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Abstract: This paper presents a new 3D map building technique using a combination of 2D SLAM 

and 3D objects that can be implemented on relatively low-cost hardware in real-time. Recently, 3D 

visualization of the real world became increasingly important. In robotics, it is not only required for 

intelligent control, but also necessary for operators to provide intuitive visualization. SLAM is 

generally applied for this purpose, as it is considered a basic ability for truly autonomous robots. 

However, due to the increase in the amount of data, real-time processing is becoming a challenge. 

Therefore, in order to address this problem, we combine 2D data and 3D objects to create a new 3D 

map. The combination is simple yet robust based on rotation, translation, and clustering techniques. 

The proposed method was applied to a mobile robot system for indoor observation. The results 

show that real-time performance can be achieved by the system. Furthermore, we also combine high 

and low-bandwidth networks to deal with network problems that usually occur in wireless 

communication. Thus, robust wireless communication can be established, as it ensures that the 

missions can be continued even if the system loses the main network. 

Keywords: real-time 3D mapping; simultaneous localization and mapping (SLAM); mobile robot; 

low-bandwidth communication; long-range (LoRa); point cloud 

 

1. Introduction 

Representing the real world in 3D visualization became increasingly important. In 

robotics, 3D maps unlock smarter capabilities for the robots [1]; for example, 

environmental exploration and localization [2], search and rescue [3], motion planning 

and automation [4], monitoring [5], and some others. Utilization of 3D maps remains 

challenging, especially for real-time implementation using mobile devices. Due to limited 

computing and memory resources, the amount of data brings a significant burden to the 

onboard processing, which can slow down overall performance [6,7]. On the other hand, 

missions and data collection have to be continued. Therefore, data compression is 

required to handle this issue. 

In ground exploration missions, mobile robots are one of the most widely used 

technologies due to their mobility and adaptation to environments. Wheeled [8,9] or 

crawler robots [10,11] all became essential parts for both domestic and industrial 

applications. In domestic applications, they are more popular as service robots, for 

example, cleaning kitchens [12], cleaning floors such as the Roomba, and indoor 

observation [13]. Meanwhile, for industrial applications, many of them are intended for 

agriculture [14,15], hazardous tasks, saving human lives, and disaster response [16]. 

In order to work intelligently, maps are required in robot operations, even more so 

for autonomous control [17,18]. Simultaneous localization and mapping (SLAM) is 

generally applied for this purpose. It builds a map of the environment, and at the same 

time, locates the robot position on the map [19]. In addition, SLAM is also considered a 
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basic ability and is highly encouraged for explorer robots [20,21]. Apart from the reasons 

above, SLAM can be used to provide an intuitive visualization (i.e., maps) of what the 

environment looks like [22]. It helps humans beHer understand the current situation. 

These are the reasons why the development and applications of SLAM were a major 

research topic for at least the last decade. SLAM is not only used by the robots, but is also 

useful for the humans. 

In this paper, we focus on how to achieve real-time implementation of 3D map 

building. We believe that nowadays the development of SLAM and its related maHers 

should be applicable and real-time oriented. There were several techniques related to this 

concern. In [23], a combination of perpendicular 2D data from two 2D laser scanners is 

proposed. The observations are accomplished in indoor regions with two mobile robots 

in parallel. Then, translational and rotational values are applied to the perpendicular data 

to construct a 3D point cloud map. However, real-time computation cannot be achieved 

since the combination is achieved offline, which requires around fifteen minutes; similarly 

as in [24,25], where offline computation is performed. Next, the fusion of a 2D light 

detection and ranging (LiDAR) and a depth camera [26] or a stereo camera [27] was 

developed. The cameras are used to improve the accuracy of 2D SLAM. Although 

additional information was combined, only a 2.2% to 3.6% improvement can be achieved. 

Furthermore, it also results in increased computational requirements. 

Real-time implementation of large amounts of data is challenging, especially for 

processing requirements. As mentioned previously, one of the solutions is to compress 

the amount of data. The other solution is, of course, increasing the processing capability. 

In [2,22], real-time computation of 3D map building can be achieved using mobile robots. 

They use an Intel Core i7-4790K CPU 32 GB RAM and a Core i7-3555LE CPU 8 GB RAM, 

respectively. The method requires 1.56 s out of 3 s to update the map with 1.33× of data 

downsampling [22]. A mobile robot system in [28] performed 3D mapping with high 

quality and repeatability. It employs a Velodyne Puck LITE 3D laser scanner and an 

inertial measurement unit (IMU) sensor to run an online SLAM algorithm. However, in 

the implementation, the mobile robot was steered remotely using a wireless joystick, and 

the amount of data will be nearly impossible to implement on low-cost hardware to 

perform real-time observation. Modern SLAM algorithms, such as ORB-SLAMs [29–31], 

may also run in real time on embedded systems [32,33]. Nevertheless, they rely on 

multithreading, which is also limited in this system. 

In real-world situations, degraded communication may occur during missions [2], 

especially in restricted areas that require kilometers of operating distance [10]. Therefore, to 

handle this issue, we also combine high and low-bandwidth networks in the system, i.e., 

Wi-Fi and long-range (LoRa). Wi-Fi, due to its high bandwidth, has a short communication 

range and is thus easily affected by environments; for example, buildings, trees, tunnels, 

underground, sea water, and some others. LoRa, on the other hand, has a much longer 

communication range and is more robust to the environments [34]. Furthermore, LoRa can 

maintain its communication for several kilometers even in urban areas [35], and its network 

can be scaled to increase the number of nodes [36]. Similar to [37], which combines Wi-Fi 

and an RF module (200 kbps) for sharing data between two mobile robots and constructing 

a 3D map, network limitations force the system to compress the data for real-time 

performance. The difference is that we use a lower communication bandwidth of about 6.01 

kbps–22 kbps, which requires further data compression. Furthermore, they still require the 

high-bandwidth network to construct a full 3D map. 

There are two restrictions in the proposed system, i.e., limited onboard computing 

resources and low-bandwidth communication. Based on the state-of-the-art above, a new 

technique is required in order to perform real-time 3D map building. Therefore, we propose 

a new real-time 3D map building technique using the combination of 2D SLAM and 3D 

objects. The technique is applied and focused on the mobile robot system with Wi-Fi and 

LoRa as the communication networks, as shown in Figure 1. Wi-Fi is used as the main 

communication network, with LoRa serving as a backup. Multi-bandwidth networks 
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proved their impact on signal interference, shadowing, and wireless communication 

attenuation [38,39]. Hence, robust wireless communication can be established. 

 

Figure 1. System configuration overview. 

The contributions of this research can be summarized as follows: (1) The system 

utilizes low-cost devices, i.e., a Raspberry Pi controller and LoRa devices on the mobile 

robot, and an entry-level PC controller with an Intel Core i5-10210U CPU 8 GB RAM for 

controlling and monitoring the mobile robot. (2) We combine high and low-bandwidth 

networks to establish a robust wireless communication system. All observation data need 

to be sent wirelessly, creating a new data size restriction, and hence data compression is 

required. Lastly, (3) lightweight and efficient algorithms must be developed. All 

developed algorithms have to be simple, can be installed on low-cost hardware, and have 

real-time capabilities. These introduce the main target of the system, which performs the 

proposed method in real-time at a refresh rate of at least 1 Hz for both communication 

bandwidths. A real-time system is essential for operators as it gives direct results about 

environmental conditions. 3D maps will also increase intuitiveness to beHer understand 

the environment. Finally, a fully wireless communication system enables a barrier 

between the operators and observation fields, which increases safety for some crucial 

missions, such as search and rescue and disaster response. 

The rest of this paper is organized as follows. In Section 2, the system configuration 

is described. Section 3 explains the proposed approach in detail. Section 4 shows the 

experimental results with its discussion. Last but not least, Section 5 is the conclusion and 

future work. 

2. System Configuration 

2.1. Hardware Design 

In this system, there is a PC controller, a LoRa transceiver, and a mobile robot, as 

shown in Figure 1. The PC controller is used by an operator to control and monitor the 

mobile robot. It is also connected to the LoRa transceiver to communicate with the mobile 

robot through the low-bandwidth communication using LoRa devices. Figure 2 shows 

several devices installed on the mobile robot. We use a 2D LiDAR and a LiDAR camera as 

the main sensors to observe the environment. By using both sensors, 2D and 3D data can 

be provided from the mobile robot. 

 

Figure 2. Installed devices on the mobile robot. 



Robotics 2023, 12, 157 4 of 28 
 

 

The hardware specifications are summarized in Table 1. The LoRa transceiver is 

basically used to convert serial data from LoRa devices to USB signal. Thus, the PC 

controller can read the serial data and communicate with the mobile robot. The same as 

in [40], there are two LoRa devices used on the PC controller and the mobile robot to 

increase the communication bandwidth. This is intended for sending large data, such as 

2D and 3D data when using the low-bandwidth communication. 

Table 1. System hardware specifications. 

PC Controller Core i5-10210U CPU 8 GB RAM; IEEE 802.11ac (353 kbps–9 Mbps) 

LoRa Transceiver 
ES920LR 920.6-928.0 MHz ×2 (6.01 kbps–22 kbps); ES920ANT ×2 

Arduino Mega 2560 

Mobile Robot 

Dimension: 350 mm × 200 mm × 200 mm  

Rear-drive brushed DC motor 

Servo motor with Ackermann steering 

Li-Fe baHery 6.6 V/1450 mAh ×3 

H-bridge MOSFET motor driver 

Raspberry Pi 4B 4 GB RAM; IEEE 802.11ac (353 kbps–9 Mbps)  

IMU module LSM9DS1 (3-DoF accel-gyro-magneto) @100 Hz 

Rotary encoder SG2A174 ×2 (80 ppr, 200 µs rates) @5 kHz 

A/D converter module ADS1115 @860 Hz 

ES920LR 920.6-928.0 MHz ×2 (6.01 kbps–22 kbps); ES920ANT ×2 

Hokuyo 2D LiDAR UBG-04LX-F01 (240° scan angle, 0.06–4 m) @25 fps 

Intel RealSense LiDAR camera L515 (depth: 640 × 480 0.5–9 m, color: 1920 × 

1080) @30 fps 

2.2. Software Design 

We developed a graphical user interface (GUI) using MATLAB, as shown in Figure 

3. The GUI is used by the operator to interact with the mobile robot wirelessly. There are 

monitoring gauges, a connection menu, command buHons, and a canvas for drawing the 

map result in real time. 

The mobile robot has two missions or tasks, these are the observation task and 

command task. Figure 4 depicts the task flow in the system. First, the operator starts the 

mission by using the start buHon on the GUI. The GUI then sends a start command to the 

mobile robot for the observation task. 

 

Figure 3. GUI to interact with the mobile robot wirelessly. 
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Figure 4. Task flow in the system. 

In this task, the mobile robot observes the environment autonomously by sending all 

observation data to the PC controller. They communicate through the communication 

thread. This task is intended to build a map for the first time. After finishing the 

observation, both the PC controller and the mobile robot enter the command task. It 

enables the command buHons on the GUI, and thus the operator can command the mobile 

robot based on the first map result. In this task, the mobile robot performs the operator’s 

commands and all the observation data are also sent to the PC controller to update the 

map result. This is an iterative task and will be terminated when the operator presses the 

stop buHon on the GUI. 

In this system, a shared control method is applied. It means that the algorithms are 

divided to both the PC controller and the mobile robot, as explained in Figure 4. For 

example, 2D SLAM, a rapidly exploring random tree (RRT) path planning, 3D map 

building, and GUI are installed in the PC controller. Meanwhile, the mobile robot runs the 

movement and observation algorithms, such as 3D object extraction, 2D data observation, 

fuzzy logic control (FLC)-based wall follower and path follower, and obstacle avoidance. 

This method is especially useful for small robots that are unlikely to carry heavy 

computers [7]. Furthermore, parallel computing can also be performed. This paper, 

however, focuses more on the real-time 3D map building using the proposed system, 

especially with the low-bandwidth communication. In addition, all algorithms in the 

mobile robot are wriHen in C++, which is preferred for real-time applications. 

2.3. Experimental Environment 

We applied the proposed method for indoor observation in our laboratory. Figure 5 

shows the environmental condition. It has 16.59 m2 of large with a lot of cluHered objects 

inside it. All experiments were carried out in this field, including our datasets for 

simulation purposes when developing the algorithms. Based on hardware specifications, 

the objects should have a minimum height of 10 cm, and hence the 2D LiDAR sensor can 

detect them. In this system, the mobile robot is able to reach an average speed of 0.15 m/s 

(maximum 0.46 m/s). Therefore, all algorithms need to have real-time capabilities. 
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Figure 5. Environmental condition for experiments. 

3. Proposed Approach 

In order to generate a 3D map, 2D SLAM and 3D objects are combined, as depicted 

in Figure 6. This method enables the system to perform real-time observation even though 

the low-bandwidth communication is used. The exchanged data can be compressed while 

maintaining the map accuracy. The next subsections explain important parts of the 

approach. As mentioned earlier, a shared control method is applied in the system. 

Therefore, the 3D object extraction algorithm is performed by the mobile robot, while 2D 

SLAM and 2D–3D combination method are performed by the PC controller. 

 

Figure 6. Proposed approach for 3D map building. 

3.1. 2D Simultaneous Localization and Mapping (SLAM) 

Although this paper is focused on real-time 3D map building, it will be difficult to 

understand without explaining how and what kind of 2D data are used in the system. 

Hence, this subsection will briefly explain how to observe and manage the 2D data. First, 

2D observation data from the LiDAR sensor is compressed for about three-time 

downsampling [40]. The main reason is, of course, the use of LoRa as low-bandwidth 

communication. This gives the system a balance between data size and map accuracy. Then, 

the compressed 2D data will be encoded with the 3D data to be sent to the PC controller. 

On the PC controller side, we used MATLAB to develop the mapping algorithms. 

They include 2D SLAM and 2D–3D combination to construct a 3D map. MATLAB uses 

graph-based SLAM to create a 2D map [41,42]. A pose estimation of the mobile robot may 

have an error with the real pose, as well as the estimated map since they are related [43]. 

The error will increase as the mobile robot wanders throughout the environment. They 

are usually caused by the sensors’ accuracy and the environmental condition. That is why 

the graph-based SLAM has a loop closure parameter that will always try to correct the 
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errors. It determines whether or not the current mobile robot pose was previously visited. 

This is calculated within a small radius by matching the current measurement with all the 

previous measurements. SLAM is also considered as a basic fundamental problem for a 

truly autonomous robot [20], where a precise pose is needed to build a map, and the map 

is also needed to estimate the pose. Therefore, the SLAM problem can be formulated as 

follows: ����:� , �|
�:� , ��:��  (1)

where P in (1) is the graph-based SLAM probability distribution, xt is the mobile robot 

pose at a specific time or measurement, m represents the map, zt is observation data from 

the sensors, and ut is the controls of the system. Both pose and map are unknown, and 

they can be solved by calculating the observation data at the beginning of the algorithm. 

Then, probabilistic models of the observation and motion can be formulated as (2) and (3), 

respectively. ��
�|��� (2)

����|���, ��� (3)

where in (2), the observation relates to the pose, and the new pose is described by the 

previous pose and its control (3). In addition to the pose graph map, MATLAB also has an 

occupancy grid map as the output of the 2D SLAM algorithm. Figure 7a,b shows an 

example of both maps. 

The occupancy grid map is generated from the pose graph map, where every cell has 

a probabilistic value ranging from 0 (empty space) to 1 (occupied space). In the 2D–3D 

combination process, we use both the pose graph map and the occupancy grid map as the 

references for 3D objects to be combined. The pose graph map generates positions and 

orientations of the mobile robot relative to the map, and the occupancy grid map generates 

information of empty, occupied, or untraveled space. In the system, the 2D SLAM is 

executed every time step to build a 2D map. 

  
(a) (b) 

Figure 7. An example of (a) a pose graph map and (b) an occupancy grid map as the output of 2D 

SLAM. 

3.2. 3D Object Extraction 

The LiDAR camera has two outputs, i.e., color and depth. In this approach, we only 

use the depth information to extract objects using 3D analysis [44]. Figure 8 shows the 

image frame projection from the camera. 
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Figure 8. Image frame projection from the LiDAR camera. 

First, it calculates the real-world coordinates (xc, yc, and zc) using the right-angled 

triangle principle (4–6). 

�� = 
� tan ���� − ����2 � ��������   (4)

!� = 
� tan ��!� − ���"2 � ���"���"   (5)


� = 
� (6)

where xg and yg are the pixel coordinate, while zg is the depth measurement at xg, yg. FoVw 

and FoVh are the camera field of view which are 70° and 50°, respectively. resw and resh are 

the camera resolutions which are 640 pixels and 480 pixels, respectively. 

The 3D object extraction flowchart is shown in Figure 9. We developed a 

simplification of the fast-growing neural gas (FastGNG) algorithm, called simplified 

FastGNG, to extract 3D objects from the depth information or point clouds. The standard 

GNG algorithm uses an iterative method as the learning strategy [45]. Thus, it is difficult 

to increase the learning speed as a sample node is added to a current network after errors 

are accumulated with many times of sampling data. FastGNG, on the other hand, is a 

modification of the standard GNG algorithm, which has a new growing method to 

enhance the learning speed [46,47]. General objectives such as clustering, feature 

extraction, and topological mapping can be accomplished using this algorithm. 

 

Figure 9. 3D object extraction flowchart. 
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We proposed a simplification of the FastGNG algorithm to further increase the 

learning speed and match with the main purpose of this paper. The following are 

notations used in the simplified FastGNG algorithm: # : a set of 3D point cloud data (input); $ : a set of sample nodes; %&  : a 3D vector of i-th node; '&,(  : a connection between i-th and j-th node; ) : an internal loop parameter of the algorithm; *+,-, *+./ : parameters to set the minimum and maximum connection length; �01�0�2� : the probability of a sample v is the edge, v is a 3D vector; �3410�2� : the probability of adding a sample v to the network. 

The learning process is then arranged based on following steps: 

Step 1. Generate a set of sample nodes $ using �01�0�2�. This generates edge nodes of 

the depth input to simplify the learning process. The left, right, top, and boHom node 

of v should be known. 5  is a constant. The higher the  5  value, the higher the 

difference in �01�0�2� value between the edge node and the non-edge node. Hence, 

making it easier to extract the edge nodes. 

�01�0�2� = max ��9�, �9:� (7)

�9� = max �|9) − 9;| − 9) 5, |9) − 9;| − 9; 5) (8)

�9: = max (|9< − 9=| − 9< 5, |9< − 9=| − 9= 5) (9)

9) = >2 − %?0@�(A)>, 9; = >2 − %B&�"�(A)> (10)

9< = >2 − %�4C(A)>, 9= = >2 − %D4��4E(A)> (11)

Step 2. Generate two nodes using �3410�2� and connect them. Initially, set *+,- and *+./ 

to any proper value with a constant F , where a higher value results in a higher 

probability value. Then, initialize the phase level iP to 1. 

�3410�2� = ⎩⎨
⎧1.0                         *+,- ≤ 9N� ≤ *+./0.0                         9N� < *+,-              tanh QF *+./9N� R      otherwise                (12)

9N� = >2 − %YZ>, �� = arg min&∈] ‖2 − %&‖ (13)

'-_`a�,-_`a: = 1, b� = 1 (14)

Step 3. Initialize the internal loop counter iL to 0 and calculate the *+,-, *+./, and L. 

*+,- = cd�      b� = 1d:      b� = 2de      b� ≥ 3 , *+./ = ch�      b� = 1h:      b� = 2he      b� ≥ 3 (15)

) =
⎩⎪⎪
⎨⎪
⎪⎧ceil l#$n� o       b� = 1

ceil l#$n: o       b� = 2
ceil l#$ne o       b� ≥ 3

 (16)
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where d&, h&, and n& (i = {1, 2, 3}) are constants for *+,-, *+./, and L, respectively. We 

set higher values of d&, h&, and lower values of n& for a lower phase. Thus, *+,- and *+./ values are the opposite of the phase level iP. This will speed up the learning 

process in the first phase, and be slower but more detailed in the higher phases. #A 

is the number of sample nodes. 

Step 4. Generate a new node v using �3410�2� (12) and increase the loop counter iL. Then, 

calculate the nearest node �� (13) and the second nearest node �:. 

b) = b) + 1 (17)

�: = arg min&∈]\{YZ} ‖2 − %&‖ (18)

Step 5. Add the new node v (step 4) to the network with a new index r, and update the 

connection c. Skip the connection if it already exists. Go to step 4 if iL is less than L. 

%B = 2 (19)

' t'YZ,B = 1, 'Yu,B = 1, 'YZ,Yu = 0     9N� < 9N�: > 9N:'YZ,B = 1, 'YZ,Yu = 1                       otherwise               (20)

9N�: = >%YZ − %Yu> (21)

9N� = >2 − %YZ>, 9N: = >2 − %Yu> (22)

Step 6. If there are nodes having more than two connections, remove the longest connection. 

Repeat the removal process until all nodes have a maximum of two connections. 

Step 7. As a result of the connection deletion in step 6, remove the nodes having no connection 

at all, and increase the phase level iP. Stop the process when the stopping criteria are 

satisfied or iP is more than the max_phase parameter. Otherwise, return to step 3. 

b� = b� + 1 (23)

Now, let us move to the post-processing methods. These are as important as the 

simplified FastGNG in compressing the depth information and correcting defects from 

the previous step. 

3.2.1. Ground Removal 

In this system, we need to remove the ground nodes since we already have the 

ground information from the 2D SLAM. The set of the 3D point cloud data D is needed 

for this calculation. 

wx9�2� = t0     9wy < zy ∧ 9w| > z| ∧ 9w} < z}1     otherwise                                             (24)

9wy = |2y − %&�|, 9w| = ~2| − %&!~, 9w} = |2} − %&
|, b ∈ # (25)

where zy, z|, and z} are the thresholds based on the minimum distance between input 

nodes. The ground nodes having wx9(2) = 1 are then removed from their network. They 

basically have no neighbors on the y-axes, and hence we use this information to determine 

the removal process. 

3.2.2. Node Reduction 

This method reduces the nodes in a straight connection to further compress the point 

cloud data. Thus, an angle between two connections �A is used. 
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�A = cos� �⃗ ��⃗
|�⃗| ~��⃗ ~

 (26)

Vector �⃗ and ��⃗  can be known from the corresponding nodes as they have xyz-value. 

If �A is more than a specific threshold, i.e., 160°, the corresponding node can be removed 

and its connections should be updated. 

3.2.3. Open Loop Connection 

A perfect detection should have closed loop networks around the detected objects. 

Hence, this method is performed to close the open loop networks. The probability of a 

node v to be connected to the open loop nodes, �4C03�2�, is defined as follows: �4C03�2� = �� �A + �: 9� (27)

9� = >2 − %4C03�>, b ∈ $ (28)

where �A is the same as (26). By using a positive value of �� and a negative value of �:, 

the �4C03�2� prioritizes nodes having a larger angle and shorter distance to be a closed 

loop. Then, the node having the highest �4C03�2�  value is connected to the open loop 

nodes for closing the network. 

3.2.4. Node Evaluation 

This method is applied to reduce noises and false detection problems. The node 

evaluation Ne(v) is defined as follows: 

���2� = t� = � + 1     9�y ≤ xy ∧ 9�| ≤ x| ∧ 9�} ≤ x}� = �             otherwise                                              (29)

9�y = |2y − %&�|, 9�| = ~2| − %&!~, 9�} = |2} − %&
|, b ∈ # (30)

The counter µ is initialized as 0. The node v should be removed if the µ is less than a 

specific threshold. This means that the node v does not have a sufficient number of 

neighbors from the input data D. The thresholds nx, ny, and nz are set based on the 

minimum distance between input nodes of the point cloud. 

3.2.5. Connection Evaluation 

A connection from a node k to l can be evaluated as follows: 

����, *� = t1     9�y > �y ∧ 9�| > �| ∧ 9�} > �}0     otherwise                                             (31)

9�y = |�y − %&�|, 9�| = ~�| − %&!~, 9�} = |�} − %&
|, b ∈ # (32)

�y =
�y + *y

2
, �| =

�| + *|

2
, �} =

�} + *}

2
 (33)

The same as before, the thresholds qx, qy, and qz are set based on the minimum distance 

between input nodes. This method compares the center point t of a connection to the input 

reference D. Therefore, bad connections having ����, *� = 0 are removed from the network. 

The output of the 3D object extraction is clusters, consisting of nodes and 

connections, as shown in Figure 10. 
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Figure 10. Clusters of nodes and connections of 3D objects. 

Every node and connection are then encoded to be sent from the mobile robot to the 

PC controller. From more than 10,000 points in a point cloud to only less than 100 outputs 

(nodes and connections), a high compression ratio can be achieved using this method, 

which is especially useful for low-bandwidth communication. 

FastGNG adds new nodes after mini-batch learning using weight parameters. 

Although it improves the learning speed in comparison to the original GNG algorithm, 

this also results in unnecessary nodes being added to the network, which requires an 

additional node deletion process. Hence, the simplified FastGNG avoids that by 

improving the correctness of the probability functions (�01�0�2�, �3410�2�), resulting in 

additional computational cost savings (see the comparison in the experimental results). 

Furthermore, due to the higher correctness of the probability functions, a new node and 

its connections can be added to the network in each step without a node deletion process 

(steps 4 and 5). Moreover, it also filters the point cloud data at the beginning of the 

algorithm by applying �01�0�2� to improve the correctness of the sample nodes. Those 

are the main differences between simplified FastGNG and the FastGNG algorithm. We 

simplified it from a general-purpose algorithm to a specific purpose in this system. 

3.3. 2D–3D Combination 

The combination process between 2D SLAM and 3D objects is expressed in Figure 

11. It starts from rotation and translation with 2D SLAM as the reference. All 3D objects 

from the simplified FastGNG algorithm are combined based on their clusters to create a 

new 3D map. Several clustering methods are also employed in the reconstruction process. 

The following are the steps of the combination process: 

Step 1. The pose graph map of 2D SLAM generates the orientations (�&�) and 2D position 

(txi, tyi) that are used for the input references of the rotation (34) and translation (35), 

respectively. 4i are always zero as the mobile robot only moves on a 2D slat surface. 

���!�
�1 � = �cos �&� − sin �&� 0 0sin �&� cos �&� 0 000 00 10 01� ���!�
�1 � (34)

���′!�′
��1 � = �1 0 0 ��&0 1 0 �!&00 00 10 �
&1 � ���!�
�1 � (35)

In the equation, x, y, and z are the node coordinates of 3D objects. Meanwhile, the 

double-apostrophe values are the results of this step. The rotation is completed first, 

and then followed by the translation. 
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Step 2. A density-based spatial clustering of application with noise (DBSCAN) is performed 

to make a correction of the first rotation and translation results. From the top point of 

view, a single 3D object may have an L-shape or a non-linear shape. Therefore, a density-

based clustering algorithm is needed, and DBSCAN is a pioneer of density-based 

clustering algorithms [48]. DBSCAN is still being adopted in modern techniques due to 

its simplicity and compactness for topological clustering applications [49]. The DBSCAN 

clustering is explained in Algorithm 1. In this method, we convert every 3D object into a 

2D line from the top point of view. It simplifies the clustering method since the z values 

are always correct. The mobile robot never moves on the z-axes. Thus, only x and y values 

need to be corrected. There are several parameters used in the DBSCAN clustering, such 

as minObj for a minimum number of objects, dEps for minimum search radius, and 

thetaTh for rotation threshold. The object rotation angle �4 is calculated using its gradient 

value (36), and the distance between objects � is calculated using the Euclidean distance 

(37). 

 

Figure 11. 2D–3D combination steps. Different colors indicate different clusters. 

�4 = tan� �:! − ��!�:� − ��� (36)
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� = ���:� − ����: + ��:! − ��!�: (37)

where P1 and P2 are two points in a single object as an xy-line. The output of this step 

is the clusterObj (colored lines in Figure 11 step 2) that will be used in the next step, 

and noiseObj (black lines in Figure 11 step 2) that is removed from the map result. 

Step 3. The pose graph map of 2D SLAM only generates orientations and positions of the 

individual map displacements. In other words, they are the mobile robot orientations 

and positions when scanning the environment or capturing the data. Therefore, to 

generate a 2D map reference, the occupancy grid map from 2D SLAM is used, as shown 

in Figure 12. It is generated based on the values of the occupancy grid map, where empty 

space is represented by low values (near 0), occupied space has high values (near 1), and 

untraveled space is between 0 and 1 (0.5 initially). We set 0.750 as the threshold to 

generate the 2D map reference. All nodes of the 2D map reference are then compared to 

the DBSCAN clustering result. By using a specific threshold, i.e., the Euclidean distance, 

these nodes can all be known to which DBSCAN cluster they belong. They are shown as 

black circles in Figure 11 step 3. 

Algorithm 1: DBSCAN Clustering 

Input: sampleObj, thetaTh, dEps, minObj 

Output: clusterObj, noiseObj 

clusterObj ← Null 

noiseObj ← Null 

while True do 

 temp_clust ← random(sampleObj) 

 isUpdate ← True; l_start ← 1; l_stop ← 1 

 while isUpdate do 

  isUpdate ← False 

  for i ← l_start to l_stop do 

   core ← temp_clusti 

   for j ← 1 to numOf(sampleObj) do 

    if |sampleObjj.� – core.�| ≤ thetaTh and 

     distEuc(sampleObjj, core.xy) ≤ dEps then 

     temp_clust.add(sampleObjj) 

     isUpdate ← True 

    end if 

   end for 

  end for 

  l_start ← l_stop + 1 

  l_stop ← numOf(temp_clust) 

 end while 

 if numOf(temp_clust) ≥ minObj then 

  clusterObj.add(temp_clust) 

 else 

  if numOf(temp_clust) = 1 then 

   noiseObj.add(temp_clust) 

  else 

   clusterObj.add(temp_clust) 

  end if 

 end if 

 if numOf(noiseObj) + numOf(clusterObj) = numOf(sampleObj) then 

  break 

 end if 

end while 

return clusterObj, noiseObj 
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Figure 12. 2D map reference generated from the occupancy grid map of 2D SLAM. 

Random sample consensus (RANSAC) [50] is then performed to generate 2D 

reference lines (black lines in Figure 11 step 3) based on the 2D map reference and 

the cluster. The line equations used in the RANSAC are as follows; !BY� = �BY��BY� + �BY� (38)

�BY� = !: − !��: − �� (39)

�BY� = tan� �BY� (40)

The slope �BY� is calculated using the gradient value of two sample points, (x1, y1) 

and (x2, y2). Then, its y-intercept �BY� can be known from the sample point (�BY� , !BY�), 

and its angle �BY� can be known from the �BY� value. This process is also explained 

in Algorithm 2. 

Step 4. In this step, DBSCAN clustering is performed to the RANSAC results of step 3. It 

generates new clusters for the 2D map reference nodes as a correction of the previous 

results. Next, RANSAC is applied to the new clusters to generate new 2D reference 

lines (light blue lines in Figure 11 step 4). These 2D reference lines are used as the 

final references to rotate and translate all 3D objects in the last step. 

Step 5. All 3D objects are re-rotated and re-translated using the last references from step 4. It 

is a correction of the rotation and translation in the first step. Finally, ground information 

from the occupancy grid map of 2D SLAM is combined with the result of this step. This 

is the final rendering result of 3D surface reconstruction, as shown in Figure 11. 

As described in Figure 6, the 2D–3D combination is run on the PC controller. Since the 

2D SLAM tends to accumulate errors before a loop closure, this process is executed every three 

time steps after the loop closure is detected. On the mobile robot, both 2D and 3D data are 

captured at the same time, and thus they represent the same object. However, due to sensors 

and the object extraction accuracy, they are not exactly aligned. Therefore, we performed an 

alignment process in the 2D–3D combination method to improve the 3D map accuracy. 

3.4. Communication System 

The combination of Wi-Fi and LoRa is configured based on each communication 

protocol, i.e., transmission control protocol/internet protocol (TCP/IP) and serial protocol, 

respectively. Figure 13 depicts the communication system architecture. The connection 

manager algorithm manages all network switching processes using a cFlag parameter, as 

explained in Algorithm 3. 
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Figure 13. Communication system architecture. 

Algorithm 2: RANSAC 

Input: sampleData, maxIteration, inliersTh 

Output: bestM, bestB, bestTheta 

maxInliers ← –1 

for i ← 1 to maxIteration do 

 rand1 ← random(sampleData) 

 rand2 ← random(sampleData) 

 while rand1 = rand2 do 

  rand2 ← random(sampleData) 

 end while 

 mrsc ← 
B�31u.|  B�31Z.|B�31u.y  B�31Z.y 

 brsc ← rand1.y – mrsc rand1.x 

 
�

rsc ← tan� �BY� 

 countInliers ← 0 

 for j ← 1 to length(sampleData) do 

  if |�rsc| ≤ 45.0 then 

   newX ← sampleDataj.x 

   newY ← mrsc newX + brsc 

  else 

   newY ← sampleDataj.y 

   newX ← 
30��  D���E���  

  end if 

  dist ← distEuc(new.XY, sampleDataj) 

  if dist ≤ inliersTh then 

   countInliers ← countInliers + 1 

  end if 

 end for 

 if countInliers > maxInliers then 

  maxInliers ← countInliers 

  bestM ← mrsc 

  bestB ← brsc 

  bestTheta ← �rsc 

 end if 

end for 

return bestM, bestB, bestTheta 

In addition, different encoding and decoding strategies are applied to the system, i.e., 

ASCII coding for Wi-Fi and binary coding for LoRa, which are not the focus of this paper. 

The reason for using ASCII coding for Wi-Fi is that the 2D LiDAR output is already in 
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ASCII format, and the data size can be compensated by the Wi-Fi bandwidth (353 kbps–9 

Mbps). On the other hand, binary coding is required for LoRa to compress all data as it 

has low bandwidth (6.01 kbps–22 kbps). Therefore, real-time applications can be 

performed by the system using both communication bandwidths. 

Algorithm 3: Connection Manager 

Input: IPaddr, tcpPort, tcpTimeout, comPort, serBaud, serTimeout 

Output: cFlag 

connTCP ← tcpconfig(IPaddr, tcpPort, tcpTimeout) 

connSer ← serconfig(comPort, serBaud, serTimeout) 

cFlag ← 1 

while True do 

 if cFlag = 1 then 

  try 

   funcTxRx(connTCP) 

  catch 

   cFlag ← 0 

  end try 

 else 

  funcTxRx(connSer) 

 end if 

end while 

4. Results and Discussion 

4.1. 3D Object Extraction Evaluation 

First, the standard GNG algorithm, FastGNG, and simplified FastGNG were compared for the 

same input dataset in our laboratory. All ran the object detection without post-processing 

methods. Table 2 summarizes the results. 

Table 2. Comparison between standard GNG algorithm, FastGNG, and simplified FastGNG. 

Standard GNG 

No. No. of Nodes 
No. of  

Connections 
Iteration/Phase Time [ms] Mean Time [ms] 

1 150 159 3700 58.3 

67.9 

2 150 165 3780 61.8 

3 150 171 4120 85.7 

4 150 164 4070 68.3 

5 150 166 3840 65.4 

FastGNG 

1 148 278 3 22.5 

22.2 

2 149 269 3 23.2 

3 152 297 3 21.2 

4 151 278 3 21.5 

5 150 285 3 22.8 

Simplified FastGNG 

1 155 146 3 13.6 

16.2 

2 144 132 3 18.2 

3 158 143 3 17.3 

4 152 137 3 16.0 

5 145 130 3 15.8 

It is difficult to run for the same number of nodes in each trial, especially for FastGNG 

and simplified FastGNG, since they use phase level (iP). Based on the results, the standard 

GNG algorithm has the highest computational cost. It really depends on the number of 

iterations. On the other hand, the FastGNG algorithm runs faster. It is roughly three times 

faster than the standard GNG algorithm. The simplified FastGNG has a similar 
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performance as the FastGNG. It uses the same core as in the FastGNG algorithm, however, 

in a simpler way, to achieve improved performance for the proposed system. In this case, 

we set the max_phase = 3 as the limit. 

In order to evaluate the performance of the 3D object extraction method, 3D point 

cloud datasets from our laboratory were used. The datasets, which have the same 

resolution of 640×480 pixels, were previously recorded using the LiDAR camera as 

described in Section 2.1. All parameter seHings for the evaluation can be seen in Table 3. 

Figure 14 shows the detection results, while the performance is summarized in Table 4. In 

the experiments, all post-processing methods were also performed. Based on the results, 

the proposed method can achieve the mean performance of 31.15 fps. That will be difficult 

to achieve when using the standard GNG algorithm, which has the mean execution time 

of 67.9 ms (14.73 fps) without any post-processing methods. This implementation is 

necessary, as we need to maintain all algorithms to be real-time capable in order to realize 

the target of this system. 

Table 3. Parameter seHings for 3D object extraction. 

Parameter Value Definition � 3.9 Constant for generating a set of sample nodes A � 1.55 Constant for �3410�2� �� d� = 0.225 m, d: = 0.150 m, de = 0.100 m 
Minimum length of a connection in the network for each 

phase level iP �� h� = 0.300 m, h: = 0.225 m, he = 0.175 m 
Maximum length of a connection in the network for each 

phase level iP �� n� = 10, n: = 8, ne = 6 Internal loop parameter for mini-batch learning ¢£, ¢¤, ¢¥ zy = 0.080 m, z| = 0.035 m, z} = 0.080 m Thresholds for ground removal ¦§, ¦¨ �� = 0.01, �: = −0.95 Thresholds for open loop connection ª£, ª¤, ª¥ xy = 0.2 m, x| = 0.2 m, x} = 0.2 m Thresholds for node evaluation «£, «¤, «¥ �y = 0.06 m, �| = 0.06 m, �} = 0.06 m Thresholds for connection evaluation 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 14. 3D object extraction results. White dots are the point cloud data. Colored dots and colored 

lines are the nodes and connections, respectively. Different colors indicate different clusters. (a–f) 

Point cloud 1–6 for experiments. 
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Table 4. 3D object extraction performance. 

No. 
Input  

Image 

No. of Points in 

Point Cloud 

No. of 

Nodes 

No. of  

Connections 

No. of 

Clusters 

Min Distance  

between Nodes 

Max Distance 

between Nodes 

Time 

[ms] 

1 Figure 14a 8586 77 80 8 0.100 m 2.430 m 32.7 

2 Figure 14b 11,647 48 49 3 0.100 m 3.210 m 27.6 

3 Figure 14c 10,455 61 67 5 0.100 m 3.180 m 34.6 

4 Figure 14d 10,802 80 86 2 0.102 m 1.575 m 35.6 

5 Figure 14e 13,948 54 60 1 0.102 m 1.217 m 32.1 

6 Figure 14f 14,094 70 76 2 0.100 m 0.560 m 30.0 

Frame Rate: Mean = 
� ¬e:.� +¬ = 31.15 fps; Min = 

� ¬e.® +¬ = 28.09 fps; Max = 
� ¬:¯.® +¬ = 36.23 fps 

Another important thing is the data compression. Remember that we need to send 

all monitoring data using both Wi-Fi and LoRa networks. It is impossible to send all raw-

point cloud data using low-bandwidth communication. Due to bandwidth restrictions, 

real-time performance will not be achieved, and there will be a data loss problem. Thus, 

the simplified FastGNG solves the problem by compressing the data size while at the same 

time maintaining its performance in real time. The trade-off is, of course, the map quality. 

Higher compression results in faster data transmission time but lower map quality, and 

vice versa. However, compared to our previous work using particle swarm optimization-

seeded region growing (PSO-RG) [51], which has a mean performance of 11.3 fps, the 

simplified FastGNG offers a beHer balance between data compression, accuracy, and 

computational cost. Furthermore, the PSO-RG limits each cluster to only eight nodes, 

which is much less than the simplified FastGNG results (48–80 in Table 4), making it more 

accurate to represent the detected objects. Even though the data size is approximately six 

to ten times larger, the communication bandwidth can still handle it. 

4.2. Real-Time Experimental Results 

We performed fifteen trials to evaluate the proposed methods. All of them were run 

on the proposed system in real time. There are configurations of Wi-Fi to LoRa, LoRa only, 

and Wi-Fi only, each of which are conducted five times. The environmental condition for 

experiments is shown in Figure 5. However, the placement of the objects in it may change. 

The parameter seHings for the experiments are shown in Table 5. These parameters are 

used in the 2D–3D combination method to build a 3D map. 

Table 5. Parameter seHings for 2D–3D combination method. 

Parameter Value Definition 

thetaTh 10° DBSCAN clustering rotation threshold 

dEps 
0.10 m (step 2) 0.15 m 

(step 4) 
DBSCAN clustering minimum search radius 

minObj 2 DBSCAN clustering minimum number of objects 

maxIteration 1.5 n 
RANSAC maximum iteration. n is the number of sample 

data 

inliersTh 0.10 m (step 3, 4) RANSAC inlier threshold 

Table 6 shows the computational costs of the experiments. The mobile robot observes 

2D and 3D data in parallel, and hence the computational cost in it will be the longest time. 

Figure 15 depicts the 3D map results. In Figure 15a, the mobile robot performed both the 

observation task and the command task. Therefore, the mobile robot final position is 

different from Figure 15b,c, which only performed the observation task. Similarly, the 

map density is also different due to the difference in the amount of data sent by the mobile 

robot to the PC controller. In the experiments, the mobile robot reached an average speed 

of 0.15 m/s (maximum 0.46 m/s), which depended on the track length and obstacles. 
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Table 6. Computational costs of real-time experiments. 

PC Controller 

No. Network 

Data Transmission 

Time [ms] 

Mean of 50+ Data 

Mean 

[ms] 

2D SLAM and 2D–3D 

Combination [ms] 

Mean of 50+ Data 

Mean 

[ms] 

Data Size [KB] 

Mean of 50+ Data 
Mean [KB] 

1 

Wi-Fi to LoRa 

273 

274 

93 

98 

0.727 

0.734 

2 266 92 0.740 

3 277 106 0.735 

4 272 96 0.718 

5 280 106 0.752 

6 

LoRa 

570 

625 

89 

99 

0.463 

0.471 

7 703 106 0.472 

8 618 102 0.474 

9 577 98 0.471 

10 659 103 0.475 

11 

Wi-Fi 

17 

18 

109 

112 

0.926 

0.932 

12 23 108 0.928 

13 16 116 0.936 

14 17 109 0.914 

15 18 118 0.936 

Mobile Robot 

 Hardware Sampling Rate Algorithm Encoding Total 

2D Data 2D LiDAR 25 fps (40 ms) 3× Downsampling: 10 ms 5 ms 55 ms 

3D Data LiDAR Camera 30 fps (33 ms) Simplified FastGNG: 32.1 ms (mean) 10 ms 75.1 ms 

Total Computational Cost 

Wi-Fi to LoRa 274 ms + 98 ms + 75.1 ms = 447.1 ms (2.24 Hz) 

LoRa 625 ms + 99 ms + 75.1 ms = 799.1 ms (1.25 Hz) (main target) 

Wi-Fi 18 ms + 112 ms + 75.1 ms = 205.1 ms (4.88 Hz) 

Figure 16 explains the missions of Figure 15a step by step, where the system switched 

the network automatically from Wi-Fi to LoRa in the middle of the observation task. Then, 

in the command task, the operator commanded the mobile robot to go to a specific 

position in the map by using the command buHons on the GUI. Of course, there are some 

delays for monitoring data when using the LoRa network compared with the Wi-Fi 

network. This is caused by the low bandwidth of LoRa. 

Based on the results in Table 6, the data transmission time is different among different 

network configurations, and obviously Wi-Fi is the fastest network. The 2D SLAM and 

2D–3D combination are performed in the PC controller, and hence they all have similar 

results. Lastly for data size, as mentioned earlier, we used different strategies for data 

coding methods between Wi-Fi and LoRa networks. ASCII coding is used for Wi-Fi and 

binary coding is used for LoRa. Therefore, the mean LoRa data size is smaller than the 

mean Wi-Fi data size. When using the Wi-Fi to LoRa configuration, the data are coded 

either using ASCII or using binary coding corresponding to the current network that the 

system uses. On the mobile robot side, there are two kinds of data sent to the PC controller, 

i.e., 2D and 3D data. A three-time downsampling is applied to the 2D data and the 

simplified FastGNG is applied to the 3D data to extract 3D objects. These result in a total 

maximum computational cost of 799.1 ms, which is 1.25 Hz. Thus, the operator can obtain 

the map update for at least 1.25 Hz for monitoring data. Faster updates can, of course, be 

achieved when the system uses the Wi-Fi network. 
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(a) (b) 

 

 

(c) (d) 

Figure 15. 3D map results from the experiments consisting of Wi-Fi to LoRa, LoRa only, and Wi-Fi 

only configurations. Red lines indicate walls or large objects, blue lines indicate small objects, and 

green objects are the mobile robot. White and gray floors are empty and occupy space from 2D 

SLAM, respectively. (a) Wi-Fi to LoRa configuration. (b) LoRa only configuration. (c) Wi-Fi only 

configuration. (d) The ground truth of the experiments. 

To evaluate the map results, we combined all fifteen maps and ploHed them in 2D 

from the top point of view, as shown in Figure 17. Since the mobile robot only moves in 

2D space, only the x and y-axes need to be evaluated. Compared to the ground truth in 

Figure 15d, they have about the same shape and size, which are 3.95 m in width and 4.2 

m in length. At the same time, the results show that the proposed method has good 

repeatability from all fifteen trials with different network configurations. 

There is one more scenario for the system to perform real-time observation and 3D 

map building. Figure 18 depicts the map results. The environmental condition is the same 

but with different object placements. The LoRa network was used and resulted in similar 

performance as in Table 6. These results also confirm the feasibility of the proposed 

method for performing real-time 3D map building under the system restrictions. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 16. An example of missions performed by the system. (a–d) are the observation task while 

(e,f) are the commands task. The view showing the mobile robot is not part of the system. This is a 

separate camera for recording the mobile robot movements. (a) Mobile robot started the missions 

using the Wi-Fi network. (b) In the middle of the missions, the Wi-Fi network was turned off. (c) 

Three seconds after the Wi-Fi being turned off, the system switched to the LoRa network. (d) The 

system used the LoRa network for the rest of the missions. (e) The operator commanded the mobile 

robot to go to a specific location in the map. (f) Final results of the missions. 

4.3. Discussion 

In order to achieve real-time application of the system, all implemented algorithms 

need to have real-time capabilities, as depicted in Figure 6. The more data for the 

algorithms, the higher the accuracy of the results. However, the computational costs may 

also increase. Therefore, it is very important in this system to maintain a balance between 

the amount of data and its accuracy. In mobile robot operations, at least an operator is 

needed not only to control, but also to monitor the mobile robot’s behaviors in performing 

the missions. Hence, real-time capabilities should be considered since they enable not only 

direct results, but also real-time responses between the operator and the mobile robot. In 

[22], it defines a real-time target for 3 s. This paper, however, is targeted at 1 s (1 Hz). We 

considered it based on the implemented hardware in the system, and it was confirmed by 

the experimental results. 
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Figure 17. Combination of all maps from the experiments. (a) Combination of five 2D maps from 

Wi-Fi to LoRa configuration. (b) Combination of five 2D maps from LoRa configuration. (c) 

Combination of five 2D maps from Wi-Fi configuration. (d) Combination of fifteen 2D maps from 

all network configurations. (e) Combination of five 3D maps from Wi-Fi to LoRa configuration. (f) 

Combination of five 3D maps from LoRa configuration. (g) Combination of five 3D maps from Wi-

Fi configuration. (h) Combination of fifteen 3D maps from all network configurations. 

  

 

(a) (b) (c) 

Figure 18. Experimental results with different object placements. (a) 3D map result. (b) 2D 

occupancy grid map. (c) The ground truth of the experiment. 

As depicted in Figure 4, there are several tasks running in parallel on the mobile robot 

while observing the environment. The FLC wall path follower and obstacle avoidance are 

running in the background to handle the mobile robot’s movements. Regarding the 

mobile robot speed, we defined in the FLC controller that 0.2 m/s is the medium speed, 

less than 0.1 m/s is the slow speed, and more than 0.4 m/s is the fast speed. Based on the 

experimental results, the mobile robot is able to reach a maximum speed of 0.46 m/s with 

an average speed of 0.15 m/s. This is a car-like mobile robot, and thus it also needs to go 
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backward to avoid the obstacles. All the above experiments, of course, run in parallel with 

the background programs. In addition, we also installed an active cooling fan to maintain 

the Raspberry Pi CPU temperature. Figure 19 shows the CPU performance when running 

the missions. There are configurations of Wi-Fi to LoRa, LoRa only, and Wi-Fi only. The 

missions were started at around 5 s, and then both CPU temperature and CPU usage 

started to rise. When using the Wi-Fi network, the CPU usage is lower than when using 

the LoRa network. This is caused by the program architecture. One additional thread is 

added for the LoRa network to help the communication thread. It performs timeout 

recovery algorithms to prevent data loss on the LoRa network [40], as all data are 

important for the mapping process. It is worth noting that when the CPU temperature 

rises to 80–85 °C, the CPU will start to slow down and reduce all clocks, as wriHen in the 

Raspberry Pi documentation. In the worst case, the simplified FastGNG algorithm may 

drop to 10 fps when the CPU throHling happens. Hence, the implementation of the active 

cooling is very important. 

  
(a) (b) 

Figure 19. Raspberry Pi CPU performance when running the missions. (a) Raspberry Pi CPU and 

memory usage. (b) Raspberry Pi CPU temperature. 

Modern SLAM algorithms, such as ORB-SLAMs [29–31], can also run in real time on 

embedded systems [32,33]. Since they require three or more threads to achieve real-time 

performance, it is difficult for this system to be implemented. Instead, we run the mapping 

algorithms on the PC controller and focus the mobile robot on data observation. Under 

embedded systems, ORB-SLAMs can achieve a performance of 2.2–12.69 fps (454–79 ms) 

[32]. If we only compare the mapping algorithms, the proposed method can perform 

competitively, which is 8.9–10.2 fps (112–98 ms in Table 6). 

In contrast to [28], which prioritizes quality and repeatability, this paper prioritizes 

repeatability (Figure 17) and real-time performance under low-cost hardware limitations 

to perform 3D mapping. This is one of our novelties, as most of the state-of-the-art focuses 

on how to construct a 3D map for beHer quality but ignores real-time processing [23–25]. 

This will make real-time control and observation difficult to realize, even more so for low-

cost devices. Of course, this is a trade-off between data size, accuracy, and computational 

cost. In this paper, we balance all of them to achieve the target of the proposed system. 

Thus, the drawback of this work is map quality, as it is nearly impossible to send the 

amount of data under low-bandwidth communication in real time. 

The advantage of our proposed approach is the use of low-bandwidth 

communication. The combination of high and low-bandwidth networks is also developed 

in [2,32]. All of them confess that the network combination improves the robustness of 
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wireless communication for mobile robot applications. However, they still require the 

high-bandwidth network to build a full 3D map and complete the missions. Our system, 

on the other hand, enables complete network switching. This means that all observation 

data for 3D mapping can be sent to the host using either the high or low-bandwidth 

network, even when the main network is completely lost. This brings us to another 

novelty of this paper, as, to the best of the authors’ knowledge, there are no similar works 

performing real-time 3D map building under low-bandwidth networks. 

The first step of the 2D–3D combination method, rotation and translation, is actually 

sufficient to represent the environment as a 3D map. The reason for applying the other 

processes is accuracy. Next, RANSAC is also a bit time consuming. In this case, we set the 

maxIteration parameter to 1.5 n, where n is the number of sample data. 

As explained in Section 2, C++ is used in the mobile robot and MATLAB is used in 

the PC controller. MATLAB has a MATLAB Coder, which generates C/C++ code directly 

from MATLAB code. This is very important to be implemented as it can run more than 

ten times faster than native MATLAB code. Table 6 shows how fast the algorithms (2D 

SLAM and 2D–3D combination) can be executed by the PC controller. 

The challenge of the proposed approach is the number of parameters. We found that 

it is difficult to obtain appropriate results without understanding the input data 

characteristics. We have to set the parameters step by step based on the purpose of each 

algorithm. It is difficult to jump to the next parameters if the previous parameters are not 

stable yet. For example, seHing the parameters for six post-processing methods after the 

simplified FastGNG algorithm. We must first successfully remove the ground nodes 

before adjusting the second method, and so forth. 

The compressed data size for LoRa is around 0.471 KB (mean). This enables a real-

time transmission time of 627 ms (625 ms in experiments) with a speed of 6.01 kbps. By 

using the compression ratio for 2D and 3D data, the raw data size for LoRa can be 

estimated to be 11.492 KB. It will take around 15.29 s to send the uncompressed data using 

LoRa, making the real-time target completely impossible when using the low-bandwidth 

communication. The Wi-Fi transmission speed can also be estimated to be 414.22 kbps, 

where the data size is 0.932 KB and the transmission time is 18 ms. However, Wi-Fi can 

certainly perform much faster since it can stream videos in real-time. 

There are two restrictions in the proposed system, i.e., limited onboard computing 

resources and low-bandwidth communication. Compared with [2,22,23,28], it is difficult 

to achieve the real-time target under those two restrictions. Therefore, we developed the 

proposed method to address the problems. It proved the ability to achieve the target of 1 

Hz refresh rate, which is our design system for enabling real-time control and monitoring 

for the operator. The combination of Wi-Fi and LoRa makes the system robust against 

network problems. The developed algorithms are lightweight and can be installed on 

relatively low-cost hardware. Parallel computing is also performed as the system uses a 

shared control method to run all the algorithms. Finally, real-time 3D map building can 

be conducted using both high and low-bandwidth networks. 

5. Conclusions 

3D visualization of the real world is becoming increasingly important. In robotics, it 

is not only required for intelligent control, but also necessary for operators to provide 

intuitive visualization. However, due to the increase in the amount of data, real-time 

processing is becoming a challenge, even more so for low-cost mobile devices. Therefore, 

in order to address this problem, we propose a real-time 3D map building based on the 

combination of 2D SLAM and 3D objects that can be applied to low-cost hardware. 

Starting with 2D–3D data observation and 3D object extraction, all observation data 

are sent wirelessly from the mobile robot to the PC controller to create a 3D map. First, the 

2D SLAM algorithm is run by the PC controller to build a 2D map based on the 2D 

observation data. Then, the simplified FastGNG algorithm, which is run by the mobile 

robot, compresses 3D point cloud data as 3D objects. It gives the system a balance between 
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data size, accuracy, and computational cost, and thus enables real-time data transmission 

even though the low-bandwidth communication is used. Lastly, the 2D–3D combination 

method is applied to create a 3D map in the PC controller. This combines the 2D data from 

2D SLAM and 3D objects from the simplified FastGNG algorithm. The low-bandwidth 

communication using the LoRa network is actually the main target, as it restricts not only 

the data size, but also the data transmission speed. 

The results show that the proposed method can perform a minimum 1.25 Hz refresh 

rate, which is real-time capable. It means that the operator will obtain the map update for 

at least 1.25 Hz for one monitoring data. This proves that the target of a 1 Hz refresh rate 

can be achieved by the proposed method. Of course, a higher refresh rate can be achieved 

when the system uses the Wi-Fi network. 

In addition, the combination of high and low-bandwidth networks also enables the 

system to maintain its client–server communication. Therefore, the missions can be 

continued, and real-time monitoring can still be performed even if the system loses the 

Wi-Fi network completely. 

In future work, we will improve the LoRa performance since it is still far from its 

maximum bandwidth. The data may also need to be compressed using another 

compression technique that makes it smaller in size. In addition, we want to try more 

complex environments to see what further improvements are needed for the algorithms. 
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