX-F01 (240° scan angle, 0.06–4 m) @25 fps

Intel RealSense LiDAR camera L515 (depth: 640 × 480 0.5–9 m, color: 1920 ×

1080) @30 fps

2.2. Software Design

We developed a graphical user interface (GUI) using MATLAB, as shown in Figure

3. The GUI is used by the operator to interact with the mobile robot wirelessly. There are

monitoring gauges, a connection menu, command buHons, and a canvas for drawing the

map result in real time.

The mobile robot has two missions or tasks, these are the observation task and

command task. Figure 4 depicts the task flow in the system. First, the operator starts the

mission by using the start buHon on the GUI. The GUI then sends a start command to the

mobile robot for the observation task.

Figure 3. GUI to interact with the mobile robot wirelessly.

Robotics 2023, 12, 157 5 of 28

Figure 4. Task flow in the system.

In this task, the mobile robot observes the environment autonomously by sending all

observation data to the PC controller. They communicate through the communication

thread. This task is intended to build a map for the first time. After finishing the

observation, both the PC controller and the mobile robot enter the command task. It

enables the command buHons on the GUI, and thus the operator can command the mobile

robot based on the first map result. In this task, the mobile robot performs the operator’s

commands and all the observation data are also sent to the PC controller to update the

map result. This is an iterative task and will be terminated when the operator presses the

stop buHon on the GUI.

In this system, a shared control method is applied. It means that the algorithms are

divided to both the PC controller and the mobile robot, as explained in Figure 4. For

example, 2D SLAM, a rapidly exploring random tree (RRT) path planning, 3D map

building, and GUI are installed in the PC controller. Meanwhile, the mobile robot runs the

movement and observation algorithms, such as 3D object extraction, 2D data observation,

fuzzy logic control (FLC)-based wall follower and path follower, and obstacle avoidance.

This method is especially useful for small robots that are unlikely to carry heavy

computers [7]. Furthermore, parallel computing can also be performed. This paper,

however, focuses more on the real-time 3D map building using the proposed system,

especially with the low-bandwidth communication. In addition, all algorithms in the

mobile robot are wriHen in C++, which is preferred for real-time applications.

2.3. Experimental Environment

We applied the proposed method for indoor observation in our laboratory. Figure 5

shows the environmental condition. It has 16.59 m2 of large with a lot of cluHered objects

inside it. All experiments were carried out in this field, including our datasets for

simulation purposes when developing the algorithms. Based on hardware specifications,

the objects should have a minimum height of 10 cm, and hence the 2D LiDAR sensor can

detect them. In this system, the mobile robot is able to reach an average speed of 0.15 m/s

(maximum 0.46 m/s). Therefore, all algorithms need to have real-time capabilities.

Robotics 2023, 12, 157 6 of 28

Figure 5. Environmental condition for experiments.

3. Proposed Approach

In order to generate a 3D map, 2D SLAM and 3D objects are combined, as depicted

in Figure 6. This method enables the system to perform real-time observation even though

the low-bandwidth communication is used. The exchanged data can be compressed while

maintaining the map accuracy. The next subsections explain important parts of the

approach. As mentioned earlier, a shared control method is applied in the system.

Therefore, the 3D object extraction algorithm is performed by the mobile robot, while 2D

SLAM and 2D–3D combination method are performed by the PC controller.

Figure 6. Proposed approach for 3D map building.

3.1. 2D Simultaneous Localization and Mapping (SLAM)

Although this paper is focused on real-time 3D map building, it will be difficult to

understand without explaining how and what kind of 2D data are used in the system.

Hence, this subsection will briefly explain how to observe and manage the 2D data. First,

2D observation data from the LiDAR sensor is compressed for about three-time

downsampling [40]. The main reason is, of course, the use of LoRa as low-bandwidth

communication. This gives the system a balance between data size and map accuracy. Then,

the compressed 2D data will be encoded with the 3D data to be sent to the PC controller.

On the PC controller side, we used MATLAB to develop the mapping algorithms.

They include 2D SLAM and 2D–3D combination to construct a 3D map. MATLAB uses

graph-based SLAM to create a 2D map [41,42]. A pose estimation of the mobile robot may

have an error with the real pose, as well as the estimated map since they are related [43].

The error will increase as the mobile robot wanders throughout the environment. They

are usually caused by the sensors’ accuracy and the environmental condition. That is why

the graph-based SLAM has a loop closure parameter that will always try to correct the

Robotics 2023, 12, 157 7 of 28

errors. It determines whether or not the current mobile robot pose was previously visited.

This is calculated within a small radius by matching the current measurement with all the

previous measurements. SLAM is also considered as a basic fundamental problem for a

truly autonomous robot [20], where a precise pose is needed to build a map, and the map

is also needed to estimate the pose. Therefore, the SLAM problem can be formulated as

follows: ����:� , �|
�:� , ��:�� (1)

where P in (1) is the graph-based SLAM probability distribution, xt is the mobile robot

pose at a specific time or measurement, m represents the map, zt is observation data from

the sensors, and ut is the controls of the system. Both pose and map are unknown, and

they can be solved by calculating the observation data at the beginning of the algorithm.

Then, probabilistic models of the observation and motion can be formulated as (2) and (3),

respectively. ��
�|��� (2)

����|���, ��� (3)

where in (2), the observation relates to the pose, and the new pose is described by the

previous pose and its control (3). In addition to the pose graph map, MATLAB also has an

occupancy grid map as the output of the 2D SLAM algorithm. Figure 7a,b shows an

example of both maps.

The occupancy grid map is generated from the pose graph map, where every cell has

a probabilistic value ranging from 0 (empty space) to 1 (occupied space). In the 2D–3D

combination process, we use both the pose graph map and the occupancy grid map as the

references for 3D objects to be combined. The pose graph map generates positions and

orientations of the mobile robot relative to the map, and the occupancy grid map generates

information of empty, occupied, or untraveled space. In the system, the 2D SLAM is

executed every time step to build a 2D map.

(a) (b)

Figure 7. An example of (a) a pose graph map and (b) an occupancy grid map as the output of 2D

SLAM.

3.2. 3D Object Extraction

The LiDAR camera has two outputs, i.e., color and depth. In this approach, we only

use the depth information to extract objects using 3D analysis [44]. Figure 8 shows the

image frame projection from the camera.

Robotics 2023, 12, 157 8 of 28

Figure 8. Image frame projection from the LiDAR camera.

First, it calculates the real-world coordinates (xc, yc, and zc) using the right-angled

triangle principle (4–6).

�� =
� tan ���� − ����2 � �������� (4)

!� =
� tan ��!� − ���"2 � ���"���" (5)

� =
� (6)

where xg and yg are the pixel coordinate, while zg is the depth measurement at xg, yg. FoVw

and FoVh are the camera field of view which are 70° and 50°, respectively. resw and resh are

the camera resolutions which are 640 pixels and 480 pixels, respectively.

The 3D object extraction flowchart is shown in Figure 9. We developed a

simplification of the fast-growing neural gas (FastGNG) algorithm, called simplified

FastGNG, to extract 3D objects from the depth information or point clouds. The standard

GNG algorithm uses an iterative method as the learning strategy [45]. Thus, it is difficult

to increase the learning speed as a sample node is added to a current network after errors

are accumulated with many times of sampling data. FastGNG, on the other hand, is a

modification of the standard GNG algorithm, which has a new growing method to

enhance the learning speed [46,47]. General objectives such as clustering, feature

extraction, and topological mapping can be accomplished using this algorithm.

Figure 9. 3D object extraction flowchart.

Robotics 2023, 12, 157 9 of 28

We proposed a simplification of the FastGNG algorithm to further increase the

learning speed and match with the main purpose of this paper. The following are

notations used in the simplified FastGNG algorithm: # : a set of 3D point cloud data (input); $: a set of sample nodes; %& : a 3D vector of i-th node; '&,(: a connection between i-th and j-th node;) : an internal loop parameter of the algorithm; *+,-, *+./ : parameters to set the minimum and maximum connection length; �01�0�2� : the probability of a sample v is the edge, v is a 3D vector; �3410�2� : the probability of adding a sample v to the network.

The learning process is then arranged based on following steps:

Step 1. Generate a set of sample nodes $ using �01�0�2�. This generates edge nodes of

the depth input to simplify the learning process. The left, right, top, and boHom node

of v should be known. 5 is a constant. The higher the 5 value, the higher the

difference in �01�0�2� value between the edge node and the non-edge node. Hence,

making it easier to extract the edge nodes.

�01�0�2� = max ��9�, �9:� (7)

�9� = max �|9) − 9;| − 9) 5, |9) − 9;| − 9; 5) (8)

�9: = max (|9< − 9=| − 9< 5, |9< − 9=| − 9= 5) (9)

9) = >2 − %?0@�(A)>, 9; = >2 − %B&�"�(A)> (10)

9< = >2 − %�4C(A)>, 9= = >2 − %D4��4E(A)> (11)

Step 2. Generate two nodes using �3410�2� and connect them. Initially, set *+,- and *+./

to any proper value with a constant F , where a higher value results in a higher

probability value. Then, initialize the phase level iP to 1.

�3410�2� = ⎩⎨
⎧1.0 *+,- ≤ 9N� ≤ *+./0.0 9N� < *+,- tanh QF *+./9N� R otherwise (12)

9N� = >2 − %YZ>, �� = arg min&∈] ‖2 − %&‖ (13)

'-_`a�,-_`a: = 1, b� = 1 (14)

Step 3. Initialize the internal loop counter iL to 0 and calculate the *+,-, *+./, and L.

*+,- = cd� b� = 1d: b� = 2de b� ≥ 3 , *+./ = ch� b� = 1h: b� = 2he b� ≥ 3 (15)

) =
⎩⎪⎪
⎨⎪
⎪⎧ceil l#$n� o b� = 1

ceil l#$n: o b� = 2
ceil l#$ne o b� ≥ 3

 (16)

Robotics 2023, 12, 157 10 of 28

where d&, h&, and n& (i = {1, 2, 3}) are constants for *+,-, *+./, and L, respectively. We

set higher values of d&, h&, and lower values of n& for a lower phase. Thus, *+,- and *+./ values are the opposite of the phase level iP. This will speed up the learning

process in the first phase, and be slower but more detailed in the higher phases. #A

is the number of sample nodes.

Step 4. Generate a new node v using �3410�2� (12) and increase the loop counter iL. Then,

calculate the nearest node �� (13) and the second nearest node �:.

b) = b) + 1 (17)

�: = arg min&∈]\{YZ} ‖2 − %&‖ (18)

Step 5. Add the new node v (step 4) to the network with a new index r, and update the

connection c. Skip the connection if it already exists. Go to step 4 if iL is less than L.

%B = 2 (19)

' t'YZ,B = 1, 'Yu,B = 1, 'YZ,Yu = 0 9N� < 9N�: > 9N:'YZ,B = 1, 'YZ,Yu = 1 otherwise (20)

9N�: = >%YZ − %Yu> (21)

9N� = >2 − %YZ>, 9N: = >2 − %Yu> (22)

Step 6. If there are nodes having more than two connections, remove the longest connection.

Repeat the removal process until all nodes have a maximum of two connections.

Step 7. As a result of the connection deletion in step 6, remove the nodes having no connection

at all, and increase the phase level iP. Stop the process when the stopping criteria are

satisfied or iP is more than the max_phase parameter. Otherwise, return to step 3.

b� = b� + 1 (23)

Now, let us move to the post-processing methods. These are as important as the

simplified FastGNG in compressing the depth information and correcting defects from

the previous step.

3.2.1. Ground Removal

In this system, we need to remove the ground nodes since we already have the

ground information from the 2D SLAM. The set of the 3D point cloud data D is needed

for this calculation.

wx9�2� = t0 9wy < zy ∧ 9w| > z| ∧ 9w} < z}1 otherwise (24)

9wy = |2y − %&�|, 9w| = ~2| − %&!~, 9w} = |2} − %&
|, b ∈ # (25)

where zy, z|, and z} are the thresholds based on the minimum distance between input

nodes. The ground nodes having wx9(2) = 1 are then removed from their network. They

basically have no neighbors on the y-axes, and hence we use this information to determine

the removal process.

3.2.2. Node Reduction

This method reduces the nodes in a straight connection to further compress the point

cloud data. Thus, an angle between two connections �A is used.

Robotics 2023, 12, 157 11 of 28

�A = cos� �⃗ ��⃗
|�⃗| ~��⃗ ~

 (26)

Vector �⃗ and ��⃗ can be known from the corresponding nodes as they have xyz-value.

If �A is more than a specific threshold, i.e., 160°, the corresponding node can be removed

and its connections should be updated.

3.2.3. Open Loop Connection

A perfect detection should have closed loop networks around the detected objects.

Hence, this method is performed to close the open loop networks. The probability of a

node v to be connected to the open loop nodes, �4C03�2�, is defined as follows: �4C03�2� = �� �A + �: 9� (27)

9� = >2 − %4C03�>, b ∈ $ (28)

where �A is the same as (26). By using a positive value of �� and a negative value of �:,

the �4C03�2� prioritizes nodes having a larger angle and shorter distance to be a closed

loop. Then, the node having the highest �4C03�2� value is connected to the open loop

nodes for closing the network.

3.2.4. Node Evaluation

This method is applied to reduce noises and false detection problems. The node

evaluation Ne(v) is defined as follows:

���2� = t� = � + 1 9�y ≤ xy ∧ 9�| ≤ x| ∧ 9�} ≤ x}� = � otherwise (29)

9�y = |2y − %&�|, 9�| = ~2| − %&!~, 9�} = |2} − %&
|, b ∈ # (30)

The counter µ is initialized as 0. The node v should be removed if the µ is less than a

specific threshold. This means that the node v does not have a sufficient number of

neighbors from the input data D. The thresholds nx, ny, and nz are set based on the

minimum distance between input nodes of the point cloud.

3.2.5. Connection Evaluation

A connection from a node k to l can be evaluated as follows:

����, *� = t1 9�y > �y ∧ 9�| > �| ∧ 9�} > �}0 otherwise (31)

9�y = |�y − %&�|, 9�| = ~�| − %&!~, 9�} = |�} − %&
|, b ∈ # (32)

�y =
�y + *y

2
, �| =

�| + *|

2
, �} =

�} + *}

2
 (33)

The same as before, the thresholds qx, qy, and qz are set based on the minimum distance

between input nodes. This method compares the center point t of a connection to the input

reference D. Therefore, bad connections having ����, *� = 0 are removed from the network.

The output of the 3D object extraction is clusters, consisting of nodes and

connections, as shown in Figure 10.

Robotics 2023, 12, 157 12 of 28

Figure 10. Clusters of nodes and connections of 3D objects.

Every node and connection are then encoded to be sent from the mobile robot to the

PC controller. From more than 10,000 points in a point cloud to only less than 100 outputs

(nodes and connections), a high compression ratio can be achieved using this method,

which is especially useful for low-bandwidth communication.

FastGNG adds new nodes after mini-batch learning using weight parameters.

Although it improves the learning speed in comparison to the original GNG algorithm,

this also results in unnecessary nodes being added to the network, which requires an

additional node deletion process. Hence, the simplified FastGNG avoids that by

improving the correctness of the probability functions (�01�0�2�, �3410�2�), resulting in

additional computational cost savings (see the comparison in the experimental results).

Furthermore, due to the higher correctness of the probability functions, a new node and

its connections can be added to the network in each step without a node deletion process

(steps 4 and 5). Moreover, it also filters the point cloud data at the beginning of the

algorithm by applying �01�0�2� to improve the correctness of the sample nodes. Those

are the main differences between simplified FastGNG and the FastGNG algorithm. We

simplified it from a general-purpose algorithm to a specific purpose in this system.

3.3. 2D–3D Combination

The combination process between 2D SLAM and 3D objects is expressed in Figure

11. It starts from rotation and translation with 2D SLAM as the reference. All 3D objects

from the simplified FastGNG algorithm are combined based on their clusters to create a

new 3D map. Several clustering methods are also employed in the reconstruction process.

The following are the steps of the combination process:

Step 1. The pose graph map of 2D SLAM generates the orientations (�&�) and 2D position

(txi, tyi) that are used for the input references of the rotation (34) and translation (35),

respectively. 4i are always zero as the mobile robot only moves on a 2D slat surface.

���!�
�1 � = �cos �&� − sin �&� 0 0sin �&� cos �&� 0 000 00 10 01� ���!�
�1 � (34)

���′!�′
��1 � = �1 0 0 ��&0 1 0 �!&00 00 10 �
&1 � ���!�
�1 � (35)

In the equation, x, y, and z are the node coordinates of 3D objects. Meanwhile, the

double-apostrophe values are the results of this step. The rotation is completed first,

and then followed by the translation.

Robotics 2023, 12, 157 13 of 28

Step 2. A density-based spatial clustering of application with noise (DBSCAN) is performed

to make a correction of the first rotation and translation results. From the top point of

view, a single 3D object may have an L-shape or a non-linear shape. Therefore, a density-

based clustering algorithm is needed, and DBSCAN is a pioneer of density-based

clustering algorithms [48]. DBSCAN is still being adopted in modern techniques due to

its simplicity and compactness for topological clustering applications [49]. The DBSCAN

clustering is explained in Algorithm 1. In this method, we convert every 3D object into a

2D line from the top point of view. It simplifies the clustering method since the z values

are always correct. The mobile robot never moves on the z-axes. Thus, only x and y values

need to be corrected. There are several parameters used in the DBSCAN clustering, such

as minObj for a minimum number of objects, dEps for minimum search radius, and

thetaTh for rotation threshold. The object rotation angle �4 is calculated using its gradient

value (36), and the distance between objects � is calculated using the Euclidean distance

(37).

Figure 11. 2D–3D combination steps. Different colors indicate different clusters.

�4 = tan� �:! − ��!�:� − ��� (36)

Robotics 2023, 12, 157 14 of 28

� = ���:� − ����: + ��:! − ��!�: (37)

where P1 and P2 are two points in a single object as an xy-line. The output of this step

is the clusterObj (colored lines in Figure 11 step 2) that will be used in the next step,

and noiseObj (black lines in Figure 11 step 2) that is removed from the map result.

Step 3. The pose graph map of 2D SLAM only generates orientations and positions of the

individual map displacements. In other words, they are the mobile robot orientations

and positions when scanning the environment or capturing the data. Therefore, to

generate a 2D map reference, the occupancy grid map from 2D SLAM is used, as shown

in Figure 12. It is generated based on the values of the occupancy grid map, where empty

space is represented by low values (near 0), occupied space has high values (near 1), and

untraveled space is between 0 and 1 (0.5 initially). We set 0.750 as the threshold to

generate the 2D map reference. All nodes of the 2D map reference are then compared to

the DBSCAN clustering result. By using a specific threshold, i.e., the Euclidean distance,

these nodes can all be known to which DBSCAN cluster they belong. They are shown as

black circles in Figure 11 step 3.

Algorithm 1: DBSCAN Clustering

Input: sampleObj, thetaTh, dEps, minObj

Output: clusterObj, noiseObj

clusterObj ← Null

noiseObj ← Null

while True do

 temp_clust ← random(sampleObj)

 isUpdate ← True; l_start ← 1; l_stop ← 1

 while isUpdate do

 isUpdate ← False

 for i ← l_start to l_stop do

 core ← temp_clusti

 for j ← 1 to numOf(sampleObj) do

 if |sampleObjj.� – core.�| ≤ thetaTh and

 distEuc(sampleObjj, core.xy) ≤ dEps then

 temp_clust.add(sampleObjj)

 isUpdate ← True

 end if

 end for

 end for

 l_start ← l_stop + 1

 l_stop ← numOf(temp_clust)

 end while

 if numOf(temp_clust) ≥ minObj then

 clusterObj.add(temp_clust)

 else

 if numOf(temp_clust) = 1 then

 noiseObj.add(temp_clust)

 else

 clusterObj.add(temp_clust)

 end if

 end if

 if numOf(noiseObj) + numOf(clusterObj) = numOf(sampleObj) then

 break

 end if

end while

return clusterObj, noiseObj

Robotics 2023, 12, 157 15 of 28

Figure 12. 2D map reference generated from the occupancy grid map of 2D SLAM.

Random sample consensus (RANSAC) [50] is then performed to generate 2D

reference lines (black lines in Figure 11 step 3) based on the 2D map reference and

the cluster. The line equations used in the RANSAC are as follows; !BY� = �BY��BY� + �BY� (38)

�BY� = !: − !��: − �� (39)

�BY� = tan� �BY� (40)

The slope �BY� is calculated using the gradient value of two sample points, (x1, y1)

and (x2, y2). Then, its y-intercept �BY� can be known from the sample point (�BY� , !BY�),

and its angle �BY� can be known from the �BY� value. This process is also explained

in Algorithm 2.

Step 4. In this step, DBSCAN clustering is performed to the RANSAC results of step 3. It

generates new clusters for the 2D map reference nodes as a correction of the previous

results. Next, RANSAC is applied to the new clusters to generate new 2D reference

lines (light blue lines in Figure 11 step 4). These 2D reference lines are used as the

final references to rotate and translate all 3D objects in the last step.

Step 5. All 3D objects are re-rotated and re-translated using the last references from step 4. It

is a correction of the rotation and translation in the first step. Finally, ground information

from the occupancy grid map of 2D SLAM is combined with the result of this step. This

is the final rendering result of 3D surface reconstruction, as shown in Figure 11.

As described in Figure 6, the 2D–3D combination is run on the PC controller. Since the

2D SLAM tends to accumulate errors before a loop closure, this process is executed every three

time steps after the loop closure is detected. On the mobile robot, both 2D and 3D data are

captured at the same time, and thus they represent the same object. However, due to sensors

and the object extraction accuracy, they are not exactly aligned. Therefore, we performed an

alignment process in the 2D–3D combination method to improve the 3D map accuracy.

3.4. Communication System

The combination of Wi-Fi and LoRa is configured based on each communication

protocol, i.e., transmission control protocol/internet protocol (TCP/IP) and serial protocol,

respectively. Figure 13 depicts the communication system architecture. The connection

manager algorithm manages all network switching processes using a cFlag parameter, as

explained in Algorithm 3.

Robotics 2023, 12, 157 16 of 28

Figure 13. Communication system architecture.

Algorithm 2: RANSAC

Input: sampleData, maxIteration, inliersTh

Output: bestM, bestB, bestTheta

maxInliers ← –1

for i ← 1 to maxIteration do

 rand1 ← random(sampleData)

 rand2 ← random(sampleData)

 while rand1 = rand2 do

 rand2 ← random(sampleData)

 end while

 mrsc ←
B�31u.| B�31Z.|B�31u.y B�31Z.y

 brsc ← rand1.y – mrsc rand1.x

�

rsc ← tan� �BY�

 countInliers ← 0

 for j ← 1 to length(sampleData) do

 if |�rsc| ≤ 45.0 then

 newX ← sampleDataj.x

 newY ← mrsc newX + brsc

 else

 newY ← sampleDataj.y

 newX ←
30�� D���E���

 end if

 dist ← distEuc(new.XY, sampleDataj)

 if dist ≤ inliersTh then

 countInliers ← countInliers + 1

 end if

 end for

 if countInliers > maxInliers then

 maxInliers ← countInliers

 bestM ← mrsc

 bestB ← brsc

 bestTheta ← �rsc

 end if

end for

return bestM, bestB, bestTheta

In addition, different encoding and decoding strategies are applied to the system, i.e.,

ASCII coding for Wi-Fi and binary coding for LoRa, which are not the focus of this paper.

The reason for using ASCII coding for Wi-Fi is that the 2D LiDAR output is already in

Robotics 2023, 12, 157 17 of 28

ASCII format, and the data size can be compensated by the Wi-Fi bandwidth (353 kbps–9

Mbps). On the other hand, binary coding is required for LoRa to compress all data as it

has low bandwidth (6.01 kbps–22 kbps). Therefore, real-time applications can be

performed by the system using both communication bandwidths.

Algorithm 3: Connection Manager

Input: IPaddr, tcpPort, tcpTimeout, comPort, serBaud, serTimeout

Output: cFlag

connTCP ← tcpconfig(IPaddr, tcpPort, tcpTimeout)

connSer ← serconfig(comPort, serBaud, serTimeout)

cFlag ← 1

while True do

 if cFlag = 1 then

 try

 funcTxRx(connTCP)

 catch

 cFlag ← 0

 end try

 else

 funcTxRx(connSer)

 end if

end while

4. Results and Discussion

4.1. 3D Object Extraction Evaluation

First, the standard GNG algorithm, FastGNG, and simplified FastGNG were compared for the

same input dataset in our laboratory. All ran the object detection without post-processing

methods. Table 2 summarizes the results.

Table 2. Comparison between standard GNG algorithm, FastGNG, and simplified FastGNG.

Standard GNG

No. No. of Nodes
No. of

Connections
Iteration/Phase Time [ms] Mean Time [ms]

1 150 159 3700 58.3

67.9

2 150 165 3780 61.8

3 150 171 4120 85.7

4 150 164 4070 68.3

5 150 166 3840 65.4

FastGNG

1 148 278 3 22.5

22.2

2 149 269 3 23.2

3 152 297 3 21.2

4 151 278 3 21.5

5 150 285 3 22.8

Simplified FastGNG

1 155 146 3 13.6

16.2

2 144 132 3 18.2

3 158 143 3 17.3

4 152 137 3 16.0

5 145 130 3 15.8

It is difficult to run for the same number of nodes in each trial, especially for FastGNG

and simplified FastGNG, since they use phase level (iP). Based on the results, the standard

GNG algorithm has the highest computational cost. It really depends on the number of

iterations. On the other hand, the FastGNG algorithm runs faster. It is roughly three times

faster than the standard GNG algorithm. The simplified FastGNG has a similar

Robotics 2023, 12, 157 18 of 28

performance as the FastGNG. It uses the same core as in the FastGNG algorithm, however,

in a simpler way, to achieve improved performance for the proposed system. In this case,

we set the max_phase = 3 as the limit.

In order to evaluate the performance of the 3D object extraction method, 3D point

cloud datasets from our laboratory were used. The datasets, which have the same

resolution of 640×480 pixels, were previously recorded using the LiDAR camera as

described in Section 2.1. All parameter seHings for the evaluation can be seen in Table 3.

Figure 14 shows the detection results, while the performance is summarized in Table 4. In

the experiments, all post-processing methods were also performed. Based on the results,

the proposed method can achieve the mean performance of 31.15 fps. That will be difficult

to achieve when using the standard GNG algorithm, which has the mean execution time

of 67.9 ms (14.73 fps) without any post-processing methods. This implementation is

necessary, as we need to maintain all algorithms to be real-time capable in order to realize

the target of this system.

Table 3. Parameter seHings for 3D object extraction.

Parameter Value Definition � 3.9 Constant for generating a set of sample nodes A � 1.55 Constant for �3410�2� �� d� = 0.225 m, d: = 0.150 m, de = 0.100 m
Minimum length of a connection in the network for each

phase level iP �� h� = 0.300 m, h: = 0.225 m, he = 0.175 m
Maximum length of a connection in the network for each

phase level iP �� n� = 10, n: = 8, ne = 6 Internal loop parameter for mini-batch learning ¢£, ¢¤, ¢¥ zy = 0.080 m, z| = 0.035 m, z} = 0.080 m Thresholds for ground removal ¦§, ¦¨ �� = 0.01, �: = −0.95 Thresholds for open loop connection ª£, ª¤, ª¥ xy = 0.2 m, x| = 0.2 m, x} = 0.2 m Thresholds for node evaluation «£, «¤, «¥ �y = 0.06 m, �| = 0.06 m, �} = 0.06 m Thresholds for connection evaluation

(a) (b) (c)

(d) (e) (f)

Figure 14. 3D object extraction results. White dots are the point cloud data. Colored dots and colored

lines are the nodes and connections, respectively. Different colors indicate different clusters. (a–f)

Point cloud 1–6 for experiments.

Robotics 2023, 12, 157 19 of 28

Table 4. 3D object extraction performance.

No.
Input

Image

No. of Points in

Point Cloud

No. of

Nodes

No. of

Connections

No. of

Clusters

Min Distance

between Nodes

Max Distance

between Nodes

Time

[ms]

1 Figure 14a 8586 77 80 8 0.100 m 2.430 m 32.7

2 Figure 14b 11,647 48 49 3 0.100 m 3.210 m 27.6

3 Figure 14c 10,455 61 67 5 0.100 m 3.180 m 34.6

4 Figure 14d 10,802 80 86 2 0.102 m 1.575 m 35.6

5 Figure 14e 13,948 54 60 1 0.102 m 1.217 m 32.1

6 Figure 14f 14,094 70 76 2 0.100 m 0.560 m 30.0

Frame Rate: Mean =
� ¬e:.� +¬ = 31.15 fps; Min =

� ¬e.® +¬ = 28.09 fps; Max =
� ¬:¯.® +¬ = 36.23 fps

Another important thing is the data compression. Remember that we need to send

all monitoring data using both Wi-Fi and LoRa networks. It is impossible to send all raw-

point cloud data using low-bandwidth communication. Due to bandwidth restrictions,

real-time performance will not be achieved, and there will be a data loss problem. Thus,

the simplified FastGNG solves the problem by compressing the data size while at the same

time maintaining its performance in real time. The trade-off is, of course, the map quality.

Higher compression results in faster data transmission time but lower map quality, and

vice versa. However, compared to our previous work using particle swarm optimization-

seeded region growing (PSO-RG) [51], which has a mean performance of 11.3 fps, the

simplified FastGNG offers a beHer balance between data compression, accuracy, and

computational cost. Furthermore, the PSO-RG limits each cluster to only eight nodes,

which is much less than the simplified FastGNG results (48–80 in Table 4), making it more

accurate to represent the detected objects. Even though the data size is approximately six

to ten times larger, the communication bandwidth can still handle it.

4.2. Real-Time Experimental Results

We performed fifteen trials to evaluate the proposed methods. All of them were run

on the proposed system in real time. There are configurations of Wi-Fi to LoRa, LoRa only,

and Wi-Fi only, each of which are conducted five times. The environmental condition for

experiments is shown in Figure 5. However, the placement of the objects in it may change.

The parameter seHings for the experiments are shown in Table 5. These parameters are

used in the 2D–3D combination method to build a 3D map.

Table 5. Parameter seHings for 2D–3D combination method.

Parameter Value Definition

thetaTh 10° DBSCAN clustering rotation threshold

dEps
0.10 m (step 2) 0.15 m

(step 4)
DBSCAN clustering minimum search radius

minObj 2 DBSCAN clustering minimum number of objects

maxIteration 1.5 n
RANSAC maximum iteration. n is the number of sample

data

inliersTh 0.10 m (step 3, 4) RANSAC inlier threshold

Table 6 shows the computational costs of the experiments. The mobile robot observes

2D and 3D data in parallel, and hence the computational cost in it will be the longest time.

Figure 15 depicts the 3D map results. In Figure 15a, the mobile robot performed both the

observation task and the command task. Therefore, the mobile robot final position is

different from Figure 15b,c, which only performed the observation task. Similarly, the

map density is also different due to the difference in the amount of data sent by the mobile

robot to the PC controller. In the experiments, the mobile robot reached an average speed

of 0.15 m/s (maximum 0.46 m/s), which depended on the track length and obstacles.

Robotics 2023, 12, 157 20 of 28

Table 6. Computational costs of real-time experiments.

PC Controller

No. Network

Data Transmission

Time [ms]

Mean of 50+ Data

Mean

[ms]

2D SLAM and 2D–3D

Combination [ms]

Mean of 50+ Data

Mean

[ms]

Data Size [KB]

Mean of 50+ Data
Mean [KB]

1

Wi-Fi to LoRa

273

274

93

98

0.727

0.734

2 266 92 0.740

3 277 106 0.735

4 272 96 0.718

5 280 106 0.752

6

LoRa

570

625

89

99

0.463

0.471

7 703 106 0.472

8 618 102 0.474

9 577 98 0.471

10 659 103 0.475

11

Wi-Fi

17

18

109

112

0.926

0.932

12 23 108 0.928

13 16 116 0.936

14 17 109 0.914

15 18 118 0.936

Mobile Robot

 Hardware Sampling Rate Algorithm Encoding Total

2D Data 2D LiDAR 25 fps (40 ms) 3× Downsampling: 10 ms 5 ms 55 ms

3D Data LiDAR Camera 30 fps (33 ms) Simplified FastGNG: 32.1 ms (mean) 10 ms 75.1 ms

Total Computational Cost

Wi-Fi to LoRa 274 ms + 98 ms + 75.1 ms = 447.1 ms (2.24 Hz)

LoRa 625 ms + 99 ms + 75.1 ms = 799.1 ms (1.25 Hz) (main target)

Wi-Fi 18 ms + 112 ms + 75.1 ms = 205.1 ms (4.88 Hz)

Figure 16 explains the missions of Figure 15a step by step, where the system switched

the network automatically from Wi-Fi to LoRa in the middle of the observation task. Then,

in the command task, the operator commanded the mobile robot to go to a specific

position in the map by using the command buHons on the GUI. Of course, there are some

delays for monitoring data when using the LoRa network compared with the Wi-Fi

network. This is caused by the low bandwidth of LoRa.

Based on the results in Table 6, the data transmission time is different among different

network configurations, and obviously Wi-Fi is the fastest network. The 2D SLAM and

2D–3D combination are performed in the PC controller, and hence they all have similar

results. Lastly for data size, as mentioned earlier, we used different strategies for data

coding methods between Wi-Fi and LoRa networks. ASCII coding is used for Wi-Fi and

binary coding is used for LoRa. Therefore, the mean LoRa data size is smaller than the

mean Wi-Fi data size. When using the Wi-Fi to LoRa configuration, the data are coded

either using ASCII or using binary coding corresponding to the current network that the

system uses. On the mobile robot side, there are two kinds of data sent to the PC controller,

i.e., 2D and 3D data. A three-time downsampling is applied to the 2D data and the

simplified FastGNG is applied to the 3D data to extract 3D objects. These result in a total

maximum computational cost of 799.1 ms, which is 1.25 Hz. Thus, the operator can obtain

the map update for at least 1.25 Hz for monitoring data. Faster updates can, of course, be

achieved when the system uses the Wi-Fi network.

Robotics 2023, 12, 157 21 of 28

(a) (b)

(c) (d)

Figure 15. 3D map results from the experiments consisting of Wi-Fi to LoRa, LoRa only, and Wi-Fi

only configurations. Red lines indicate walls or large objects, blue lines indicate small objects, and

green objects are the mobile robot. White and gray floors are empty and occupy space from 2D

SLAM, respectively. (a) Wi-Fi to LoRa configuration. (b) LoRa only configuration. (c) Wi-Fi only

configuration. (d) The ground truth of the experiments.

To evaluate the map results, we combined all fifteen maps and ploHed them in 2D

from the top point of view, as shown in Figure 17. Since the mobile robot only moves in

2D space, only the x and y-axes need to be evaluated. Compared to the ground truth in

Figure 15d, they have about the same shape and size, which are 3.95 m in width and 4.2

m in length. At the same time, the results show that the proposed method has good

repeatability from all fifteen trials with different network configurations.

There is one more scenario for the system to perform real-time observation and 3D

map building. Figure 18 depicts the map results. The environmental condition is the same

but with different object placements. The LoRa network was used and resulted in similar

performance as in Table 6. These results also confirm the feasibility of the proposed

method for performing real-time 3D map building under the system restrictions.

Robotics 2023, 12, 157 22 of 28

(a) (b)

(c) (d)

(e) (f)

Figure 16. An example of missions performed by the system. (a–d) are the observation task while

(e,f) are the commands task. The view showing the mobile robot is not part of the system. This is a

separate camera for recording the mobile robot movements. (a) Mobile robot started the missions

using the Wi-Fi network. (b) In the middle of the missions, the Wi-Fi network was turned off. (c)

Three seconds after the Wi-Fi being turned off, the system switched to the LoRa network. (d) The

system used the LoRa network for the rest of the missions. (e) The operator commanded the mobile

robot to go to a specific location in the map. (f) Final results of the missions.

4.3. Discussion

In order to achieve real-time application of the system, all implemented algorithms

need to have real-time capabilities, as depicted in Figure 6. The more data for the

algorithms, the higher the accuracy of the results. However, the computational costs may

also increase. Therefore, it is very important in this system to maintain a balance between

the amount of data and its accuracy. In mobile robot operations, at least an operator is

needed not only to control, but also to monitor the mobile robot’s behaviors in performing

the missions. Hence, real-time capabilities should be considered since they enable not only

direct results, but also real-time responses between the operator and the mobile robot. In

[22], it defines a real-time target for 3 s. This paper, however, is targeted at 1 s (1 Hz). We

considered it based on the implemented hardware in the system, and it was confirmed by

the experimental results.

Robotics 2023, 12, 157 23 of 28

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Combination of all maps from the experiments. (a) Combination of five 2D maps from

Wi-Fi to LoRa configuration. (b) Combination of five 2D maps from LoRa configuration. (c)

Combination of five 2D maps from Wi-Fi configuration. (d) Combination of fifteen 2D maps from

all network configurations. (e) Combination of five 3D maps from Wi-Fi to LoRa configuration. (f)

Combination of five 3D maps from LoRa configuration. (g) Combination of five 3D maps from Wi-

Fi configuration. (h) Combination of fifteen 3D maps from all network configurations.

(a) (b) (c)

Figure 18. Experimental results with different object placements. (a) 3D map result. (b) 2D

occupancy grid map. (c) The ground truth of the experiment.

As depicted in Figure 4, there are several tasks running in parallel on the mobile robot

while observing the environment. The FLC wall path follower and obstacle avoidance are

running in the background to handle the mobile robot’s movements. Regarding the

mobile robot speed, we defined in the FLC controller that 0.2 m/s is the medium speed,

less than 0.1 m/s is the slow speed, and more than 0.4 m/s is the fast speed. Based on the

experimental results, the mobile robot is able to reach a maximum speed of 0.46 m/s with

an average speed of 0.15 m/s. This is a car-like mobile robot, and thus it also needs to go

Robotics 2023, 12, 157 24 of 28

backward to avoid the obstacles. All the above experiments, of course, run in parallel with

the background programs. In addition, we also installed an active cooling fan to maintain

the Raspberry Pi CPU temperature. Figure 19 shows the CPU performance when running

the missions. There are configurations of Wi-Fi to LoRa, LoRa only, and Wi-Fi only. The

missions were started at around 5 s, and then both CPU temperature and CPU usage

started to rise. When using the Wi-Fi network, the CPU usage is lower than when using

the LoRa network. This is caused by the program architecture. One additional thread is

added for the LoRa network to help the communication thread. It performs timeout

recovery algorithms to prevent data loss on the LoRa network [40], as all data are

important for the mapping process. It is worth noting that when the CPU temperature

rises to 80–85 °C, the CPU will start to slow down and reduce all clocks, as wriHen in the

Raspberry Pi documentation. In the worst case, the simplified FastGNG algorithm may

drop to 10 fps when the CPU throHling happens. Hence, the implementation of the active

cooling is very important.

(a) (b)

Figure 19. Raspberry Pi CPU performance when running the missions. (a) Raspberry Pi CPU and

memory usage. (b) Raspberry Pi CPU temperature.

Modern SLAM algorithms, such as ORB-SLAMs [29–31], can also run in real time on

embedded systems [32,33]. Since they require three or more threads to achieve real-time

performance, it is difficult for this system to be implemented. Instead, we run the mapping

algorithms on the PC controller and focus the mobile robot on data observation. Under

embedded systems, ORB-SLAMs can achieve a performance of 2.2–12.69 fps (454–79 ms)

[32]. If we only compare the mapping algorithms, the proposed method can perform

competitively, which is 8.9–10.2 fps (112–98 ms in Table 6).

In contrast to [28], which prioritizes quality and repeatability, this paper prioritizes

repeatability (Figure 17) and real-time performance under low-cost hardware limitations

to perform 3D mapping. This is one of our novelties, as most of the state-of-the-art focuses

on how to construct a 3D map for beHer quality but ignores real-time processing [23–25].

This will make real-time control and observation difficult to realize, even more so for low-

cost devices. Of course, this is a trade-off between data size, accuracy, and computational

cost. In this paper, we balance all of them to achieve the target of the proposed system.

Thus, the drawback of this work is map quality, as it is nearly impossible to send the

amount of data under low-bandwidth communication in real time.

The advantage of our proposed approach is the use of low-bandwidth

communication. The combination of high and low-bandwidth networks is also developed

in [2,32]. All of them confess that the network combination improves the robustness of

Robotics 2023, 12, 157 25 of 28

wireless communication for mobile robot applications. However, they still require the

high-bandwidth network to build a full 3D map and complete the missions. Our system,

on the other hand, enables complete network switching. This means that all observation

data for 3D mapping can be sent to the host using either the high or low-bandwidth

network, even when the main network is completely lost. This brings us to another

novelty of this paper, as, to the best of the authors’ knowledge, there are no similar works

performing real-time 3D map building under low-bandwidth networks.

The first step of the 2D–3D combination method, rotation and translation, is actually

sufficient to represent the environment as a 3D map. The reason for applying the other

processes is accuracy. Next, RANSAC is also a bit time consuming. In this case, we set the

maxIteration parameter to 1.5 n, where n is the number of sample data.

As explained in Section 2, C++ is used in the mobile robot and MATLAB is used in

the PC controller. MATLAB has a MATLAB Coder, which generates C/C++ code directly

from MATLAB code. This is very important to be implemented as it can run more than

ten times faster than native MATLAB code. Table 6 shows how fast the algorithms (2D

SLAM and 2D–3D combination) can be executed by the PC controller.

The challenge of the proposed approach is the number of parameters. We found that

it is difficult to obtain appropriate results without understanding the input data

characteristics. We have to set the parameters step by step based on the purpose of each

algorithm. It is difficult to jump to the next parameters if the previous parameters are not

stable yet. For example, seHing the parameters for six post-processing methods after the

simplified FastGNG algorithm. We must first successfully remove the ground nodes

before adjusting the second method, and so forth.

The compressed data size for LoRa is around 0.471 KB (mean). This enables a real-

time transmission time of 627 ms (625 ms in experiments) with a speed of 6.01 kbps. By

using the compression ratio for 2D and 3D data, the raw data size for LoRa can be

estimated to be 11.492 KB. It will take around 15.29 s to send the uncompressed data using

LoRa, making the real-time target completely impossible when using the low-bandwidth

communication. The Wi-Fi transmission speed can also be estimated to be 414.22 kbps,

where the data size is 0.932 KB and the transmission time is 18 ms. However, Wi-Fi can

certainly perform much faster since it can stream videos in real-time.

There are two restrictions in the proposed system, i.e., limited onboard computing

resources and low-bandwidth communication. Compared with [2,22,23,28], it is difficult

to achieve the real-time target under those two restrictions. Therefore, we developed the

proposed method to address the problems. It proved the ability to achieve the target of 1

Hz refresh rate, which is our design system for enabling real-time control and monitoring

for the operator. The combination of Wi-Fi and LoRa makes the system robust against

network problems. The developed algorithms are lightweight and can be installed on

relatively low-cost hardware. Parallel computing is also performed as the system uses a

shared control method to run all the algorithms. Finally, real-time 3D map building can

be conducted using both high and low-bandwidth networks.

5. Conclusions

3D visualization of the real world is becoming increasingly important. In robotics, it

is not only required for intelligent control, but also necessary for operators to provide

intuitive visualization. However, due to the increase in the amount of data, real-time

processing is becoming a challenge, even more so for low-cost mobile devices. Therefore,

in order to address this problem, we propose a real-time 3D map building based on the

combination of 2D SLAM and 3D objects that can be applied to low-cost hardware.

Starting with 2D–3D data observation and 3D object extraction, all observation data

are sent wirelessly from the mobile robot to the PC controller to create a 3D map. First, the

2D SLAM algorithm is run by the PC controller to build a 2D map based on the 2D

observation data. Then, the simplified FastGNG algorithm, which is run by the mobile

robot, compresses 3D point cloud data as 3D objects. It gives the system a balance between

Robotics 2023, 12, 157 26 of 28

data size, accuracy, and computational cost, and thus enables real-time data transmission

even though the low-bandwidth communication is used. Lastly, the 2D–3D combination

method is applied to create a 3D map in the PC controller. This combines the 2D data from

2D SLAM and 3D objects from the simplified FastGNG algorithm. The low-bandwidth

communication using the LoRa network is actually the main target, as it restricts not only

the data size, but also the data transmission speed.

The results show that the proposed method can perform a minimum 1.25 Hz refresh

rate, which is real-time capable. It means that the operator will obtain the map update for

at least 1.25 Hz for one monitoring data. This proves that the target of a 1 Hz refresh rate

can be achieved by the proposed method. Of course, a higher refresh rate can be achieved

when the system uses the Wi-Fi network.

In addition, the combination of high and low-bandwidth networks also enables the

system to maintain its client–server communication. Therefore, the missions can be

continued, and real-time monitoring can still be performed even if the system loses the

Wi-Fi network completely.

In future work, we will improve the LoRa performance since it is still far from its

maximum bandwidth. The data may also need to be compressed using another

compression technique that makes it smaller in size. In addition, we want to try more

complex environments to see what further improvements are needed for the algorithms.

Author Contributions: Conceptualization, A.J. and H.M.; methodology, A.J., H.M., K.S., T.M. and

N.T.; software, A.J.; validation, H.M.; formal analysis, A.J., H.M., K.S., T.M. and N.T.; investigation,

A.J.; resources, A.J. and H.M.; data curation, A.J. and H.M.; writing—original draft preparation, A.J.;

writing—review and editing, A.J. and H.M.; visualization, A.J.; supervision, A.J., H.M., K.S., T.M.

and N.T.; project administration, H.M. All authors have read and agreed to the published version of

the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the

corresponding author within a certain period of time.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, B.; Dai, H.; Li, Z.; Huang, W. Efficient planar surface-based 3D mapping method for mobile robots using stereo vision.

IEEE Access 2019, 7, 73593–73601.

2. Schwarz, M.; Rodehutskors, T.; Droeschel, D.; Beul, M.; Schreiber, M.; Araslanov, N.; Ivanov, I.; Lenz, C.; Razlaw, J.; Schuller, S.; et al.

NimbRo rescue: Solving disaster-response tasks with the mobile manipulation robot momaro. J. Field Robot. 2016, 34, 400–425.

3. Tian, Y.; Liu, K.; Ok, K.; Tran, L.; Allen, D.; Roy, N.; How, J.P. Search and rescue under the forest canopy using multiple UAVs.

Int. J. Robot. Res. 2020, 39, 1201–1221.

4. Okada, K.; Kagami, S.; Inaba, M.; Inoue, H. Plane segment finder: Algorithm, implementation and applications. IEEE Int. Conf.

Robot. Autom. 2001, 2, 2120–2125.

5. Geromichalos, D.; Azkarate, M.; Tsardoulias, E.; Gerdes, L.; Petrou, L.; Pulgar, C.P.D. SLAM for autonomous planetary rovers

with global localization. J. Field Robot. 2019, 37, 830–847.

6. Yin, H.; Wang, Y.; Tang, L.; Ding, X.; Huang, S.; Xiong, R. 3D LiDAR map compression for efficient localization on resource

constrained vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 837–852.

7. Inaba, M.; Kagami, S.; Kanehiro, F.; Hoshino, Y.; Inoue, H. A platform for robotics research based on the remote-brained robot

approach. Int. J. Robot. Res. 2000, 19, 933–954.

8. Ding, L.; Nagatani, K.; Sato, K.; Mora, A.; Yoshida, K.; Gao, H.; Deng, Z. Terramechanics-based high-fidelity dynamics

simulation for wheeled mobile robot on deformable rough terrain. In Proceedings of the 2010 IEEE International Conference on

Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4922–4927.

9. Li, W.; Ding, L.; Gao, H.; Tavakoli, M. Haptic tele-driving of wheeled mobile robots under nonideal wheel rolling, kinematic

control and communication time delay. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 336–347.

10. Li, Y.; Li, M.; Zhu, H.; Hu, E.; Tang, C.; Li, P.; You, S. Development and applications of rescue robots for explosion accidents in

coal mines. J. Field Robot. 2019, 37, 466–489.

11. Takemori, T.; Miyake, M.; Hirai, T.; Wang, X.; Fukao, Y.; Adachi, M.; Yamaguchi, K.; Tanishige, S.; Nomura, Y.; Matsuno, F.; et al.

Development of the multifunctional rescue robot FUHGA2 and evaluation at the world summit 2018. Adv. Robot. 2019, 34, 119–131.

Robotics 2023, 12, 157 27 of 28

12. Jeong, I.B.; Ko, W.R.; Park, G.M.; Kim, D.H.; Yoo, Y.H.; Kim, J.H. Task intelligence of robots: Neural model-based mechanism of

thought and online motion planning. IEEE Trans. Emerg. Topics Comput. Intell. 2017, 1, 41–50.

13. Kamarudin, K.; Shakaff, A.Y.M.; Bennetts, V.H.; Mamduh, S.M.; Zakaria, A.; Visvanathan, R.; Yeon, A.S.A.; Kamarudin, L.M.

Integrating SLAM and gas distribution mapping (SLAM-GDM) for real-time gas source localization. Adv. Robot. 2018, 17, 903–917.

14. Aguiar, A.S.; Santos, F.N.d.; Cunha, J.B.; Sobreira, H.; Sousa, A.J. Localization and mapping for robots in agriculture and

forestry: A survey. Robotics 2020, 9, 97. hHps://doi.org/10.3390/robotics9040097.

15. Iqbal, J.; Xu, R.; Sun, S.; Li, C. Simulation of an autonomous mobile robot for LiDAR-based in-field phenotyping and navigation.

Robotics 2020, 9, 46. hHps://doi.org/10.3390/robotics9020046.

16. Balta, H.; Bedkowski, J.; Govindaraj, S.; Majek, K.; Musialik, P.; Serrano, D.; Alexis, K.; Siegwart, R.; Cubber, G.D. Integrated

data management for a fleet of search-and-rescue robots. J. Field Robot. 2016, 33, 539–582.

17. Brooks, R.A. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 1986, 2, 14–23.

18. Jiang, C.; Ni, Z.; Guo, Y.; He, H. Pedestrian flow optimization to reduce the risk of crowd disasters through human-robot

interaction. IEEE Trans. Emerg. Topics Comput. Intell. 2020, 4, 298–311.

19. Whyte, H.D.; Bailey, T. Simultaneous localization and mapping (SLAM): Part I the essential algorithms. IEEE Robot. Autom. Mag.

2006, 13, 99–110.

20. Tsubouchi, T. Introduction to simultaneous localization and mapping. J. Robot. Mechatron. 2019, 31, 367–374.

21. Huang, J.; Junginger, S.; Liu, H.; Thurow, K. Indoor positioning systems of mobile robots: A review. Robotics 2023, 12, 47.

hHps://doi.org/10.3390/robotics12020047.

22. Li, M.; Zhu, H.; You, S.; Wang, L.; Tang, C. Efficient laser-based 3D SLAM for coal mine rescue robots. IEEE Access 2018, 7, 14124–14138.

23. Memon, E.A.A.; Jafri, S.R.U.N.; Ali, S.M.U. A rover team based 3D map building using low cost 2D laser scanners. IEEE Access

2021, 10, 1790–1801.

24. Xie, Y.; Zhang, Y.; Chen, L.; Cheng, H.; Tu, W.; Cao, D.; Li, Q. RDC-SLAM: A real-time distributed cooperative SLAM system

based on 3D LiDAR. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14721–14730.

25. Ding, X.; Wang, Y.; Li, D.; Tang, L.; Yin, H.; Xiong, R. Laser map aided visual inertial localization in changing environment. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5

October 2018; pp. 4794–4801.

26. Mu, L.; Yao, P.; Zheng, Y.; Chen, K.; Wang, F.; Qi, N. Research on SLAM algorithm of mobile robot based on the fusion of 2D

LiDAR and depth camera. IEEE Access 2020, 8, 157628–157642.

27. Jin, Z.; Shao, Y.; So, M.; Sable, C.; Shlayan, N.; Luchtenburg, D.M. A multisensor data fusion approach for simultaneous

localization and mapping. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland,

New Zealand, 27–30 October 2019; pp, 1317–1322.

28. Maset, E.; Scalera, L.; Beinat, A.; Visintini, D.; GaspareHo, A. Performance investigation and repeatability assessment of a mobile

robotic system for 3D mapping. Robotics 2022, 11, 54. hHps://doi.org/10.3390/robotics11030054.

29. Artal, R.M.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.

2015, 31, 1147–1163.

30. Artal, R.M.; Tardos, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans.

Robot. 2017, 33, 1255–1262.

31. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An accurate open-source library for visual,

visual-inertial and multi-map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890.

32. Silveira, O.C.B.; de Melo, J.G.O.C.; Moreira, L.A.S.; Pinto, J.B.N.G.; Rodrigues, L.R.L.; Rosa, P.F.F. Evaluating a visual

simultaneous localization and mapping solution on embedded platforms. In Proceedings of the 2020 IEEE 29th International

Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 530–535.

33. Peng, T.; Zhang, D.; HeHiarachchi, D.L.N.; Loomis, J. An evaluation of embedded GPU systems for visual SLAM algorithms.

Intl. Symp. Electron. Imaging 2020, 2020, 325-1. hHps://doi.org/10.2352/ISSN.2470-1173.2020.6.IRIACV-325.

34. Sallum, E.; Pereira, N.; Alves, M.; Santos, M. Improving quality-of-service in LoRa low-power wide-area networks through

optimized radio resource management. J. Sens. Actuator Netw. 2020, 9, 10. hHps://doi.org/10.3390/jsan9010010.

35. Zhou, Q.; Zheng, K.; Hou, L.; Xing, J.; Xu, R. Design and implementation of open LoRa for IoT. IEEE Access 2019, 7, 100649–100657.

36. Mahmood, A.; Sisinni, E.; Guntupalli, L.; Rondon, R.; Hassan, S.A.; Gidlund, M. Scalability analysis of a LoRa network under

imperfect orthogonality. IEEE Trans. Ind. Informat. 2019, 15, 1425–1436.

37. Lewis, J.; Lima, P.U.; Basiri, M. Collaborative 3D scene reconstruction in large outdoor environments using a fleet of mobile

ground robots. Sensors 2023, 23, 375. hHps://doi.org/10.3390/s23010375.

38. Kagawa, T.; Ono, F.; Shan, L.; Miura, R.; Nakadai, K.; Hoshiba, K.; Kumon, M.; Okuno, H.G.; Kato, S.; Kojima, F. Multi-hop

wireless command and telemetry communication system for remote operation of robots with extending operation area beyond

line-of-sight using 920 MHz/169 MHz. Adv. Robot. 2020, 34, 756–766.

39. Mascarich, F.; Nguyen, H.; Dang, T.; Khattak, S.; Papachristos, C.; Alexis, K. A self-deployed multi-channel wireless communications

system for subterranean robots. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–8.

40. Junaedy, A.; Masuta, H.; Sawai, K.; Motoyoshi, T.; Takagi, N. LPWAN-based real-time 2D SLAM and object localization for

teleoperation robot control. J. Robot. Mechatron. 2021, 33, 1326–1337.

41. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LiDAR SLAM. In Proceedings of the 2016 IEEE

International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

Robotics 2023, 12, 157 28 of 28

42. Kaess, M.; Williams, S.; Indelman, V.; Roberts, R.; Leonardo, J.J.; Dellaert, F. Concurrent filtering and smoothing. In Proceedings

of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 1300–1307.

43. GriseHi, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2,

31–43.

44. Junaedy, A.; Masuta, H.; Kubota, N.; Sawai, K.; Motoyoshi, T.; Takagi, N. Object extraction method for mobile robots using fast

growing neural gas. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, 4–7

December 2022; pp. 962–969.

45. FriMke, B. A growing neural gas network learns topologies. Intl. Conf. Neural Informat. Process. Syst. 1995, 7, 625–632.

46. Kubota, N. Multiscopic topological twin in robotics. In Proceedings of the 28th International Conference on Neural Information

Processing, Bali, Indonesia, 8–12 December 2021.

47. Iwasa, M.; Kubota, N.; Toda, Y. Multi-scale batch-learning growing neural gas for topological feature extraction in navigation

of mobility support robot. In Proceedings of the 7th International Workshop on Advanced Computational Intelligence and

Intelligent Informatics (IWACIII 2021), Beijing, China, 31 October–3 November 2021. hHps://doi.org/10.20965/ijat.2023.p0206.

48. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland,

OR, USA, 2–4 August 1996; pp. 226–231.

49. Wang, W.; Zhang, Y.; Ge, G.; Yang, H.; Wang, Y. A new approach toward corner detection for use in point cloud registration.

Remote Sens. 2023, 15, 3375. hHps://doi.org/10.3390/rs15133375.

50. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fiHing with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395.

51. Junaedy, A.; Masuta, H.; Sawai, K.; Motoyoshi, T.; Takagi, N. A plane extraction method for embedded computers in mobile

robots. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7

December 2021; pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury

to people or property resulting from any ideas, methods, instructions or products referred to in the content.

